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Abstract. Conventional approaches to quantification of the cortical
folding employ a simple circular kernel. Such a kernel commonly cov-
ers multiple cortical gyral/sulcal regions that may be functionally unre-
lated and also often blurs local gyrification measurements. We propose
a novel adaptive kernel for quantification of the local cortical folding,
which incorporates neighboring gyral crowns and sulcal fundi. The pro-
posed kernel is adaptively elongated to cover regions along the corti-
cal folding patterns. The experimental results showed that the proposed
kernel-based gyrification measure achieved a higher reproducibility in a
multi-scan human phantom dataset and captured the cortical folding in a
more shape-adaptive way than the conventional method. In early human
brain development, we found positive correlations with age over most
cortical regions as previously found as well as novel, refined regions of
both positive and negative correlations undetectable by the conventional
method.
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1 Introduction

Cortical surface expansion in early brain development is a dynamic, complex
process called cortical gyrification. However, quantification of the cortical gyrifi-
cation is difficult due to the nature of the cortical shape, which is highly complex
and variable across individuals. The cortical folding patterns are quite inconsis-
tent depending on the cortical region, which further hampers an appropriate
analysis of the gyrification process. Typically, there are two major components
in quantification of the local gyrification: (1) a local metric and (2) a local region
(size, shape, etc.) over which the gyrification is quantified by the local metric.

Several attempts have been made to various metrics of the cortical folding.
The local gyrification index was measured in the 3D space via the area ratio
between the outer hull and the pial surface [6,8]. An outer hull-free gyrification
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index was also proposed in [4]. In [2], a local shape analysis was performed using
the so-called shape complexity index to measure a local cortical shape change.

In contrast, there is yet a lack of methods that incorporate a kernel shape into
the cortical folding. Currently, a popular way to quantify local gyrification in 3D
employs a simple circular kernel over the cortical surface using Euclidean sphere
[6,8] or geodesic distance [2]. Typically, such a kernel is employed without taking
the cortical folding into account, and its size (e.g., r = 20 mm in [6]) easily covers
multi-sulcal regions that could be functionally unrelated. Moreover, a simple
circular shape is insufficient to capture local variability in a population such as
widening/deepening within a single sulcus/gyrus. To the best of our knowledge,
none of existing methods have proposed a cortical shape-adaptive kernel yet.

In this paper we propose a novel geodesic kernel along the cortical folding that
is functionally related within a single sulcus/gyrus. The local gyrification index
is then measured within the local region constrained by the proposed kernel. To
achieve this, we classify two main categories of the cortical folding properties:

– At sulcal fundi/gyral crowns (valley/ridge focused region): elongated shape
– At sulcal banks (flat region): isotropic shape

Our main contributions are (1) local cortical shape-adaptive kernel and (2) early
postnatal brain development revealed with more spatially refined results.

2 Wavefront Propagation

In this section, we briefly review wavefront propagation. Given a medium (tan-
gent space) Ω and its boundary ∂Ω in R

2, the minimum travel-time from one
(or multiple) source ∈ ∂Ω to a point x ∈ Ω in the medium, u(x), holds the
following propagation equation for some propagation speed function F :

‖∇u(x)‖ F

(
x,

∇u(x)
‖∇u(x)‖

)
= 1, x ∈ Ω ⊂ R

2,

u(x) = 0, x ∈ ∂Ω. (1)

Such a formulation is the so-called Hamilton-Jacobi partial differential equation
(H-J PDE). A special H-J PDE is called the eikonal equation with a constant
speed. To determine wavefront propagation behavior, we consider a special 2×2
tensor M(x) on the tangent plane such that

F

(
x,

∇u(x)
‖∇u(x)‖

)
=

∇u(x)T

‖∇u(x)‖M(x)
∇u(x)

‖∇u(x)‖ . (2)

M has an elliptic form along its eigenvectors if M is symmetric and positive. In
this work, we use the ordered upwind method [7] akin to Dijkstra’s algorithm.
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3 Novel Local Shape-Adaptive Gyrification Index

Our objective is to design a cortical shape-adaptive kernel to capture the cortical
folding for local gyrification index. In wavefront propagation, the desirable kernel
can be redefined equivalently as follows:

– At sulcal fundi/gyral crowns: anisotropic speed faster along ridges/valleys
– At sulcal banks: isotropic speed at every direction

We focus on a tensor field design to follow the above properties. This can be
achieved by two main steps: (1) local cortical region segmentation and (2) tensor
estimation at every location of the surface. Figure 1 illustrates an overview of
the proposed pipeline for the adaptive kernel-based gyrification measure.

(a) (b) (c) (d)

Fig. 1. An overview of the proposed pipeline. (a) Sulcal (red) and gyral (blue) curves
are extracted for sulcal/gyral region segmentation. (b) The entire region segmentation
is achieved via travel-time between the curves. (c) The travel-time map is normalized
to capture sulci/gyri (blue) and sulcal banks (red); the gradients (black) of the travel-
time map are obtained to create a tensor field. (d) The proposed local gyrification
index map is obtained via the proposed kernel guided by the tensor field.

3.1 Outer Hull Creation and Surface Correspondence

Given a pial surface Ω, we create its outer hull H and establish a surface cor-
respondence between them. A morphological closing operation is applied to Ω
in the volume space to create H as proposed in [6]. We then apply the surface
evolution method via solving the Laplacian equation modeled in [3] to guarantee
a differentiable, bijective surface correspondence function f : R3 → R

3.

3.2 Travel-Time Map for Local Cortical Region Segmentation

We segment Ω to define a tensor at any location. We first find sulcal/gyral
regions via the automatic curve extraction method [5], which follows the same
idea [4] (see Fig. 1(a)). We then compute a travel-time map T from a set of the
sulcal/gyral curves ζ to all locations of Ω. This is a standard shortest geodesic
path problem at each point of Ω, which can be formulated by the eikonal Eq. (1),
where M = I. We collect a set of points ∈ ζ to assign sources of the wavefront
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propagation. With a boundary condition T (p) = 0 for ∀p ∈ ζ, the H-J PDE (1)
is simplified to

‖∇T (x)‖ = 1. (3)

The solution provides a travel-time map T of Ω as illustrated in Fig. 1(b).

3.3 Tensor Field

We compute a tensor field over Ω from T to guide an adaptive kernel. We aim
at designing a kernel in which the propagation speed is getting anisotropic as
it reaches sulcal/gyral regions. The tensor field is decomposed into two compo-
nents: principal propagation directions and their associated propagation speeds.

Principal Propagation Direction. It is important to determine the propa-
gation directions. The basic idea is to use the orthogonal and tangent directions
to the sulcal/gyral curves. However, since the curves exist only in few cortical
regions, we need something acting like the curves in other regions. To do so,
we use the iso-travel-time contours of T . This is equivalent to finding shortest
trajectories (orthogonal to the contours) of T between sulcal/gyral regions along
the gradient field ∇T as studied in [7]. For ∀x ∈ Ω, its two principal propagation
directions v1(x) and v2(x) are defined on the tangent plane:

v1(x) =
∇T (x)

‖∇T (x)‖ and v2(x) =
∇T⊥(x)

‖∇T⊥(x)‖ , (4)

such that ∇T (x) ⊥ ∇T⊥(x). Consequently, v1 and v2 encode the tangent direc-
tion and the orthogonal direction to the geodesic trajectory between the corre-
sponding sulcal fundus and gyral crown, respectively.

Principal Propagation Speed. The second modeling issue is to determine
the speed associated with the principal propagation direction. It is desirable at
sulcal fundi/gyral crowns that the speed has minimum and maximum along v1

and v2 whereas the speed needs to be almost the same along every direction at
sulcal banks. At the middle of sulcal banks, however, their travel-time T is not
identical as it varies at the depth of the corresponding sulcus. To address such
an issue, we need a novel normalization with respect to local locations such that
any location of Ω has a normalized travel-time ranging from η to 1 (0 < η ≤ 1).

Given a point x ∈ Ω, we find the maximum travel-time among the shortest
trajectories through x and then normalize the travel-time at x by the local
maximum. We first find the source sx ∈ ζ of x by tracing gradients over −∇T
until T = 0 while holding T > 0 and T (x) > T (x − ∇Tdx). This gives a label
map of Ω that represents the source of any point ∈ Ω. Let DL(s) denote a region
of Ω labeled by the same source s ∈ ζ, i.e., DL(s) = {x ∈ Ω|sx = s}. Similarly,
the maximum travel-time through x is obtained by tracing over ∇T (DL(sx))
until it touches a boundary of DL(sx). The normalized map S is then given by

S(x) = (1 − η) · T (x)
Tmax(x)

+ η, (5)
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where
Tmax(x) = max

y∈DL(sx)
T (y). (6)

Thus, S captures region types in an easy way; for example, S(x) = 1 (the middle
of a sulcal bank) as shown in Fig. 1(c). We can consistently assign S and S−1

to the speed along v1 and v2, respectively. This guarantees the amount of the
propagation at any point is constant, which is equal to 1.

Tensor Matrix. From (4) and (5), the tensor matrix M̃ is defined as follows:

M̃(x) = S(x) · v1(x)v1(x)T + S(x)−1 · v2(x)v2(x)T . (7)

M̃(x) guides the spatial-varying wavefront propagation. We recall η is used to
prevent M̃ from being degenerative. The minimum bound η is thus employed
as a regularization term. The speed tensor M̃ becomes isotropic when η = 1.0.
Figure 2 shows behaviors of the proposed kernel varying in η.

S 1.0 0.2 S 1.0 0.2

Sulcal Fundus/Gyral Crown Sulcal Bank

Fig. 2. Two simulated types and their kernel shapes by varying η. The respective travel-
time maps S are obtained from the middle and marginal horizontal (blue) sources (1st
and 4th columns). The kernel at sulcal fundus/gyral crown is elongated as η becomes
small whereas it remains isotropic at sulcal bank even with a small value of η.

3.4 Adaptive Kernel and Local Gyrification Index

The proposed kernel at x ∈ Ω is straightforwardly obtained by solving the H-J
PDE equipped with M̃ . In contrast to conventional methods, we use the cortical
surface to define the kernel shape specifically suitable to the cortical folding while
the kernel size is determined on the outer hull. Formally, the wavefront propa-
gation guided by M̃ is formulated via the H-J PDE that satisfies the following
equation with a boundary condition K(x) = 0.

‖∇K(x)‖ ·
( ∇K(x)T

‖∇K(x)‖M̃(x)
∇K(x)

‖∇K(x)‖
)

= 1. (8)

We then create a kernel by tracing one of the iso-travel-time contours of K. To
select a proper iso-travel-time contour at x for the adaptive kernel creation, we
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project all the iso-travel-time contours of K onto H via f . Then, we pick a pro-
jected iso-travel-time contour such that the area contained by the contour over H
is equal to some positive constant (user-defined parameter). We assume that Ω is
parametrized by ϕ : R2 → R

3 such that ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ Ω.
Given K and travel-time δ ∈ R

+, we formulate the corresponding area of H to
the iso-travel-time contour (T = δ) as the following surface integral.

AH(x; δ) =
∫∫

DA(x;δ)

∥∥∥∥∂(f ◦ ϕ)
∂u

× ∂(f ◦ ϕ)
∂v

∥∥∥∥ dudv, (9)

where DA(x; δ) = {(u, v) ∈ R
2|K(ϕ(u, v)) ≤ δ}. Our resulting kernel is then

determined by fixing the corresponding area of H by finding δ such that AH(x; δ)
is equal to some constant function ρ(δ) ∈ R

+. Once δ is obtained by solving (9),
we can compute the surface area of Ω governed by δ as follows.

AΩ(x; δ) =
∫∫

DA(x;δ)

∥∥∥∥∂ϕ

∂u
× ∂ϕ

∂v

∥∥∥∥ dudv. (10)

From (9) and (10), the proposed gyrification index is given by the area ratio

lGI(x; ρ(δ)) =
AΩ(x; δ)
AH(x; δ)

=
1

ρ(δ)
AΩ(x; δ). (11)

Figure 3 shows different kernels applied to the human cortex with ρ = 316 mm2.

FreeSurfer Anisotropic Propagation

Fig. 3. Kernels at an arbitrary sulcal point on the same subject using different
approaches with a fixed area on the outer hull ρ = 316 mm2. The circular kernel
(intersection of the outer hull and the sphere) is obtained in FreeSurfer (left). The
proposed kernel is obtained with η = 0.5 (right). The color indicates iso-travel-time
contours.

4 Reproducibility

We evaluated the reproducibility of the proposed local gyrification index using
a large set of scan/rescan data. A human phantom (male, age 26 at the start
of this study) was scanned at the four different imaging sites, equipped with a
Siemens 3T Tim Trio scanner at irregular intervals over the period of 2.5 years.
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The same scanning sequences were employed for the developmental MRI scans,
and 36 scans were acquired in total. Only the left hemispheres were reconstructed
with 163,842 vertices via the FreeSurfer pipeline.

We computed the local gyrification index using the conventional method [6]
and the proposed kernel. We varied the kernel area on the outer hull ρ = 316
and 1,264 mm2 with an interval of 316 mm2 for η = 1.0, 0.5, and 0.2. Specifically,
316 mm2 is the minimum kernel size that fully spans any sulcal region (i.e., at
least two gyral crowns), and 1,264 mm2 is a typical kernel size used in [6]. Since
the gyrification index is unitless, we used a coefficient of variation that quantifies
how local gyrification indices vary across multiple scans. Table 1 summarizes the
average reproducibility over the entire surface for both methods. As expected,
a slightly lower reproducibility is achieved in the anisotropic propagation than
in the isotropic propagation due to a less influence of sulcal/gyral patterns that
might further introduce curve extraction errors in measurement. Even if so,
however, the proposed method still achieves a better reproducibility than [6] at
least in this multi-scan human phantom dataset.

Table 1. Coefficient of variation of gyrification index in multi-scan dataset (unit: %)

Area (mm2) 316 632 948 1,264

Radius (mm) 10 14 17 20

FreeSurfer [6] 7.17 ± 7.84 4.87 ± 2.12 3.93 ± 1.65 3.11 ± 1.29

η = 1.0 3.64 ± 1.57 2.67 ± 1.05 2.31 ± 0.89 2.13 ± 0.79

η = 0.5 4.16 ± 1.49 3.18 ± 1.04 2.76 ± 0.88 2.52 ± 0.80

η = 0.2 4.78 ± 1.60 3.74 ± 1.17 3.26 ± 1.00 2.96 ± 0.92

5 Longitudinal Study in Early Postnatal Phase

As a part of early brain development studies (EBDS) [1], infant subjects were
scanned shortly after birth, at age 1 year, and at age 2 years with both Siemens
Allegra and Siemens Timm Trio head-only 3 T scanners. Both hemispheres were
reconstructed with 163,842 vertices via the FreeSurfer pipeline. Table 2 summa-
rizes a population statistics of the EBDS dataset used in this experiment.

We designed a linear mixed-effects model to investigate brain development in
the early postnatal phase. The local gyrification index was used as a dependent
variable Y with several fixed effects: postnatal age at scan, sex, and gestational
age at birth. For each subject i, the following linear mixed-effects model was fit-
ted with an interaction between the fixed effects and the subject-specific random
effects Ui. We used SurfStat [9] for this analysis.

Yi = β0 + βAgeAgei + βSexSexi + βGestGesti + Ui + εi, (12)
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where εi is an error term. The standard false discovery rate (FDR) correction was
applied to correct multiple comparisons. Since the cortical surface area dramat-
ically changes over ages, we further regularized the kernel size that corresponds
to that of r = 8 (16) mm used in [6]: 108 (432), 180 (720), and 200 (800) mm2 at
neonate, 1 year, and 2 years, respectively. At age 2, the minimum size is 200 mm2

that fully spans any sulcal region, and a typical size suggested in [6] is 800 mm2.
To handle the inter-subject variability in cortical surface area, we adaptively
rescaled the kernel size for each subject according to the corresponding age
group. Due to a trade-off between the reproducibility and measure accuracy, we
set η = 0.2 to adaptively capture the cortical folding while keeping a comparable
reproducibility to [6]. The same adjusted kernel size was employed for fair com-
parisons of age effect. Figure 4 shows that the proposed method yields spatially
refined results as the proposed kernel adaptively captures local gyrification along
the cortical folding while the overall patterns remain largely similar to [6]. Such
refined patterns are likely due to different growth rates across cortex such as
the myelination process. It is noteworthy that we aim not at capturing better
statistical significance but at showing more refined resolution of t-maps.

Table 2. Early brain development studies (EBDS) dataset with population statistics

Scans Total number Male Female Age (days) Age range Gestational age (days)

Neonate 178 88 90 20.89± 9.50 6–68 275.27± 11.29

1 year 85 44 41 385.27± 22.84 343–481 273.36± 11.86

2 years 76 44 32 746.54± 25.03 693–827 272.62± 14.04

Total 339 176 163 - - 274.20± 12.12

FS (200 mm2) Ours (200 mm2) FS (800 mm2) Ours (800 mm2)

-30

30

Fig. 4. Multi-comparison corrected t-maps for the local gyrification index change from
neonate to 2-year-old using adjusted kernel sizes. FreeSurfer captures overall blurred
measurements across the entire cortex whereas the proposed method reveals correla-
tions with a high resolution of the measurements along the cortical folding.

6 Conclusion

We presented a novel cortical shape-adaptive kernel for local gyrification index.
In contrast to a typical geodesic kernel, the proposed kernel is adaptively
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elongated along the cortical folding via the well-defined H-J PDE. In the experi-
ment, the significant regions were spatially refined along the cortical folding while
the overall patterns were similar to the conventional method. Although the pro-
posed method achieved a high reproducibility even with fast anisotropic speed,
its performance could depend on a quality of the sulcal/gyral curve extraction.
In the future, we will further validate our method regarding the preprocessing.
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