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Abstract. We describe a method that allows direct comparison of rest-
ing fMRI (rfMRI) time series across subjects. For this purpose, we exploit
the geometry of the rfMRI signal space to conjecture the existence of an
orthogonal transformation that synchronizes fMRI time series across ses-
sions and subjects. The method is based on the observation that rfMRI
data exhibit similar connectivity patterns across subjects, as reflected in
the pairwise correlations between different brain regions. The orthogo-
nal transformation that performs the synchronization is unique, invert-
ible, efficient to compute, and preserves the connectivity structure of the
original data for all subjects. Similarly to image registration, where we
spatially align the anatomical brain images, this synchronization of brain
signals across a population or within subject across sessions facilitates
longitudinal and cross-sectional studies of rfMRI data. The utility of
this transformation is illustrated through applications to quantification
of fMRI variability across subjects and sessions, joint cortical clustering
of a population and comparison of task-related and resting fMRI.

1 Introduction

Resting fMRI (rfMRI) is being increasingly used to study brain connectivity and
functional organization [2]. It is also used for longitudinal studies of brain devel-
opment and as a diagnostic biomarker in cross-sectional studies for various neu-
rological and psychological diseases and conditions [12]. Large scale connectivity
information derived from fMRI can be used to delineate functional regions [2].
By extension, identification of multiple contiguous areas, each of which exhibits
distinct connectivity to the rest of the brain, can be used to define a functional
parcellation of the entire cerebral cortex [2,16].

Since rfMRI data reflect spontaneous brain activity, it is not possible to
directly compare signals across subjects [9]. Instead, comparisons make use of
connectivity features, typically computed from pairwise correlations of the rfMRI
time series between a point of interest and other locations in the brain [6].
For analysis of cerebral cortex, it is common to compute a feature vector at
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each location on a tessellated representation of the cortex as the correlation
from that vertex to all other vertices. This is a very high dimensional feature
and often requires dimensionality reduction or down-sampling for use in multi-
subject comparisons. An alternative approach for inter-subjects comparisons is
to use group independent component analysis (ICA) [5]. Group ICA concatenates
rfMRI data from multiple subjects and represents the data as a summation of
independent spatial or temporal components. In this way common networks
across subjects can be identified.

Here we describe a novel method for inter-subject comparison of fMRI signals
in which a transformation is applied that allows direct comparison of time series
across subjects. We use the geometry of normalized (zero mean, unit length) time
series to represent the rfMRI data as a set of labeled points on the hypersphere.
We then conjecture the existence of an orthogonal transformation, which we
refer to as BrainSync, that makes the rfMRI from two subjects directly compa-
rable. BrainSync retains the original signal geometry by preserving the pairwise
geodesic distances between all pairs of points on the hypersphere while also tem-
porally aligning or synchronizing the two scans. This synchronization results in
an approximate matching of the time series at homologous locations across sub-
jects. The synchronized data can then be directly pooled to facilitate large scale
studies involving multiple subjects from cross-sectional as well as longitudinal
studies. We show applications of BrainSync to rfMRI as well as illustrate how it
can be used for task fMRI through an example involving a motor function task.

2 Methods

We assume we have rfMRI and associated structural MRI data for two subjects.
Our goal is to synchronize the rfMRI time series between these two subjects,
although the method extends directly both to multiple sessions for a single sub-
ject or synchronization across multiple subjects. Our analysis below assumes
that the rfMRI data has been mapped on to a tessellated representation of the
midcortical layer of the cerebral cortex. The cortical surfaces for the two subjects
must also be nonrigidly aligned and resampled onto a common mesh, as can be
achieved using FreeSurfer [7] or BrainSuite [14].

Denote the cortically mapped rfMRI data for the subjects as matrices X
and Y , each of size T × V , where T represents the number of time points and
V is the number of vertices in the cortical mesh. Corresponding columns in X
and Y represent the time series at homologous locations in the two brains. The
data vectors in each column in X and Y are normalized to have zero mean and
unit length.

2.1 Geometry of the rfMRI Signal Space

Since the time series at each vertex are of unit length, we can represent each
column of X and Y as a single point on the unit hypersphere S

T−1 of dimension
T − 1, where T is the number of time samples.
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Let x and y represent time series from two points in the brain. Then the inner
product of x and y yields the Pearson correlation ρxy between them. Distance
on the hypersphere depends only on correlation, so that highly correlated time
series will appear as tight clusters of points. Distance between clusters on the
hypersphere will reflect the degree of correlation between their respective time
series. The inverse cosine of ρxy gives the geodesic distance between the points
on the hypersphere. The squared Euclidean distance between them is given by
‖x−y‖2 = 2− 2ρxy and so is also solely a function of ρxy. It follows that if two
subjects have similar connectivity patterns to each other, then the clusters and
the distance between these clusters will be similar for both subjects. With this
picture in mind, we conjecture the existence of an orthogonal transformation
(rotation and/or reflection) that will map the data from one subject onto that
of the other based on the following well known result [4]:

Proposition 1. Let x1, · · · ,xV and y1, · · · ,yV be points in R
T . If ‖xi−xj‖ =

‖yi − yj‖,∀i, j ∈ {1, · · · , V }, then there exists a rigid motion (O, t) such that
xi = Oyi + t,∀i ∈ {1, · · · , V }.

Fig. 1. Illustration of the BrainSync concept:
(a), (b): data from cingulate (red), motor
(green) and visual (blue) cortex for two sub-
jects after dimensionality reduction to R

3; (c)
data from subject 2 synchronization to sub-
ject 1 followed by dimensionality reduction
identical to that for subject 1 in (a).

Since in our case the points are
on a hypersphere S

T−1, we can
exclude the translation and apply
a strict orthogonal transformation.
In order to illustrate this concept,
we performed the following illustra-
tive experiment using in vivo rfMRI
data. We mapped rfMRI data onto
the cortical surfaces for a pair of
subjects with T = 1200 time sam-
ples per vertex. For illustrative pur-
poses we need to reduce dimension-
ality to R

3 so that we can plot the
data on the S

2 sphere. We consider
data from only three locations: cin-
gulate, motor cortex and visual cortex. We projected this data onto the R

3

subspace corresponding to the three largest singular values in the data matrix
and renormalized to unit length. This data is of sufficiently low rank that we can
indeed see the clustering of points on the sphere (Fig. 1a and b). Figure 1c shows
the result of applying the BrainSync orthogonal transformation described below
to the data from subject 2 and then applying the same dimensionality reduction
as previously applied to subject 1. The data for subject 2 is now very similar to
that of subject 1, consistent with our earlier conjecture.

2.2 A Method for Temporal Synchronization

The orthogonal transform Os to synchronize the two data sets, X and Y , is
chosen to minimize the overall squared error: Os = arg minO∈O(T ) ‖X − OY ‖2
where O(T ) represents the group of T × T orthogonal matrices. Given the high
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dimensionality of the surface vertices (V � 32, 000) relative to number of time
samples (T � 1, 200) in the data analyzed below, the problem is well-posed and
can be solved using the Kabsch algorithm [10]. Following the derivation in [15],
we first form the T × T cross-correlation matrix XY t and compute its SVD:
XY t = UΣV t. The optimal orthogonal matrix is then given by Os = UV t.

To illustrate the behavior of BrainSync we applied this orthogonal transfor-
mation to data from a pair of rfMRI data sets from the HCP database described
and explored more extensively below. Figure 2 shows an example of the time
series before and after BrainSync for the same vertex for the two subjects.

Fig. 2. Representative time series for two subjects for a single cortical location before
and after synchronization from subject 2 to subject 1.

3 Applications, Experiments and Results

3.1 Data

We used the minimally preprocessed (ICA-FIX denoised) resting fMRI data from
40 unrelated subjects, which are publicly available from the Human Connectome
Project (HCP) [8]. In addition to this processing, we also applied the temporal
non-local means (tNLM) filter [3] to improve SNR. Finally, we normalized the
filtered resting fMRI time series at each vertex to zero mean and unit length.

3.2 Application 1: Quantifying Variability of RfMRI Across
a Population

To compute within subject variability, we computed the correlation at each ver-
tex between two sessions in the same subject after synchronization and averaged
the result over all 40 subjects, Fig. 3a. To compute between subject variability,
we performed pairwise synchronization for all

(
40
2

)
pairs. We then computed the

between-subject correlations at each vertex after synchronization, averaged over
all pairs and plotted the result as the map shown in Fig. 3b. Within-subject vari-
ability across sessions reveals that most of the brain exhibits repeatable patterns
of correlation, which leads to accurate syncing. Examples of areas with lower cor-
relation include limbic cortex, anterior temporal pole, insula and medial frontal
cortex, possibly due to lower signal amplitudes from these regions. Across sub-
ject correlations are lower than within subject correlations. This is expected as
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Fig. 3. Correlation of Resting fMRI and BrainSync: (a) across two sessions for the
same subject, averaged over 40 subjects; (b) between subjects averaged over all pairs
and two sessions.

individual variability will lead to differences in correlation patterns across sub-
jects. Nevertheless, the regions showing higher correlations are similar to those
found within individuals.

3.3 Application 2: Cortical Parcellation

Parcellations of the human cerebral cortex representing cyto-, myelo- or chemo-
architecture are helpful in understanding the structural and function organiza-
tion of the brain [1,17]. Resting fMRI has been used for identification of con-
tiguous areas of cortex that exhibit similar functional connectivity to define a
functional parcellation [2,16]. One major problem in using rfMRI for single sub-
ject parcellation is that the amount of data from a single subject is usually not
sufficient to reliably parcellate the cerebral cortex brain into a large number of
regions [2,13]. Since BrainSync makes data across subjects directly comparable,
this synchronized data can be easily pooled and a joint parcellation of a large
number of subjects is possible.

We synchronized all the subject data to a single reference brain and
pooled the data from 40 subjects × 2 sessions. Let Bi,j represent the
T × V data matrix for the ith subject and jth scan, all synchronized to
the first subject’s first scan. The concatenated data matrix is then B =
[B1,1, B2,1, · · · , B40,1, B1,2, · · · , B40,2]. The k-means algorithm was then applied
to this data to generate simultaneous parcellation into k = 100 regions of all the
40 × 2 brain scans. Note that we do not enforce any spatial prior or topologi-
cal constraint on the data. Sample parcellations for two subjects, two sessions
each, are shown in Fig. 4 for individual clustering and joint (BrainSync) cluster-
ing. For visualization of the individual clustering results, we used the Hungarian
algorithm [11] for label matching across subjects. For joint clustering, corre-
sponding regions are automatically identified through k-means clustering and
no re-labelling is required.

To quantify performance, we computed the Adjusted Rand Index (ARI)
between all pairs of subjects and scans and report both within-subject and
across-subject similarity by averaging across subjects and sessions respectively.
ARIs were computed for both the individual and group parcellation.

As expected, individual clustering results for k = 100 parcels are very variable
across both sessions and subjects, Fig. 4, because of the limited information in a
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Fig. 4. Representative individual parcellation results (k = 100) for two subjects, two
sessions each. Upper row: each brain parcellated separately; lower row: joint parcellation
using the synchronized time series.

single 15 min rfMRI scan. After synchronization, results appear far more consis-
tent across sessions. They also appear more coherent across subjects, although,
unsurprisingly less so than the within-subject comparisons. Table 1 shows that
the ARI is substantially higher for synchronized joint clustering vs. individual
clustering. Table 1 also shows significantly higher across session similarity than
across subjects.

Table 1. Adjusted rand indices: mean(std) for different number of classes (k) for
individual (Orig) and group (Sync) parcellation.

Orig
(k = 30)

Sync
(k = 30)

Orig
(k = 100)

Sync
(k = 100)

Orig
(k = 200)

Sync
(k = 200)

Across subject 0.90(0.10) 0.97(0.07) 0.32(0.16) 0.89(0.07) 0.16(0.05) 0.64(0.04)

Across sessions 0.94(0.08) 0.99(0.06) 0.42(0.12) 0.94(0.03) 0.32(0.02) 0.83(0.07)

3.4 Applications to Task fMRI

Predicting Timing Information. To further analyze the performance of
BrainSync, we considered two sessions of a block motor task for a single subject.
These two sessions involved identical motor tasks but the timing blocks were
different. The first session was synchronized to the second and the resulting
orthogonal transformation Os was applied to the T × 1 time series that defines
the timing blocks for the first session. As shown in Fig. 5(a), Os allows us to
predict the task timing of the second session from the first session.

Contrasting Task vs Rest. We also use BrainSync to directly compare resting
and motor activity. For this purpose we considered motor activity (self-paced
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Fig. 5. Task data (a) Red: timing blocks for session 1, black: timing blocks for session
2 and blue: timing for session 1 after applying the orthogonal transformation predicted
by BrainSync to timing blocks for (left) tongue and (right) right hand motor tasks. (b)
Correlation between resting and synchronized motor tongue task time series. Strong
correlation between task and resting fMRI can be seen throughout the brain other than
in primary motor and default mode regions where we expect maximum dissimilarity
between brain activity during motor and rest states.

tongue movement) and resting data from the HCP database for a single subject.
The resting and task data were synchronized using BrainSync. At each point on
the brain, the correlation between synced task and resting data was computed
(Fig. 5(b)). Results shown in Fig. 5(b) indicate that despite the fact that we are
comparing task and resting data, much of the brain can still be synchronized.
Exceptions include the facial primary motor cortex area and portions of the
default mode network. This observation is consistent with the fact that we would
expect increased motor activity and decreased default mode activity during the
motor task. This result shows promise for the use of BrainSync to compare
brain activity between different states in a manner that accounts for ongoing
(spontaneous) brain activity in both conditions.

4 Discussion and Conclusion

We have described a novel method for synchronization of rfMRI data across sub-
jects and scans. By exploiting similarity in correlation structure across subjects
we are able to transform the time series so that they become highly correlated
across subjects. This synchronization process bears some similarity to image
registration, in the sense that after synchronization comparisons can be made
directly with respect to these time series across subjects. Importantly, since
the transformation is orthogonal, correlations in the original data are preserved
and the transform is invertible. BrainSync is fast, requiring 10secs on a laptop
and has the complexity O(T 3) + O(T 2V ) due to SVD and matrix multiplica-
tion. One of the implicit assumptions in this work is that the rfMRI signal is
stationary in the sense that correlation patterns are preserved over time. Our
results show good correspondence of signals over the 15 min windows used in this
analysis. However, even within a 15 min period we would expect to see varia-
tions in the activity of different networks, and it would be interesting to explore
whether BrainSync is able to enhance our ability to identify and characterize
these dynamic changes in network activity. As far as we know, this is the first
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paper to describe the possibility of inter-subject synchronization for both resting
and task fMRI. BrainSync can simplify and improve the performance of group
studies (e.g. we show variance across subjects, within subject, group parcellation
(Sects. 3.2 and 3.3); as well as enable us to answer new questions (e.g. dynamical
functional connectivity, recovering timing and task related regions (Sect. 3.4)).
For task fMRI there are cases when the stimulus Answers to Queries is not avail-
able (e.g. self-paced cognitive tasks) where BrainSync can be helpful. BrainSync
also has potential applications for group analysis, dynamical connectivity, and
timing correction.
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