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Abstract. There have been significant interests in the representation of struc-
tural or functional profiles for establishment of structural/functional correspon-
dences across individuals and populations in the brain mapping field. For
example, from the structural perspective, previous studies have identified hun-
dreds of consistent cortical landmarks across human individuals and popula-
tions, each of which possess consistent DTI-derived fiber connection patterns.
From the functional perspective, a large collection of well-characterized func-
tional brain networks based on sparse coding of whole-brain fMRI signals have
been identified. However, due to the considerable variability of structural and
functional architectures in human brains, it is challenging for the earlier studies
to jointly represent the connectome-scale profiles to establish a common cortical
architecture which can comprehensively encode both brain structure and func-
tion. In order to address this challenge, in this paper, we proposed an effective
computational framework to jointly represent the structural and functional
profiles for identification of a set of consistent and common cortical landmarks
with both structural and functional correspondences across different human
brains based on multimodal DTI and fMRI data. Experiments on the Human
Connectome Project (HCP) data demonstrated the promise of our framework.

Keywords: Joint representation � Connectome � DTI � FMRI

1 Introduction

Representation of structural and/or functional profiles for establishment of a common
structural and/or functional cortical architecture across individuals and populations has
been of significant interest in the brain mapping field. With the help of advanced
multimodal neuroimaging techniques for quantitatively representing the whole-brain
structural profiles (e.g., mapping fiber connections using diffusion tensor imaging
(DTI) [1]) or functional profiles (e.g., mapping functional localizations using functional
MRI (fMRI) [2]) of the same brain, a variety of studies have attempted to construct a
connectome-scale and common representation of human brain based on either
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structural or functional profiles. For example, from a structural perspective, previous
studies have identified hundreds of consistent cortical landmarks across human indi-
viduals and populations, each of which possesses consistent DTI-derived fiber con-
nection patterns. (e.g., [3]). From a functional perspective, connectome-scale
well-characterized functional brain networks are effectively and robustly recon-
structed by using sparse coding method applied on the fMRI data [4]. However, due to
the considerable variability of structural and functional architectures in human brain
[5], it is challenging to jointly represent the connectome-scale structural and functional
profiles to establish a common cortical architecture which can comprehensively encode
both brain structure and function [6].

As an attempt to address the abovementioned challenge, in this paper, we propose a
novel computational framework to jointly represent connectome-scale functional and
structural profiles for the identification of a set of consistent and common cortical
landmarks with both reasonably accurate structural and functional correspondences
across different human brains based on multimodal DTI and fMRI data. In total, 116
structurally and functionally consistent cortical landmarks (SFCCL) are identified from
32 functional consistent networks, 69 of which are demonstrated to show both func-
tional and structural consistence across all of the HCP Q1 subjects examined. More-
over, this set of 116 SFCCLs can be effectively and accurately estimated in a new
subject brain via the proposed prediction step.

2 Materials and Methods

2.1 Overview

As shown in Fig. 1, in the proposed framework, joint representation of
connectome-scale structural and functional profiles for the identification of consistent
landmarks includes three major steps (marked as 1–3 in Fig. 1): 1. Representation of
connectome-scale functional profiles for landmark location initialization. 2. Joint
constraint of connectome-scale structural and functional profiles based on MRI/DTI
data for landmark location optimization. 3. The prediction is used to validate the
framework and results.

2.2 Data Acquisition and Pre-processing

The dataset in this work comes from the Human Connectome Project (HCP) Q1 release
included task fMRI (tfMRI), resting-state fMRI (rsfMRI), T1-weighted MRI data and
diffusion tensor imaging (DTI) data. Preprocessing pipeline includes motion correction,
spatial smoothing, temporal pre-whitening, slice time correction, and global drift
removal. Please referred to [7, 8] for more details.
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2.3 Representation of Connectome-Scale Functional Profiles
for Landmark Location Initialization

Two steps for representation of the connectome-scale functional profiles for landmark
location initialization are introduced. First, we obtained 32 existing group-wise con-
sistent and meaningful functional networks across different human brains via dictionary
learning and sparse coding of preprocessed HCP Q1 data via similar methods in the
literature [4], and examples of such networks are shown in Fig. 2a. Second, we identify
the connectome-scale functional peak points (voxels) with the highest functional
activities in each component of each discovered functional network. As illustrated in
Figs. 1a–b, firstly, group-wise functional networks are linearly transformed into indi-
vidual spaces, and then we automatically identify the functional components in each
functional network by labeling the number of components of each functional network
pattern using the widely adopted connected component labeling (CCL) algorithm
implemented in FSL toolbox in each individual space (http://fsl.fmrib.ox.ac.uk). The
basic idea is that by searching the neighborhood of all voxels involved in a specific
functional network, those connected voxels involved in the functional networks are
assigned to the same component. In this way, each functional network may have one or
more components (e.g., each network in Fig. 1a has two components). In order to
obtain meaningful, stable and consistent functional components across different sub-
jects, we only consider those major components with more than 100 connected voxels.

Fig. 1. The proposed computational framework of joint representation of connectome-scale
structural and functional profiles for landmark identification. The three major steps mentioned
above are labeled as 1–3, respectively. (a) Identified connectome-scale group-wise consistent
functional networks across different subjects, similar as existing study [4]. Axial slices of spatial
maps of 2 example networks in the template space are shown for illustration. (b) Identified peak
points in the major components of each functional network. The peak points of selected
illustration networks are shown in red dots. All identified peak points are mapped to individual
cortical surfaces as the initial locations of landmarks (represented as red bubbles). (c) Optimiza-
tion of landmark locations on cortical surfaces based on structural fiber connection pattern and
functional constraints. (d) Finalized consistent and common cortical landmarks (shown as red
bubbles) across individual human brains which encode joint connectome-scale structural and
functional profiles. (e) Finalized consistent and common cortical landmarks (shown as red
bubbles) by using prediction methods in Sect. 2.5.
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After aggregating all the peak points into each subjects, two examples are shown in
Fig. 2b. Those clusters with nodes less than 100 connected voxels will be discarded in
this work.

2.4 Joint Constraint of Connectome-Scale Structural and Functional
Profiles for Landmark Location Optimization

In this paper, we represent the structural profile as the ‘trace-map’ of DTI-derived
axonal fiber bundles (e.g., as similar to those in the literature [3, 9, 10]). Here, we
briefly demonstrate the ‘trace-map’ representation and comparison of the DTI-derived
structural fiber connection pattern. The “trace-map” method is shown in Fig. 3 by
projecting each beginning and ending point for each fiber from fiber bundles (Fig. 3(b))
onto the uniform sphere surface. Then we divide the surface into 48 equally areas and
construct histogram for each area, and list them as the vectors. A 48 dimensional
histogram vector tr = [d1, d2…d48] containing 48 density values, namely ‘trace-map’
(Fig. 3d), is finally obtained as the structural connectivity profile of a landmark.

Based on initial landmarks derived from the identified connectome-scale consistent
functional brain networks, we optimize their locations via integrating structural fiber

Fig. 2. Identified consistent common functional brain networks and the functional peak points
used as initialized landmarks. (a) 9 examples from 32 functional networks. Three axial slices in a
row represent one functional network. (b) Initial landmarks are obtained by aggregating all the
peak points into each subjects, and 2 subjects are shown here as examples.

Fig. 3. Pipeline of ‘trace-map’ representation of the fiber bundle of the landmark for
representation of structural profile. (a) An example of fiber bundle and cortical surface.
(b) Points distribution by projection of the principal orientation of each fiber in the fiber bundle
on the unit sphere. (c) 48 equally areas from one uniform sphere are represented. (d) 48 vectors
are used to represent one fiber bundle.
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connection patterns and functional activities. These two constraints are jointly modeled
as an energy minimization problem. Note that we perform landmark optimization for
each corresponding landmark separately.

Specifically, we assume vpi is the initial location of landmark p in subject i
(i = 1…N), cpi is the set of candidate locations within the morphological neighborhood
Nvpi

of vpi (c
p
i 2 Nvpi

), the functional activity of vpi is Zvpi (peak value), and the functional

activity value of cpi is Zcpi . In this paper, we consider 3-ring neighbors of vpi , i.e., about
20 mesh vertices as the candidate locations for optimization of landmark p in subject i.
First, for the functional constraint, shown as Ef ðpÞ, we use the ratio of change between
Zvpi and each Zcpi . We assume that Ef ðpÞ should be large enough to retain the functional
consistency.

Ef pð Þ ¼ 1� ðZvpi � Zcpi Þ=Zvpi ð1Þ

Second, the structural fiber connection pattern similarity constraint for landmark p as

Es pð Þ ¼
P

i;j¼1...N;i6¼j corrðtr vpið Þ; trðvpj ÞÞ
N � ðN � 1Þ ð2Þ

where corr(.) is the Pearson’s correlation value between the ‘trace-map’ vectors of
vertices vpi and vpj in subject i and j, respectively. N is the number of subjects. Then by
combining these two constraints together, we can measure the group-wise variance of
jointly modeled constraints, and it is mathematically represented as the energy E:

E pð Þ ¼ 1� ðEf pð ÞþEs pð ÞÞ=2 ð3Þ

Our aim is to minimize the energy EðpÞ. By using Eq. (3), for each iteration, we
search all possible combinations of candidate landmark locations across all subjects for
landmark p, and find an optimal combination of landmark locations which has the
minimum EðpÞ. In this paper, we performed optimization for two groups separately
(one is the validation experiment), due to the computational limitation, and N is set as 4
for each group. An example can be seen in Fig. 5(a). After going over all the iterations,
all the landmarks for each subject will be finalized. These 8 sets of SFCCLs will be set
as templates for Sect. 2.5. Then, we determine those common consistent landmarks
which are reproducible across the two groups via both quantitative and qualitative
measurements similar to that in the literature [3]. If the value has statistically significant
difference (two-sample t-test, p = 0.05) between two groups, this landmark will be
considered instable and discarded. Moreover, we visually examined and confirmed the
consistency of corresponding fiber connection patterns across all subjects in the two
groups by two experts.

2.5 Prediction of SFCCLs

The prediction of SFCCLs is akin to the optimization procedure in Sects. 2.3 and 2.4.
We will transform a new subject (on DTI/fMRI image via FSL FLIRT) to be predicted
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to the template brain which was used for discovering the SFCCLs and perform the
optimization procedure following the Eq. (2). However, there is still slight difference
when comparing with the steps in Sect. 2.4, because we already have the template
SFCCLs. So in this step, we will keep the template SFCCLs unchanged and only
search the suitable location of the landmark in the new subject to achieve the goal that
we obtain the maximum values among the templates and the newly added subjects for
each correspondence landmark. Here are the algorithmic steps that we used for
prediction.

1. Linearly register the 116 initial landmarks from the standard space onto individual
cortical surface. For each landmark, find all the candidate landmarks around the
neighborhood.

2. Since we have many landmarks candidates for each landmark we plan to predict,
the work is to calculate the “trace-map” value among fiber connection pattern across
the 8 landmarks from model and another landmark comes from new subject.

3. Search all the combinations and then find the combination with the largest
trace-map value. Repeat it for each landmark we would like to predict.

4. Extract the fiber bundles that cross each correspondence landmark obtained from
step 3. And check the similarity manually.

3 Experimental Results

3.1 Consistent Cortical Landmarks via Joint Representation
of Connectome-Scale Structural and Functional Profiles

We jointly represented the connectome-scale structural and functional profiles for the
identification of consistent cortical landmarks, as demonstrated in Sects. 2.3 and 2.4.
Figure 4 shows all 116 SFCCLs across 8 subjects in the two groups, and those red
landmarks (69 of which) demonstrated both functional and structural consistence
across all the subjects. Blue ones (22 of which) are those landmarks with 87.5%
probability of success to show both functional and structural consistence across all the
subjects, which reflects only 1 subject among 8 cannot obtain the consistent shape of
the fiber bundle when compared with other 7 subjects (confirmed by experts). The left
(25) are white ones, which have 75% probability of success. From the results, we can
conclude that all the landmarks we obtained from consistent functional networks in
Sect. 2 have good potential to be the SFCCL, which demonstrate that our strategy is
effective and efficient. Here, good potential means although not all the shapes of fiber
bundles are consistent, most of them are similar, like 7 out of 8 have similar shapes.
Thus we believe it has the possibility to be SFCCL, but need to be further confirmed in
future studies. To show more details, we randomly selected six example landmarks
(Fig. 5) and visualized their fiber connection patterns in Figs. 5a–c, f–h.

We quantitatively examine the effectiveness of the proposed joint representation of
connectome-scale structural and functional profiles, as shown in Table 1. For fiber
connection pattern similarity, 0.635 is a relatively high similarity according to our
existing knowledge and experience from visual check. Ef ðpÞ reaches as high as 0.89,
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which clearly represents high functional activities. Another important statistical result
which also demonstrated the effectiveness of our result is the mean movement when
comparing locations of SFCCLs before and after the optimization procedure. 2.2 mm is
a relatively small change on the cortical surface. That is, those locations for the final
SFCCLs are meaningful since their locations are not far from the peak points in the
functional networks.

Fig. 4. Overview of 116 SFCCLs with their consistent probability. (a–c) are the x-y-z direction
of the cortical surface. Red ones are consistent 100% accuracy, blue ones have 87.5% probability
to be consistent across all the subjects, and white ones have 75% probability.

Fig. 5. Examples to show those consistent landmarks with their fiber bundles. 5(a)–(c), (f)–(h)
show the fiber connection patterns of each landmark across 8 subjects (templates), respectively.
(d) 69 SFCCLs are highlighted here and they achieve both functional and structural consistencies
across all the human brains. (e) The locations of those examples on the cortical surface, and the
color represents the correspondence landmark with (a)–(c), (f)–(h), respectively.
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3.2 Prediction of SFCCLs

By applying the algorithms in Sect. 2.5 onto another 8 different test subjects separately,
we successfully obtained 116 SFCCLs on each subject. The results remain the same,
and the average structural fiber connection pattern similarity is 62.59% when compared
with the templates. It is quite similar to the value of what we obtained from the
template models. In total, 69 of them have both functional and structural consistence
with the results obtained from Sect. 3.1. Six corresponding examples are provided here
in Fig. 6. Note that the color dots in Figs. 6a–f have the correspondence with those in
Figs. 5a–c, f–h. The prediction results demonstrated that our SFCCLs are very con-
sistent and reproducible across the subjects.

4 Conclusion

In this study, we jointly represent the connectome-scale structural and functional
profiles via a computational framework for the identification of consistent cortical
landmarks in human brains. Finally, we have identified 116 SFCCLs which have the

Table 1. The average percentage of three parameters from all SFCCLs in the model.

EsðpÞ Ef ðpÞ Distance

0.635 0.89 2.2 mm

Fig. 6. Examples to show those consistent landmarks with their fiber bundles on prediction data.
(a)–(f): The fiber connection patterns of each example landmark across another 8 subjects,
respectively. (g) 69 SFCCLs which exhibit both functional and structural consistencies across all
the human brains.
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potential to represent common structural/functional cortical architecture. Our experi-
mental results demonstrate that there is reasonable regularity and agreement among the
brain’s function and structural fiber connection patterns. In this study, we focused on
the methodology development of joint representation of connectome-scale structural
and functional profiles. The potential applications of our methods on clinical neu-
roimaging datasets are left to our future studies.
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