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Abstract. As Electroencephalography (EEG) is a non-invasive brain
imaging technique that records the electric field on the scalp instead
of direct measuring activities of brain voxels on the cortex, many
approaches were proposed to estimate the activated sources due to its
significance in neuroscience research and clinical applications. However,
since most part of the brain activity is composed of the spontaneous
neural activities or non-task related activations, true task relevant acti-
vation sources can be very challenging to be discovered given strong
background signals. For decades, the EEG source imaging problem was
solved in an unsupervised way without taking into consideration the
label information that representing different brain states (e.g. happiness,
sadness, and surprise). A novel model for solving EEG inverse prob-
lem called Graph Regularized Discriminative Source Imaging (GRDSI)
was proposed, which aims to explicitly extract the discriminative sources
by implicitly coding the label information into the graph regularization
term. The proposed model is capable of estimating the discriminative
brain sources under different brain states and encouraging intra-class
consistency. Simulation results show the effectiveness of our proposed
framework in retrieving the discriminative sources.

Keywords: Inverse problem · Graph regularization · EEG source imag-
ing · Sparse representation

1 Introduction

To infer the activated brain sources from the recorded EEG data is called inverse
problem. Precise localization of neuronal firing pattern inside the brain can offer
an insightful understanding of how the brain is functioning under certain cogni-
tive and motion tasks. We also argue that source reconstruction or solving the
inverse problem is the first and primary step for connectivity analysis of the
brain, and precise inference of time course of brain sources is required in order
to build the brain connectivity network. The latter step is to analyze the brain
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network using complex networks [4,14,17] characteristics measurement, as we
saw a shift in neuroscience community from traditional “segregation” perspec-
tive to “integration” perspective where the functional and effective connectivity
between different regions of brains are intensively studied [8,13] in recent years.

In order to solve the ill-posed inverse problem, different priors or assumptions
have to be imposed to obtain a unique solution. The most traditionally used pri-
ors are based on minimum power, leading to what is known as the minimum norm
estimate (MNE) inverse solver [6], or minimum magnitude, termed as minimum
current estimate (MCE) [16], leading to a least absolute shrinkage and selection
operator (LASSO) formulation. Other assumptions or priors are presented with
different inverse algorithms, such as standardized low-resolution brain electro-
magnetic tomography sLORETA [15], which enforces spatial smoothness of the
source located on neighboring voxels; Bernoulli-Laplace priors, which introduced
�0 + �1 norm in a Bayesian framework [2]; Mixed Norm Estimates (MxNE), which
imposes sparsity over space and smoothness over time using �1,2-norm regular-
ization [3]; graph Fractional-Order Total Variation (gFOTV) [11], which impose
sparsity of the spatial fractional derivatives so that it locates source peaks by
providing the freedom of choosing smoothness order.

As summarized above, numerous algorithms that were based on different
source configuration assumptions or prior knowledge were presented to solve the
inverse problem. Traditional algorithms solve the EEG inverse problem indepen-
dently for different brain states without leveraging the label information, that
will make it hard to compare the reconstructed sources under different brain
states due to its low SNR (Signal-to-Noise Ratio) of the EEG signal. To the best
of our knowledge, few researchers come up with a model that can integrate EEG
inverse problem with label information (e.g. happiness, sadness, and surprise)
to find task related discriminative sources except our previous work [12]. To
explicitly extract factual sources and eliminate the spurious ones, we proposed
the graph regularized version of discriminative source reconstruction that has
the capability of promoting intra-class consistency, and we tested it on synthetic
data and illustrated its effectiveness in discovering task related sources.

2 The Inverse Problem

Under the quasi-static approximation of Maxwell’s equations, the EEG signal
measurements X can be described as the following linear function of current
sources S:

X = LS + E, (1)

where X ∈ R
Nc×Nt is the EEG data measured at a set of Nc electrodes for Nt

time points, L ∈ R
Nc×Nd is a wide matrix called lead field matrix that maps

the brain source signal to sensors on the scalp, each column of L represents
the activation pattern of a particular brain source to the EEG electrodes, S ∈
R

Nd×Nt represents the corresponding neural electric field in Nd source locations
for Nt time points. E ∈ R

Nc×Nt is additive noise. An estimate of S can be found
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by minimizing the following cost function, which is composed of a data fidelity
term and a regularization term:

arg min
S

‖X − LS‖2F + λΘ(S), (2)

where ‖·‖F is the Frobenius Norm. The regularization term Θ(S) can be used
to guarantee smooth source configurations temporally or spatially and enforces
neurophysiologically plausible solutions or to guarantee sparsity in source solu-
tion. For example, to restrict the total number of activated voxels to be less
than or equal to k, the constraint ‖si‖0 � k can be used. Even though �0-norm
is the best intuitive formulation to restrict number of activated sources, it’s a
common practice to use approximated norm such as �1 to avoid the problem
being NP-hard when solving EEG inverse problem. For the ith time point, the
�1 regularized formulation is given below:

〈si 〉 = arg min
si

‖xi − Lsi‖22 + γ‖si‖1. (3)

Given the EEG recordings at a time point, which is denoted as ith column xi

of X matrix, we want to represent the signal with minimum error by trying
to find the best linear representation from activation patterns (atoms) in the
over-complete dictionary L [12]. The solution si is the sparse coding for the xi

in the dictionary L, the non-zero entries in si corresponding to a column in the
dictionary matrix L represent the activated regions inside the brain [12].

3 Proposed Framework

3.1 Graph Regularized Discriminative Source Imaging

Due to the fact that EEG signal is non-stationary and typically the SNR is
very low, it’s important to get consistent inverse solution under the same brain
status and eliminate the spurious sources that are usually not consistent within
the same class. Inspired by the successful applications of graph regularization in
computer vision community [1,5], the proposed model of retrieving task related
discriminative source is presented, which is termed as Graph Regularized Dis-
criminative Source Imaging (GRDSI), and comprises the data fidelity term and
label guided graph regularization term:

〈S 〉 = arg min
S

‖X − LS‖2F + γ‖S‖1,1 +
β

2

N∑

i,j=1

‖si − sj‖22 Mij , (4)

where the first term is the fidelity term, the second term is the cost of sparse cod-
ing, ‖·‖1,1 is the �1 norm notation for a matrix, equal to the sum of the absolute
value of all elements in a matrix. The third term is the graph regularization
term that requires all the sparse coder within the same category remains similar
pattern while making the sparse representation for different class distinct from
each other. The definition of M matrix can be written as:
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Mij =
{

1, if (si,sj) belong to the same class
0, if (si,sj) belong to different classes

The goal of this formulation is to find discriminative sources while maintaining
the robustness of in-class reconstructed sources.

Remarks on design of M matrix
When (si, sj) belong to the same class, design the value of Mij to be positive
will add penalty when the intrinsic geometry (si, sj) is different, thus promoting
intra-class consistency of the source and reduce the spurious sources estimated
at each time point.

Define D as a diagonal matrix whose entries are column or row sums of the
symmetric matrix M , Dii =

∑
j Mij , define G = D − M , G is called graph

Laplacian [1], The third term of Eq. 4 can be further derived in the following
way:

N∑

i,j=1

‖si − sj‖22 Mij =
N∑

i,j=1

(si
T si + sj

T sj − 2si
T sj)Mij = 2tr(SGST ) (5)

As a result, Eq. 4 is further derived as:

〈S 〉 = arg min
S

‖X − LS‖2F + γ‖S‖1,1 + β(Tr(SGST )) (6)

Equation 6 can be efficiently solved using feature-sign search algorithm [1,10].

3.2 Common Sources Decomposition with Voting Orthogonal
Matching Pursue (VOMP)

Under the assumption of strong common spontaneous source activation pattern,
the contribution of discriminative sources to the EEG recorded data is relatively
small, making the solution space for different classes highly correlated and dif-
ficult to find discriminative sources. As a result, the convex hull spanned by all
the source configuration is limited to a tiny portion of the space [18]. In order
to address that, we use the idea of “cross-and-bouquet” model [18] and come up
with a useful step that is to decompose of X to find the common sources shared
by different classes. The Voting Orthogonal Matching Pursue (VOMP) is pro-
posed and described in Algorithm 1. The aim is to recover the common sources
across all classes. The core part of VOMP is Orthogonal Matching Pursue (OMP)
which is a very efficient algorithm. After the decomposition of common source,
its contribution to the EEG data X is also removed. The new EEG data after
removal of the common source is written as Xnew = X − LSc.

Based on the discussion above, the proposed framework to solve Problem 6
is summarized in Algorithm 2 and illustrated in Fig. 1.
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Algorithm 1. Decomposition of Non-discriminative Sources with VOMP
INPUT: Lead field matrix L, EEG data X, maximum number of common sources Tmax, minimum

voting acceptance threshold p

OUTPUT: Sc, result of removed common sources Xnew

Initialization: T ← 1, Ω = ∅, R = X, Rnew = X, S′ = 0

while Stopping criteria is not met do

for i ∈ 1, ..., Nt do

si ← OMP(L, xi, 1)

qi ← nonzero index of si

end for

qbest ← most frequent qi
if T = Tmax or frequency of f(qbest) < p then

break;

else

Ω ← Ω ∪ qbest ; L
′
= (L:,i|i ∈ Ω) ; S

′ ← pinv(L′)X; S
′ ← mean(S

′
); Rnew ← X − L′S′

end if

for k ∈ 1, ..., C do

Rk
new = {Rnew(i)|i ∈ class k} ;

Rk = {R(i)|i ∈ class k}
end for

if
∥
∥
∥Rk

new

∥
∥
∥ <

∥
∥
∥Rk

∥
∥
∥ for k ∈ 1, ..., C then

continue;

else break;

end if

T ← T + 1; R ← Rnew

end while

Xnew = Rnew; Sc = S′

return Sc, Xnew

4 Numerical Results

We used a recently developed realistic head model called ICBM-NY or “New
York Head” [9]. The dimension of lead field matrix we are using is 108 × 2004,
representing 108 channels and 2004 voxels. We also assume that source orienta-
tion is perpendicular to the cortex surface. In each simulation, noises originate
from sensor level and cortex voxel level both contributed to the recorded EEG
data. The SNR is calculated as SNR = 20 log10

‖S‖2
‖N‖2

. We show the effectiveness
of the graph regularization term in reconstructing the discriminative sources by
comparing it with the other eight benchmark algorithms, including ElasticNet,
Homotopy, DALM, PDIPA, L1LS, FISTA, sLORETA, MNE. The former 6 algo-
rithms are compared in image reconstruction applications and can be referred
to Reference [19] for details.

We designed the spontaneous common sources with a magnitude of 0.8 with
standard deviation to be 0.1 and task related discriminative source with a mag-
nitude of 0.2 with a standard deviation of 0.05 located in different Region Of
Interest (ROI)s from the common sources. The ROI we used here are defined in
Reference [7]. We sampled 200 time points for each class and did the experiment
5 times to get the average accuracy of the reconstructed source. For the GRDSI
parameter, we set β to be 0.05 and α to be 0.06; The noise matrix is designed
to affect the EEG recording together with the true source signal. For each time
point, 3 random voxels are corrupted randomly with the average value being 0.2,
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Fig. 1. Procedures of our framework: After gathering labeled EEG recorded data, the
brain model is constructed using finite element method (BEM) based on MRI images,
the VOMP algorithm is used to decompose the primary common source starting with a
high minimum voting percentage, and then solve it using feature-sign search algorithm,
the last step is to map discriminative sources to the cortex.

Algorithm 2. Proposed framework of solving Problem 6
INPUT: Lead field matrix L, preprocessed EEG signal matrix X, label matrix H
OUTPUT: Discriminative source Sd

Initialization: T ← 1, Ω = ∅, R = X, Rnew = X, S′ = 0

while Stoping criteria not met do
(1) Using VOMP algorithm for common source decomposition;
(2) Solve the following sparse coding problem for < s(i) >= arg min

s(i)
L(si) +

γ‖si‖1

using the feature-sign search algorithm [10];
(3) Adjust the voting threshold p;

end while

0.4, 0.6 and variance being 0.05 based on different SNR design. All computations
were conducted on a 64–bit Linux workstation with 3.00 GHz i7-5960x CPU and
memory of 64 GB.

The reconstruction performance of the proposed method as well as the bench-
mark methods based on 150 experiments are summarized in Table 1. All of the
values in Table 1, except the Time column (in seconds) represents distance in
(mm) from ground true source to the reconstructed source calculated from the
shortest path along cortex surfaces. PSE represents primary source error, which
is the distance of reconstructed primary source to the ground truth primary
source. PSE measures the capability of each algorithm to reconstruct the com-
mon sources. When the reconstructed location is in a different hemisphere from
the ground truth, there is no path connecting those two voxels, so we mark the
distance to be 250 mm. EC1 represents error for class 1, which is the distance of
the reconstructed discriminative source to the ground truth. EC2 and EC3 are
similarly defined.
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Fig. 2. Ground truth for all 3 classes

Table 1. Reconstruction accuracy summary

Methods SNR = 10 SNR = 22

Time PSE EC1 EC2 EC3 Time PSE EC1 EC2 EC3

ElasticNet 0.001 43.4 142.3 159.6 159.2 0.001 8.87 172.5 195.0 13.0

Homotopy 0.12 3.43 53.2 42.5 40.8 0.09 0 0.28 0.70 8.00

DALM 0.07 4.59 53.0 43.1 39.6 0.08 0 0.28 1.73 7.98

PDIPA 0.29 3.43 53.4 45.0 40.4 0.26 0 0.28 0.63 7.98

L1LS 3.89 0.69 51.6 67.4 37.1 3.92 0.069 0 0 4.36

FISTA 0.95 0.63 61.0 95.2 47.6 0.96 40.1 66.1 73.5 54.5

sLORETA 0.015 10.2 131.7 178.2 142.8 0.02 2.62 194.1 164.2 123.5

MNE 3e−5 29.3 131.8 157.7 131.7 3e−5 4.30 119.8 136.2 113.5

GRDSI (Proposed) 0.15 1.85 14.4 4.13 3.67 0.10 0 0 0 2.12

Fig. 3. MNE solution: The above row is the MNE solution for class 1; Class 2 and class
3 is illustrated in the middle and bottom row. The solution MNE gives is not sparse,
with too many spurious sources of small magnitude.

To illustrate the effect of the proposed framework, the ground truth of the
activated pattern is given in Fig. 2, with the reconstructed source by MNE,
sLORETA and our method given in Figs. 3, 4 and 5. We can see from Table 1
and the Figs. 3, 4 and 5 that when the SNR is large, all the algorithms
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Fig. 4. sLORETA inverse solution: sLORETA can successfully reconstruct the primary
source, however the secondary source is not successfully reconstructed. Compared to
the solution of MNE, sLORETA can suppress spurious sources with small magnitude.

Fig. 5. GRDSI reconstructed source: The reconstruction solutions for 3 classes are
given in each row. The discriminative source can be successfully reconstructed.

performs well in reconstructing primary source, as for the discriminative sources
for different classes, our method can achieve almost perfect reconstruction. All
other algorithms’ performances are also acceptable when SNR is large, except
for sLORETA, MNE and ElasticNet. When we increase the noise, all of the
algorithms can still achieve high accuracy in finding the primary source. For the
discriminative source, our algorithm performs much better. We also validated
that, to solve a pure �1 EEG inverse problem, the Homotopy algorithm performs
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better in most cases than other algorithms in the EEG inverse problem, which
is in line with Reference [19].

5 Conclusion

In this paper, we proposed to use label information to retrieve discriminative
sources corresponding to different brain status. A graph regularized EEG inverse
formulation called GRDSI that implicitly uses the label information was pre-
sented that can boost the intra-class consistency and eliminate spurious sources.
We bring up the idea of “cross-and-bouquet” in the inverse problem and present
an efficient algorithm to address the high coherence problem of the reconstructed
signals given high background spontaneous source signal. An efficient algorithm
called feature-sign search algorithm is used to solve the GRDSI problem. We
illustrated the superior of our algorithm in retrieving discriminative sources while
traditional algorithms failed given certain level of noises.
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