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Abstract. Existing deformable registration methods require exhaustively iter-
ative optimization, along with careful parameter tuning, to estimate the defor-
mation field between images. Although some learning-based methods have been
proposed for initiating deformation estimation, they are often template-specific
and not flexible in practical use. In this paper, we propose a convolutional neural
network (CNN) based regression model to directly learn the complex mapping
from the input image pair (i.e., a pair of template and subject) to their corre-
sponding deformation field. Specifically, our CNN architecture is designed in a
patch-based manner to learn the complex mapping from the input patch pairs to
their respective deformation field. First, the equalized active-points guided
sampling strategy is introduced to facilitate accurate CNN model learning upon
a limited image dataset. Then, the similarity-steered CNN architecture is
designed, where we propose to add the auxiliary contextual cue, i.e., the simi-
larity between input patches, to more directly guide the learning process.
Experiments on different brain image datasets demonstrate promising registra-
tion performance based on our CNN model. Furthermore, it is found that the
trained CNN model from one dataset can be successfully transferred to another
dataset, although brain appearances across datasets are quite variable.

1 Introduction

Deformable registration is a fundamental image processing step for many medical
image analysis tasks since it can help build anatomical correspondences across images.
Among existing deformable registration algorithms, most of them regard image reg-
istration as a high-dimensional optimization problem, which intends to maximize the
similarity between the template and subject images with a regularization upon the
deformation field. Generally, these methods often require iterative optimization to
estimate the deformation field between images, as well as careful parameter tuning.
Moreover, the registration performance may decline significantly when existing large
appearance variation between the template and the to-be-registered subject.
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Some learning-based methods [1–4] are proposed to predict the initial deformation
field or parameters for registration. Then, the roughly predicted deformation field can
be refined by adopting existing registration algorithms in an effective manner. Although
these methods can partially improve the performance of registration, there are still some
limitations. (1) The learning is template-specific, while changing the template requires
re-training from scratch. (2) The prediction models often ignore the intrinsic matching
associations between the to-be-registered image pair along with their local corre-
spondence. (3) The predicted deformation field still needs further refinement, i.e., by
employing a conventional registration method.

Recently, deep learning techniques such as convolutional neural network
(CNN) become well known for their strong end-to-end learning ability. In this paper,
we propose to learn a general CNN-based regression model, in order to directly con-
struct a mapping from the input image pair (e.g., a pair of template and subject) to their
final deformation field. Then, in the application stage, we can input an unseen image
pair to the CNN and effectively obtain the accurate deformation field between them.
Our main contributions and novelties can be summarized as follows.

(1) To learn a general CNN regression model that is independent of any arbitrary
template, we propose to regress from any image pair to their corresponding
deformations. In particular, given two patches at the same locations of two dif-
ferent images, the CNN produces the displacement vector to align the two pat-
ches. A whole-image deformation field can then be derived accordingly, which
relies on robust machine learning, rather than tedious parameter tuning in
optimization.

(2) In order to bridge the large appearance gap between the pair of template and
subject, we introduce an auxiliary contextual cue to guide the learning of the
CNN. This cue encodes the easy-to-compute image patch similarities in a
multi-scale way, which is shown to be important for successfully establishing the
final deformation field and is also robust to large appearance variations.

(3) To make the CNN regression model more accurate, we introduce the equalized
active-points guided sampling strategy, such that the training set complies well
with the distributions of image patches and displacements. This strategy signifi-
cantly enhances the accuracy when estimating the deformation field, and helps
avoid further refinement by conventional registration methods.

2 Method

In this paper, we propose a similarity-steered CNN regression architecture to learn the
mapping M from the image pair (e.g., a template T and a subject S) to their final
deformation field / : M : ðT ;SÞ ) /. Particularly, the inputs consist of two inde-
pendent images. Obviously, our learning target is the local matching correspondence
between the two input images. This is substantially different from the conventional
CNN-based tasks.

As shown in Fig. 1, our CNN model is designed in a patch-wise manner to encode
both the patch appearance information and the local displacement. First, two patches
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are extracted from the same locations in template and subject. Then, we generate a
multi-scale contextual cue to describe the similarity within the patch pair (Network
Part I). The patches and the cue are concatenated as the multi-channel input to CNN,
which regresses the final displacement vector for template patch center (Network
part II). Finally, we predict the displacements for many sampled locations, and obtain
the dense deformation field by thin-plate spline (TPS) interpolation in an iterative
manner.

2.1 Training Set Preparation

For a pair of registered template image T and subject image S along with their
deformation field /; a local patch pair ðpT uð Þ; pS uð ÞÞ is extracted from the center
location u. We then obtain a training sample Si ¼ fðpT uð Þ; pS uð ÞÞj/ðuÞg, where
/ uð Þ ¼ ½dx; dy; dz� is the displacement vector of u.

Obviously, a well-prepared training set is important to the accuracy and the
robustness of the learned CNN. Conventional sampling often collects training patches
randomly or uniformly in the input image spaces, while ignores the distribution of the
displacements in the output space. Figure 2(a) presents the distribution of the dis-
placement magnitudes measured from 20 real deformation fields (excluding back-
ground voxels). If the training patches are extracted randomly from the input image
space only, the displacement magnitudes for >74% patches are below 1 mm. In this
way, the generalization performance of CNN will be confined, which leads to under-
estimation of the displacement magnitude. An instance is shown in Fig. 2(b) and (c) for
comparison. Therefore, we argue that all training patches should be sampled by
referring to not only the input image space, but also the output displacement space.

In the input image space, we apply the active-points guided sampling strategy,
where the importance IðuÞ of each point u can be related to gradient magnitude in the
template image space. The voxel with rich anatomical information (e.g., strong edges)
will have high importance to be sampled. Obviously, the density of the active-points
will be higher on informative brain regions while lower on smooth regions.

Fig. 1. The framework of the proposed similarity-steered CNN regression for deformable image
registration. The input image pair has already been linearly aligned. Here, we use 2D examples
for easy illustration, while our implementations are in 3D.
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In the output displacement space, we adopt the equalized sampling strategy based
on the displacement distribution. By incorporating the information from the input
image space, we can sample the point u with the integrated probability PðuÞ:

PðuÞ ¼ e�x� / uð Þk k2
s �IðuÞ

� ��1

; / uð Þk k2¼
/ uð Þ2

�� ��; / uð Þk k2 � s
0 / uð Þk k2 [ s

�
ð1Þ

Here, x is a parameter to control the sampling probability as well as the sample
number, and s is a cut-off threshold. Apparently, the point u with larger displacement
magnitude / uð Þk k2 and importance IðuÞ can be more likely to be sampled. However,
the very large displacement is unpredictable concerning the limited modeling capability
of CNN and the number of training patches. Thus, we apply the cut-off s to saturate all
displacements over the threshold.

After the equalized active-points guided sampling, the distribution of whole
training set S is mostly uniform within Uð0; s�. In this paper, we set s ¼ 7 mm. It is
worth noting that, the displacement in the final deformation field is not limited by s. We
iteratively perform the learned CNN model, such that the estimated displacements are
accumulated to approximate the final deformation field.

2.2 Similarity-Steered CNN Regression

To bridge the large gap between the input image pair and the output displacement, we
introduce the auxiliary contextual to guide CNN training. As shown in Fig. 1, our CNN
model consists of two parts: (1) network preparation and (2) network learning.

Network preparation. The contextual cue is provided by the similarity map, which is
the local cross-correlation from the center location in template patch to the whole subject
patch locations, and we use a small image patch to represent each location, as shown in
Fig. 3. In our implementation, we conduct it as a convolutional layer incorporated to the
whole CNN architecture, in order to effectively obtain the similarity map H:

H ¼ k
0

T ðuÞ � pS uð Þ
kT uð Þj j � pS uð Þk k ; pS uð Þk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � ðpS uð Þ � pS uð ÞÞ

p
ð2Þ

(a)    (b)     (c) 

Fig. 2. Illustration of the equalized sampling strategy. The displacement magnitudes distribute
unevenly as shown in (a) The deformation field is thus underestimated in (b) if following the
conventional sampling strategy, and much improved in (c) when using our proposed strategy.
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where “�” is the convolution operation, and k
0

T ðuÞ is the reversed kernel derived from
template patch pT uð Þ at the center voxel u: For each patch pair, kT uð Þ is fixed, thus the
L2-norm kT uð Þj j is a constant. pS uð Þk k is the L2-norm map with the same size as
subject patch pS uð Þ, where we also fast generate it by another convolution operation,
i.e., convolving the self dot product ðpS uð Þ � pS uð ÞÞ with the kernel k1. Here, k1 is a
kernel with all 1 elements and has the same size as kT uð Þ. Equation (2) can be iden-
tified as normalized cross-correlation. It is worth noting that, the kernel in this con-
volutional layer is derived from the data, so that, the weights are fixed and not trainable.

The similarity map allows us to establish correspondences between the two patches.
However, the choice of the kernel affects the distinctiveness of correspondence, as an
example shown in Fig. 3. Thus, we provide multi-scale similarity cue, corresponding to
different sizes of kernels, to guide the training of CNN. In this paper, we use 4 kernel
sizes as also illustrated in Fig. 3.

Network learning. The CNN architecture estimates the final displacement vectors
with multi-channel inputs, including the patch pair and the similarity maps. Specifi-
cally, each convolution layer is followed by ReLU activations. The kernel number is
doubled every two convolution layers, which starts from 64 to final 512 with the fixed
size 3� 3� 3. The subsequent fully connected (FC) layers consist of 3 layers with
ReLU activations, and tanh activation for the final FC layer. The loss function is the
mean squared error. It is worth noting that, padding operation is not applied in each
convolution layer in order to avoid introducing meaningless information. The patch
size will gradually decrease, and all neighborhood information of each sample point
can be effectively incorporated in high dimensional space to help better represent the
samples. Furthermore, only one pooling layer is adopted in order to protect the con-
tinuity of the regression model as well as make the network training efficiently.

3 Experiments

Two datasets, i.e. LONI LPBA40 and ADNI (Alzheimer’s Disease Neuroimaging
Initiative), are used to evaluate our registration performance. The LONI dataset con-
tains 40 young adult brain MR images with 54 ROI labels, and additional tissue
segmentations of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF).
For ADNI, 30 brain MR images are randomly selected from the dataset, each of which
has GM, WM and CSF segmentations. After preprocessing and affine registration, all

Fig. 3. Similarity maps of one sample with different kernel size 2rþ 1: Solid and dashed circle
indicate correct guidance and incorrect guidance, respectively.
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the images of the two datasets are resampled to the same size (220� 220� 184) and
same resolution (1� 1� 1 mm3).

The training image data is derived from LONI LPBA40. Specifically, we select
30 images to train, and test upon the remaining 10 images. We further randomly draw
30 image pairs from the training images. In order to obtain the very accurate defor-
mation field of each image pair, SyN [5] is first applied on the intensity images with
careful parameter tuning, and then Diffeomorphic Demons [6] is adopted on their tissue
segmentation to further refine the registration accuracy. The final deformation field
composed by this two-stage registration is used as ground-truth for CNN training.
Then, 24K training samples are extracted from each image pair via the equalized
active-points guided sampling strategy. In all, we have 720K training samples.

We train our similarity-steered CNN model on an Nvidia GPU by our modified 3D
version of Caffe [7]. We start with the learning rate k ¼ 0:01 and multiply it by 0.5
after every 70K iterations. 20K samples are taken from the whole training set and used
as validation data to monitor the overfitting problem. After training, we test the CNN
model on the remaining 10 images in LONI LPBA40 and 30 images in ADNI. For each
to-be-registered image pair, we estimate the displacements on 0.9% of all voxels that
are selected by the active-points guided sampling strategy. The dense deformation field
can be obtained by TPS interpolation [8]. We perform the above procedure for two
iterations, and the incremental displacements are composed for the estimation of the
final deformation field. Two popular state-of-the-art registration methods, i.e., SyN [5]
and Demons [6], are chosen for comparison.

3.1 LONI Dataset

For the 10 testing subjects in LPBA40 dataset, we perform deformable image regis-
tration on each two images and report the averaged results in Fig. 4 and Table 1.
Figure 4 shows the Dice similarity coefficient (DSC) on 54 brain ROIs. We observe

Fig. 4. Mean DSC of each of 54 ROIs based on 10 testing subjects from LONI dataset, after
deformable registration by Demons, SyN, and our proposed method. “*” indicates statistically
significant improvement by our proposed method, compared with other two methods (p < 0.05).
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that our method has better performances on 36/54 ROIs. Among them, 28 ROIs are
statistical-significantly improved (p < 0.05) regarding both Demons and SyN.

Table 1 provides the DSC on the labels of GM, WM and CSF. Our method
achieves significant improvements on GM and WM. In term of symmetric average
surface distance (SASD) [9], we also obtain better performance on GM. Although the
averaged accuracies of the competing methods are slightly higher than the proposed
method in some regions, the differences, however, are not significant in paired t-tests.

This means that, we have at least achieved the comparable performance with the
state-of-the-art deformable registration methods. Note that, our method only uses 0.9%
test points to generate the whole deformation field, which leads to the reported per-
formance, without exhaustive iterative optimization and parameter tuning. It suggests
that the complex mapping from the image pair to the deformation field is successfully
modeled by our proposed method.

3.2 ADNI Dataset

To further evaluate the transferring capability of the learned CNN, we test 30 ADNI
images by directly applying the model trained on the LONI dataset. To enlarge the
appearance variation between the to-be-registered image pair, in this experiment, 3
images are randomly selected from LONI dataset and used as templates. All 30 ANDI
subjects are registered to those 3 templates, respectively, with results reported below.

Since only GM, WM and CSF labels are available for both these two datasets, we
evaluate the registration performance based on these tissue labels in Table 2, and
provide qualitative comparisons in Fig. 5. We observe that our proposed method
achieves the best overall performance for this challenging registration task, with sta-
tistically significant improvements. Note that, even the image pair has large appearance

Table 1. Mean DSC and ASSD of GM, WM and CSF based on 10 testing subject from LONI
dataset, after deformable registration by Demons, SyN, and our proposed method. “*” indicates
statistically significant improvement by our method, compared to other two methods (p < 0.05).

DSC (%) ASSD (mm)
GM WM CSF GM WM CSF

Demons 72.8 � 1.0 80.8 � 7.3 62.9 � 5.1 0.55 � 0.34 0.49 � 0.15 0.43 � 0.10
SyN 72.7 � 1.6 78.1 � 0.7 61.5 � 2.6 0.46 � 0.03 0.58 � 0.05 0.54 � 0.05
Proposed 75.3 � 1.4* 81.3 � 0.6* 61.2 � 2.4 0.43 � 0.04* 0.56 � 0.05 0.48 � 0.03

Table 2. Mean DSC and ASSD of GM, WM and CSF for ADNI dataset, after deformable
registration by Demons, SyN, and our proposed method. “*” indicates statistically significant
improvement, compared to other two methods (p < 0.05).

DSC (%) ASSD (mm)
GM WM CSF GM WM CSF

Demons 64.8 � 2.3 75.7 � 1.0 54.3 � 2.5 0.70 � 0.04 0.73 � 0.05 0.38 � 0.04
SyN 64.6 � 2.5 76.3 � 1.8 55.2 � 3.2 0.69 � 0.04 0.81 � 0.06 0.37 � 0.05
Proposed 65.1 � 2.2* 78.3 � 0.6* 56.0 � 2.1* 0.64 � 0.04* 0.75 � 0.04 0.32 � 0.04*
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variation, our proposed method still obtains high performance without any parameter
tuning. This indicates that the established CNN model is robust and accurate for
complicated registration cases, which makes our method more flexible and applicable.

4 Conclusion

In this paper, we have proposed a novel deformable registration method by directly
learning the complex mapping from the input image pair to the final deformation field
via CNN regression. The equalized active-points guided sampling strategy is proposed,
which facilitates training the regression model even with small dataset. Then, a
similarity-steered CNN architecture is designed, where an additional convolutional
layer is established in the whole network to provide similarity guidance during model
learning. Experimental results show promising registration performance compared with
the state-of-the-art methods on different datasets.
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