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Abstract. Brain development has been an intriguing window to study the
dynamic formation of brain features at a variety of scales, such as cortical
convolution and white matter wiring diagram. However, recent studies only
focused on a few specific fasciculus or several region. Very few studies focused
on the development of macro-scale wiring diagrams due to the lack of longi-
tudinal datasets and associated methods. In this work, we take the advantage of
recently released longitudinal macaque MRI and DTI datasets and develop a
novel multi-way regression method to model such datasets. By this method, we
extract the backbone of structural connectome of macaque brains and study the
trajectory of its development over time. Graphic statistics of these backbone
connectomes demonstrate their soundness. Our findings are consistent with the
reports in the literatures, suggesting the effectiveness and promise of this
framework.
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1 Introduction

Nowadays, connectome has been widely studied in basic brain research and clinical
studies due to its importance in understanding structural and functional brain archi-
tectures from a global perspective [1, 2]. Studying the development of such connec-
tomes could play a critical role in understanding a variety of time-dependent issues, such
as the mechanisms of cortical convolution, the emergence of cognition, the possible
onset of brain abnormality, and etc. [3]. However, most previous connectome studies are
limited to adult brains because of the unavailability of longitudinal datasets [1, 2].

Recently, a longitudinal UNC-Wisconsin neurodevelopment rhesus MRI database
is released (http://www.nitrc.org/projects/uncuw_macdevmri/), which includes T1-
weighted MRI and diffusion tensor imaging (DTI) data, providing a unique opportunity
for studying how brain structures of newborns develop into their infancy, juvenile and
adulthood. Studies based on such longitudinal datasets could significantly complement
the previous structural brain development studies in three ways: (1) many previous
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imaging data studies were voxel based. Voxel-wise attributes such as white matter
volume growth rates [4, 5] were well studied but they provided limited clues to the
development of axonal pathways; (2) axonal pathway related studies were only limited
to a certain fasciculus of interest, such as the developments in Area 17&18 connections
[6]. It is difficult to make up a big picture of the evolvement of an axonal network
architecture, or a connectome, from these scattered profiles; (3) although dissection
studies based on data modalities such as microscopic histology data and meso-scale
tract-tracing data were widely available [7], it is not possible at this moment to collect
longitudinal data or reconstruct a global scale brain connectome via these techniques.

Therefore, we take the advantages of the UNC-Wisconsin longitudinal macaque
dataset and attempt to study the postnatal development of global wiring diagram. We
construct longitudinal connective matrices for a subject at four different time points.
A novel multi-way regression method is proposed to extract the ‘backbone’ connective
network by using the matrix of the first time point as the baseline. This process is
repeated for the other time points, such that a trajectory of ‘backbone’ connective
networks are obtained. We use a variety of graphic statistics, such as node-wise
strength and betweenness and efficiency of networks, to demonstrate the soundness of
these ‘backbone’ networks. The effectiveness of the method also suggests its potential
in future studies of brain functions and abnormality.

2 Materials and Methods

2.1 Overview

Generally, we use T1-weighted MRI, DTI data and a brain map to construct a global
cortical connectome, a connective matrix, for a subject at a time point (the first three
columns in Fig. 1). All subjects are divided to groups according to the time points of
scans. These matrices are stretched to connective feature vectors, and these vectors
within one time point compose a feature matrix (the 4th column). The feature matrix of
the t1 is taken as the baseline, to which the other feature matrices are group-wisely
regressed to produce weight vectors vs via the proposed multi-way regression method.
The weight vectors can be transformed back to connective matrices (the right-most
row). Because of the sparse term (see Eq. (6) in Sect. 2.3), the nonzero values in these
weight matrices could imply that they are ‘preserved’ connections over time, and thus
taken as ‘backbone’ connections associated to t1. Notably, we will not differentiate the
weight vectors and their corresponding matrices format in the following sections. It is
also worth noting that Fig. 1 only illustrates the pipeline for t1. The method is pro-
gressively applied to the other time points in a similar way, such that a trajectory of
such ‘backbone’ connective maps are obtained.

2.2 Data Description and Preprocessing

T1-weighted MRI and DTI data in the UNC-Wisconsin neurodevelopment rhesus MRI
database are used. Four time intervals are defined as four time points: 1–4 months, 5–8
months, 9–12 months and 13–16 months. Ten subjects that have data of all the four
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time points are selected in this work. The basic parameters for diffusion data acquisition
are: resolution of 0.65 � 0.65 � 1.3 mm3, a matrix of 256 � 256 � 58, diffusion-
weighting gradients applied in 120 directions and b value of 1000 s/mm2, ten images
without diffusion weighting. For each DTI scan, the corresponding T1 weighted MRI
data in the dataset has been registered to the UNC Primate Brain Atlas space [8]. The
resolution of this atlas space is 0.27 � 0.27 � 0.27 mm3 and a matrix of 300 �
350 � 250.

DTI data is defined as intra-subject standard space. T1 weighted MRI data is
nonlinearly warped to the FA map via FSL-fnirt [9]. Two axonal pathway orientations
for each voxel in DTI data is estimated via BedpostX in FSL 5, because it was
suggested that b-values of 4000 would be required to resolve a 3 fiber orthogonal
system [10]. Deterministic white matter fiber streamlines (1 � 104 fiber tracts for each
DTI data) are reconstructed via DSIstudio [11] thereafter. Because the selection of fiber
tracking parameters is not the focus of this paper, FA and angular threshold are
empirically determined as 0.1 and 60° in that small FA value for primate brain was
suggested [12].

To construct structural connective matrices from DTI data, we adopt the paxinos
rhesus monkey atlas [13] as the brain map, the brain sites of which are used as nodes.
Because this brain map is present in T1-weighted MRI atlas space, we firstly use
FSL-fnirt [9] to register the atlas T1-weighted MRI data to the one of an individual, and
further register it to the DTI space (FA map) of the individual. The brain map is
transposed to the individual DTI space, accordingly. Cortico-cortical connections are of
our major interest here. Thus, 152 cortical brain sites on each hemisphere are used and
both ipsilateral and contralateral connections are considered. The number of fiber tracts

Fig. 1. Flow chart of the analysis pipeline in this paper. Data of the 1st time point (t1 for short),
for example, in the green frame is used as baseline, to which data of other time points in the blue
frame is regressed simultaneously via the multi-way regression method detailed in Sect. 2.3. The
yellow frame highlights the results. Please refer to main text for detailed explanations.
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that connect two brain sites are defined as the connective strength. Examples of such
connective matrices, X and Ys, are shown in Fig. 1. The connective strength within
each individual is normalized by being divided by the total fiber number. We stretch
the upper triangle of a connective matrix into a vector, and define it as a connective
feature. A pile of such features of ten subjects within one time point gives a feature
matrix (x and ys in Fig. 1).

2.3 Multi-way Regression

We have a collection of feature matrices ðx; y1; � � � ; ypÞ where p is the number of time
points. x and yk are feature matrices, consisting of (x1; � � � ; xn) and (y1k ; � � � ; ynk ), where
n is the number of subjects and xk is the feature vector converted from connective
matrix (see Fig. (1)). Our objective is to use x as a baseline and find a group of weights
(v1; � � � ; vp), to which (y1; � � � ; ypÞ are projected (Eq. (1)), respectively, such that new yk
s shown below are group-wisely similar to x. We will use y in the following equations
to denote those before the projection.

ynewk ! v1; yoldk

� � ð1Þ

The similarity is defined as correlation. Therefore, the function to be maximized is

max
v1;���;vp

Xp

k¼1
corrðx; ykÞþ

Xp

k¼1

Xp

l¼kþ 1;l6¼k
corrðvk; vlÞ ð2Þ

where the second term is to maximize the similarity among vk . With this term, y s will
be regressed to x in a group-wise manner. We define the correlation as

corrðx; yÞ ¼ hx; yi= xk k yk k ð3Þ

and covariance matrix of (x, y) as

C x; yð Þ ¼ Cxx Cxy

Cyx Cyy

� �
ð4Þ

where Cxx and Cyy are within-set covariance matrices and Cxy ¼ C
0
yx are between-sets

covariance matrices, we can rewrite Eq. (2) as

max
v1;���;vp

Xp

k¼1

u
0
Cxykvkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u0Cxxuv
0
kCykykvk

q þ
Xp

k¼1

Xp

l¼kþ 1;l6¼k

v
0
lvkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v0
lvlv

0
kvk

q ð5Þ
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where u ¼ 1, because x is used as a baseline. The corresponding Lagrangian is

L v1; . . .; vp
� � ¼

Xp

k¼1
u

0
Cxykvk �

p
2
u

0
Cxxu� 1

2

Xp

k¼1
v
0
kCykykvk

þ
Xp

k¼1

Xp

l¼kþ 1;l 6¼k
v
0
lvk �

p� 1ð Þ
2

Xp

k¼1
v
0
kvk � k

Xp

k¼1
vkk k1

ð6Þ

Equation (6) is our objective function. Because we have long and sparse feature
vectors x and y, ‘1 norm, k

Pp
k¼1 vkk k1, is added to Eq. (6) to give sparse VkS

By computing derivatives in respect to vk, we have

@L
@vk

¼ Cykxu� pCykykvk þ
Xp

k¼1

Xp

l¼kþ 1;l6¼k
Evl � p� 1ð ÞEvk ¼ 0 ð7Þ

ðpðCykyk þEÞ � EÞvk ¼ Cykxuþ
Xp

k¼1

Xp

l¼kþ 1;l6¼k
Evl ð8Þ

Equation (8) has the linear form of Ax ¼ b, and is used to iteratively update vks.
The algorithm is summarized and executed as follows:

We convert weight vectors vk to matrix format VkS (see Fig. 1). The values of these
matrices element represent their contribution to the similarity between Yk and X.
Because of the sparse term introduced, nonzero elements in Vk indicate the corre-
sponding connections in Yk are preserved from X. It is worth noting that VkS could be
similar to each other due to the constraint corrðvk; vlÞ in the objective function Eq. (2).
Therefore, only the V1 corresponding to y1 is used as a representative (highlighted by
an orange frame in Fig. 1) to interpret the results, defined as V t1. Nonzero elements in
V t1 could imply that the corresponding connections are preserved over all time points.

We execute this method in a progressive manner. For the first run, x is the feature
matrix of t1. ðy1; y2; y3Þ correspond to those from t2 to t3. Unit vectors are used to
initialize VkS for this run. For the second run, x is the feature matrix of t2. ðy1; y2Þ
correspond to those from t3 to t4. To initialize VkS , we replace an element of unit
vectors with 0 if its counterpart in V t1 from the previous run is nonzero, such that
connections not preserved (or new to t1) are considered with higher priority. Following
this scheme, we obtain a series of representative ðV t1;V t2;V t3Þ for t1 * t3.
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2.4 Graphic Statistics

In order to further explore the property and evaluate the validity of the extracted
connective maps VS, we adopt a variety of graphic statistics at different scales, such as
node-wise measurements (strength and betweenness) and connectome-wise one (net-
work efficacy). For node-wise measurements, we define an overlap ratio to compare
two connective matrices. By taking node strength for example, we firstly compute the
strength for each node of matrices X and Y, and obtain two strength vectors sX and sY .
They are then sorted in a descending order, denoted by s

0
X and s

0
Y . By taking X as a

baseline matrix, we generate an overlap curve, the kth value of which is defined as the
length of intersection of the first k elements of s

0
X and s

0
Y divided by the length of s

0
X .

The overlap ratio is defined as the area under this overlap curve.

3 Results

3.1 Effectiveness of the Multi-way Regression Method

The k in the objective function (Eq. (6)) regulates the sparsity of weight vectors VkS

and is optimized via a five-fold cross-validation scheme such that the objective function
is maximized. To demonstrate the stability of the method on the used dataset, we divide
the ten subjects into two groups (five subjects in each one with no overlap) and
separately execute the algorithms on them. 250 permutations of such divisions are
used. On average, the similarity (Pearson correlation) of the resulting weight vectors
between two groups is 0.70 ± 0.34, demonstrating the robustness of the methods on
this dataset. It is worth noting that the resulting weight vectors on five subjects are
definitely different from those on all ten subjects. This robustness experiment implies
that our method can produce reproducible results on ten subjects. Therefore, the fol-
lowing analyses are all based on ten subjects.

3.2 Development of Connective Connectome of Infant Macaque Brains

Figure 2(a) shows the weight matrices on the left-most column. They are obtained by
using connective matrices of t1, t2 and t3 as baselines, respectively. Connections
exclusive to a certain time point are highlighted with different colors by comparisons
among them. Backbone connections are represented by nonzero elements in them.
They are thus used as masks to screen the backbone connections from the original
connective matrices other than the baseline ones. For example, V t1 associated to t1 is
used to mask the original connective matrices from t2 to t4 (the second row). We use the
Pearson correlation coefficients to measure the similarity among the original connective
matrices. They are compared to those obtained from the masked counterparts. Taking
the second row for example, the Pearson correlation coefficients are computed between
the masked matrices and the original t1 matrix in the first row (Table 1). These results
suggest that the similarity between the masked connective matrices and the baseline
ones are significantly raised regarding to small p-values via t-test, suggesting the
soundness of the extracted backbone connectomes. The soundness of these backbone
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connectomes are also demonstrated by reports in the literatures. For example, cyan
connections which are associated to and exclusive to t3 strongly originate or terminate
in frontal/temporal/parietal cortices (Fig. 2(b)) but not in occipital cortex. These results
are consistent with previous reports that occipital cortex and white matters associated
with it stop growing at this developmental stage (9 months–12 months) while the other
cortices and the white matters associated with them have not reached their growth rate
peaks yet [4, 5].

To further demonstrate the validity of those backbone connectomes, a variety of
graphic statistics in Sect. 2.4 are measured. We compute node strength/betweenness
and network efficiency for all connective matrices in Fig. 2. The node-wise measure-
ment overlap ratios defined in Sect. 2.4 between the masked connective matrices and
their original counterparts as well as the global efficiency ratios are reported in Table 2.
The network efficiency values obtained from the masked matrices are normalized by
being divided by those obtained from their original counterparts. Taking the 2nd row in
Table 2 (the 2nd row in Fig. 2) for example, we find that all measurements of the
masked connective matrices from t2 to t4 remain at the same level, suggesting that the
backbone connectomes are stable over time. This observation applies to the other rows
as well, though these values increase after more connections are incorporated. Alto-
gether, these results suggest that the development of connectome might prefer pro-
gressively making changes on the originally blank locations to strengthening the
developed connections, which is one of the major neuroscientific insights achieved by
this study.

Fig. 2. (a) The three weight matrices VS associated to t1 * t3 are on the left column. Elements
exclusive to a certain time point are highlighted by different colors. Original connective matrices
of four time points from one example subject are compared to those masked by the weight
matrices in the left-most column. Interpretations are referred to the text. (b) Columns and rows of
Vt3 in (a) are sorted in lobe order. White solid box separates ipsilateral and contralateral
connections. White dashed boxes highlight groups of connections exclusive to t3.
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4 Discussions and Conclusions

In this work, we proposed a novel multi-way regression method to extract develop-
mental backbone connectomes on the longitudinal MRI and DTI macaque datasets. The
effectiveness of those backbone connectomes is demonstrated by reproducibility
studies, graphic statistics and previous reports. Studies on the trajectory of backbone
connectomes could help reveal a possible structural wiring development mechanism,
which would be further validated by other fine-grained data modalities and applied to
abnormal brain datasets in the future. The objective of this study is in line with other
developmental –omics studies, such as longitudinal functional connectome and geno-
mics datasets recently released by the Allen Institute for Brain Science. An integrative
analysis on those longitudinal –omics studies is also of our interest in the future.
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