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Abstract. Constructing longitudinal diffusion-weighted atlases of
infant brains poses additional challenges due to the small brain size and
the dynamic changes in the early developing brains. In this paper, we
introduce a novel framework for constructing longitudinally-consistent
diffusion-weighted infant atlases with improved preservation of structural
details and diffusion characteristics. In particular, instead of smoothing
diffusion signals by simple averaging, our approach fuses the diffusion-
weighted images in a patch-wise manner using sparse representation
with a graph constraint that encourages spatiotemporal consistency.
Diffusion-weighted atlases across time points are jointly constructed for
patches that are correlated in time and space. Compared with existing
methods, including the one using sparse representation with l2,1 regu-
larization, our approach generates longitudinal infant atlases with much
richer and more consistent features of the developing infant brain, as
shown by the experimental results.

1 Introduction

Diffusion-weighted imaging (DWI) has been widely employed in various studies
on brain development of both term and pre-term babies [1]. It is a unique tech-
nique capable of in vivo characterization of tissue microstructure and white mat-
ter pathways. For quantitative analysis using DWI, several diffusion-weighted
(DW) atlases based on diffusion tensor imaging (DTI) [2] and higher angular
resolution diffusion imaging (HARDI) [3] have been introduced. However, exist-
ing approaches to atlas construction typically average the aligned DW images,
thus blurring structural details as well as diffusion properties. In this article, we
focus on improving longitudinal DW infant atlases by explicit consideration of
structural misalignment for constructing atlases with greater structural details.

In general, the atlas construction process consists of two steps: (1) alignment
of a population of images to a common space, and (2) fusion of the aligned
images into a final atlas. In recent years, effective approaches on image fusion
have been introduced to preserve anatomical details. Serag et al. [4] employed
adaptive kernel regression in the temporal dimension for construction of longi-
tudinal T1 and T2-weighted atlases. Shi et al. [5] proposed a patch-wise fusion
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method based on multi-task LASSO [6], leading to sharper atlases by fusing only
patches that are representative of the image population. More recently, Zhang
et al. [7,8] extended Shi et al.’s work to the frequency and temporal domains
for construction of longitudinal T1-weighted atlases. Behrouz et al. [9] demon-
strated that structural preservation in DW atlases can be improved by enforcing
consistency between angular neighbors using group sparsity. This work, however,
is limited to constructing atlases of a single time point.

The human brain undergoes dramatic changes in the first year of life. Ded-
icated method taking into account these changes is needed for effective con-
struction of infant DW atlases. In this paper, we propose a novel approach to
construct longitudinal infant DW atlases with greater details and temporal con-
sistency. We employ sparse representation [10] with guidance by a graph that
encodes the relationships between spatially and temporally neighboring patches.
Experimental results indicate that the proposed method improves the quality
of the DW atlases in terms of structural details and fiber coherence, compared
with existing image fusion methods.

2 Method

2.1 Longitudinal Image Normalization

Our method for DW atlas construction starts with group-wise image normal-
ization to align the DW images of each individual at each time point to an
age-specific common space, and also to determine image spatial correspondences
between time points. We first align the DW images of all subjects at each age
using group-wise registration [11] with their fractional anisotropy (FA) maps.
We reorient the diffusion signals using the method described in [12]. Then, we
compute age-specific templates (Īt) of aligned DW images (Ii,t) at each time
point (t) using kernel regression based on age [7]:

Īt =
∑N

i=1 gi,tIi,t
∑N

i=1 gi,t

, (1)

Fig. 1. Overview of longitudinal diffusion-weighted (DW) atlas construction
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where gi,t = 1
σ

√
2π

exp
(

− (ki,t−k̄t)2
2σ

)

. ki,t is postnatal age at scan time, and k̄t

is average age of a population at t. We determine σ as standard deviation of
subjects’ age in the population. Next, we build a longitudinal template using
group-wise registration with FA maps of the age-specific templates. Through
this process, we can find spatial and temporal correspondences across different
time points using the displacement maps (Tt→l in Fig. 1) between the age-specific
templates and the longitudinal template.

2.2 Patch Fusion via Graph-Constrained Sparse Representation

We construct the DW atlases at each time point in a patch-wise manner. We
define a patch as a 4D block, which includes diffusion signals of all gradient direc-
tions. This signals are normalized by the average b = 0 signal. The estimation
of a patch of the atlas at location s and time-point t is deemed as a task (p) in
multi-task learning. For each task, we first extract spatiotemporally neighboring
patches from the individual images at each voxel locations and its 26-connected
neighbors across time points. In this process, the age-specific templates are used
as references. The age-specific template and individual DW images of different
time points are transformed to the common space at time-point t beforehand.
Patches from the individual images form a dictionary Dp. If we denote the refer-
ence patches from the age-specific templates as {yp}, the goal is to find optimal
sparse weights {wp} that minimize differences between Dpwp and yp for all p.
Each patch and its spatiotemporal neighbors are estimated jointly using multiple
task learning with a spatiotemporal graph constraint (step (b) in Fig. 1). That
is, we solve the following problem:

Ŵ = argmin
W

∑

p∈P

‖yp − Dpwp‖2 + λ1‖W‖1

+ λ2

∑

p∈P

∑

p′∈N(p)

‖α (p, p′) (wp − wp′) ‖22, (2)

where P is a set of all tasks for a target patch and its spatiotemporal neighbors,
W is a matrix containing sparse weights for each task (wp) as column vector,
and N (p) is the set of tasks associated with the spatiotemporal neighbors. λ1 is
a parameter used to control the sparsity resulting from l1 regularization (second
term of Eq. (2)). λ2 is a parameter used to control the similarity between the
sparse weights for neighboring tasks. The spatiotemporal relatedness between
tasks are encoded using weights α (p, p′):

α (p, p′) = exp

[

−
(

ds (p, p′)2

2γ2
s

+
dt (p, p′)2

2γ2
t

)]

, (3)

where ds (p, p′) and dt (p, p′) are spatial distance and age difference between task
p and its neighbor task p′, respectively. They are normalized by their maximum
values. γs and γt are parameters used to control the relatedness between tasks by
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scaling the spatial and temporal distances separately. The third term in Eq. (2)
for the relatedness between tasks can be reformulated using a graph Laplacian
L of size q × q :

Ŵ = argmin
W

∑

p∈P

‖ yp − Dpwp ‖2 +λ1 ‖ W ‖1 +λ2tr
(
WLWT

)
(4)

where L = H −A, and q is the number of all tasks (= size of P). H is a diagonal
matrix, with each diagonal element hp,p computed as

∑
p∈N(p) α (p, p′). A is

an adjacency matrix with elements {α (p, p′)}. Using this formulation, we can
enforce greater similarity constraints between tasks that are highly correlated.

3 Experiments

3.1 Materials

We demonstrate the effectiveness of our method in longitudinal DW atlas con-
struction using dataset of an infant population (28 subjects, born at full term).
For each subject, 42 diffusion-weighted images were acquired using 3T Siemens
Allegra scanner with a spin-echo echo planar imaging sequence using TR/TE
= 7680/82 ms, resolution = 2 × 2 × 2 mm3, and b = 1000 s/mm2. Seven non-
diffusion-weighted (b = 0) reference scans were acquired. The image dimension
is 128 × 96 × 60. We built the atlases for neonate, 6 and 12 months of age using
the DW images of 20 subjects. Each subject has different number of longitudinal
scans (1.2 scans on average). The DW images of remaining 8 subjects at three
time points are used for the following evaluations. All DW images were processed
using the FSL software package [13] for the correction of eddy current distortion
and brain region extraction using the averaged b = 0 images.

3.2 Implementation Detail

The parameters of our algorithm need to be adjusted: (1) patch size, (2) the
sparsity parameter (λ1), (3) the graph constraint parameter (λ2), and (4) the
task relatedness parameters (γs and γt). In the following experiments, we fixed
the patch size as 3 × 3 × 3 × 42, where 42 is the number of diffusion-weighted
volumes. We set λ1 and λ2 as 5 that produced better details in final atlases via
a grid search. We set γs and γt as 5.0 and 1.0 respectively in the same way.

3.3 Comparison with Existing Image Fusion Methods

To evaluate the effectiveness of the proposed method, we compare it with other
existing fusion methods, including kernel regression based on age [4], multi-task
LASSO with spatial consistency (l2,1-Spatial) [8,9] and spatiotemporal consis-
tency (l2,1) [7]. Figure 2 shows the FA maps of the atlases. Compared with other
methods, the proposed method provides clearer boundaries with less noise-like
artifacts (see arrows in Fig. 2). In addition, the methods with temporal con-
sistency (i.e. l2,1 and proposed methods) introduce more structural details of
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Fig. 2. Fractionial anisotropy maps of diffusion-weighted atlases, generated by kernel
regression using age (Kernel), muti-task LASSO with spatial consistency (l2,1-Spatial),
multi-task LASSO with spatiotemporal consistency (l2,1), and the proposed method
(Our). Compared with other methods, the proposed method provides more details with
less artifacts in longitudinal atlases (see arrows in right columns). 1st row: neonate; 2nd

row: 6 months; 3rd row: 12 months.

infant brain, which are more consistent between the atlases at different ages.
The effectiveness of our method is further supported by Fig. 3, which shows the
orientation distribution functions (ODFs) of the atlases. In the atlas given the
kernel regression method, many ODFs in cerebral cortex are missing due to the
lower anisotropy. Compared with the atlases of the l2,1-Spatial and l2,1 methods,
the proposed atlas shows more coherent ODFs along white matter (WM) with
less spurious peaks (see arrows in Fig. 3). Figure 4 shows the fiber tracts of the
splenium of the corpus callosum, which are extracted from the atlases. Seeds were
assigned to the middle of the splenium. The atlases given by the kernel regression
and l2,1-Spatial methods produces larger bundles with less number of branches.
The proposed atlas gives more well-connected fiber tracts with clearly separated
branches, compared with the atlas given by the l2,1 method (see arrows in Fig. 4).
Figure 5 shows the tracts that traverse the corpus callosum in the atlases of the
proposed method at birth and 6 months and 12 months of age.

3.4 Evaluation of Temporal Consistency

We assess the temporal consistency of the atlases in terms of fiber tract consis-
tency of across time points. We assume that longitudinal DW atlases with more
temporally consistent features can yield less distortion in propagating individ-
ual images at a time point to different temporal spaces via the atlases. For this
purpose, we first obtain fiber tracts, including inferior fronto-occipital fasciculus
(IFOF), forceps minor (F-Minor), and hand-superior U-tract (U-Tract), from
the testing DW images at the neonatal time point. Then, we transform the fiber
tracts from the individual neonatal space to the space of the same individual at
later time points in two ways:
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Fig. 3. Orientation distribution functions (ODFs) of diffusion-weighted atlases at
6 months of age, generated by kernel regression using age (Kernel), muti-task LASSO
with spatial consistency (l2,1-Spatial), multi-task LASSO with spati-temporal consis-
tency (l2,1), and the proposed method (Our). The proposed method provides ODFs
with coherent fiber orientation along the white matter to the cerebral cortex.

Fig. 4. Fiber tracts of the splenium of corpus callosum, extracted from diffusion-
weighted atlases at 6 months of age. The proposed atlas provides more clearly sep-
arated branches and well-connected tracts to the cerebral cortex. Kernel: kernel regres-
sion using age; l2,1-Spatial: muti-task LASSO with spatial consistency; l2,1: multi-task
LASSO with spati-temporal consistency; Our: the proposed method. 1st row: right side
of the splenium; 2nd row: left side of the splenium.
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Fig. 5. Tracts that traverse the corpus callosum, extracted from the diffusion-weighted
atlases generated by the proposed method at neonate, 6 months, and 12 months of age.

(A) Direct transformation from the testing images at the neonatal time point
to the DW images of the same subjects at later time points (i.e., 6 and
12 months).

(B) Atlas-guided transformation (1) from the testing images to the neonatal
atlases, (2) from the neonatal atlases to the atlases of later time points, and
(3) from the atlases to the testing images at later time points.

The non-linear transformations are obtained by affine transformation followed
by diffeomorphic non-linear registration using the FA maps of the atlases and
the testing images. Transformation using method (A) is relatively small and can
be estimated very reliably. Hence it is used as the baseline for comparison. The
transformed tracts are compared using symmetric mean distance over all closest
point pairs. Figure 6 shows the average of the mean distances between the fiber
tracts for 8 testing subjects. The small distances given by the proposed method
indicate that the atlases generated by it are more temporally consistent.

Fig. 6. Mean distances between fiber tracts, transformed by displacement between
individual brains at different ages and displacement between longitudinal atlases. F-
Minor: forceps minor; IFOF: inferior fronto-occipital fasciculus; U-Tract: hand-superior
U-tract. 0–6: propagation from neonate to 6 months; 0–12: from neonate to 12 months.
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4 Conclusion

In this paper, we have introduced a novel method based on graph-constrained
sparse reconstruction for constructing longitudinal DW atlases of the developing
infant brain in a patch-wise manner. Our method results in the atlases with more
structural details, less artifacts, and greater temporal consistency.
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