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Abstract. Robust and fast detection of anatomical structures is an
essential prerequisite for the next-generation automated medical sup-
port tools. While machine learning techniques are most often applied
to address this problem, the traditional object search scheme is typi-
cally driven by suboptimal and exhaustive strategies. Most importantly,
these techniques do not effectively address cases of incomplete data, i.e.,
scans taken with a partial field-of-view. To address these limitations, we
present a solution that unifies the anatomy appearance model and the
search strategy by formulating a behavior-learning task. This is solved
using the capabilities of deep reinforcement learning with multi-scale
image analysis and robust statistical shape modeling. Using these mech-
anisms artificial agents are taught optimal navigation paths in the image
scale-space that can account for missing structures to ensure the robust
and spatially-coherent detection of the observed anatomical landmarks.
The identified landmarks are then used as robust guidance in estimat-
ing the extent of the body-region. Experiments show that our solution
outperforms a state-of-the-art deep learning method in detecting differ-
ent anatomical structures, without any failure, on a dataset of over 2300
3D-CT volumes. In particular, we achieve 0% false-positive and 0% false-
negative rates at detecting the landmarks or recognizing their absence
from the field-of-view of the scan. In terms of runtime, we reduce the
detection-time of the reference method by 15−20 times to under 40 ms,
an unmatched performance in the literature for high-resolution 3D-CT.

1 Introduction

Accurate and fast detection of anatomical structures is a fundamental step
for comprehensive medical image analysis [1,2,5]. In particular for automatic
support of clinical image reading, where the field-of-view of the acquired CT
scan is typically unknown, ensuring the accurate detection of the visible land-
marks and recognizing the absence of missing structures pose significant chal-
lenges. Addressing these limitations is essential to enable artificial intelligence
to increase and support the efficiency of the clinical workflow from admission
through diagnosis, clinical care and patient follow-up. In this context, state-of-
the-art deep learning solutions based on hypothesis scanning [1] or end-to-end
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learning [5] typically propose to threshold the detection confidence to handle
cases of incomplete data — a suboptimal heuristic in terms of accuracy.

In this work we present a solution for robust anatomical landmark detection
and recognition of missing structures using the capabilities of deep reinforcement
learning (DRL) [4]. Inspired by the method introduced in [2], we choose to learn
the process of finding an anatomical structure and use it as a natural mechanism
to recognize its absence by signaling the divergence of search trajectories out-
side the image space. To increase the system robustness and avoid suboptimal
local convergence, we propose to use scale-space theory [3] to enable the system
to hierarchically exploit the image information. In addition, we ensure the spa-
tial coherence of the detected anatomical structures using a robust statistical
shape-model fitted with M-estimator sample consensus [7]. Based on the robust
detections, we infer the vertical range of the body captured in the 3D-CT scan.

2 Background and Motivation

2.1 Challenges of 3D Landmark Detection in Incomplete Data

Deep scanning-based systems represent the main category of recent solutions [1].
Here the problem is reformulated to a patch-wise classification between positive
h ∈ H+ and negative hypotheses h ∈ H−, sampled as volumetric boxes of
image intensities. Alternatively, end-to-end deep learning systems based on fully
convolutional architectures approach the problem by learning a direct mapping
f(I) = M between the original image I and a coded map M highlighting the loca-
tions of anatomical landmarks [5]. However, in the case of over thousands of large
range 3D-CT scans at high spatial resolution (e.g. 2 mm or less), the training of
such systems becomes infeasible due to the excessive memory requirements and
the high computational complexity. In particular for incomplete data, all these
systems share a common limitation, i.e., they rely on suboptimal and inaccurate
heuristics such as probability thresholding to recognize whether an anatomical
landmark is visible in the field-of-view of the 3D scan.

2.2 Learning to Search Using Deep Reinforcement Learning

A different perspective on the general problem of landmark detection in 3D data
is presented in [2]. The task is reformulated as an intrinsic behavior learning
problem which asks the question of how to find a structure? given image evidence
I : Z3 → R. To model the system dynamics and enable the navigation in image
space, a Markov Decision Process (MDP) [6] M := (S,A, T ,R, γ) is defined,
where: S represents a finite set of states over time with st ∈ S being the state
of the agent at time t – a constrained axis-aligned box of image intensities
centered at position pt in image space; A represents a finite set of actions allowing
the agent to navigate voxel-wise within the environment (±1 voxels in each
direction); T : S × A × S → [0, 1] is a stochastic transition function, where
T s′

s,a describes the probability of arriving in state s′ after performing action a in
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state s; R : S × A × S → R is a scalar reward function to drive the behavior
of the agent, where Rs′

s,a = ‖pt − pGT ‖22 − ‖pt+1 − pGT ‖22 denotes the expected
distance-based reward for transitioning from state s to state s′, i.e., pt to pt+1

while seeking the ground-truth position pGT of the landmark; and γ ∈ (0, 1) is
the discount-factor controlling future versus immediate rewards [2].

In this context the optimal action-value function Q∗ : S × A → R is defined,
which quantifies the maximum expected future reward of an optimal navigation
policy π∗ starting in s with action a: Q∗(s, a) = maxπ E [Rt|st = s, at = a, π]. A
recursive formulation of this function based on the dynamic state-graph defines
the so called Bellman criterion [6]: Q∗(s, a) = Es′ (r + γ maxa′ Q∗(s′, a′)). Using
a deep neural network with parameters θ to approximate this complex non-linear
function Q∗(s, a) ≈ Q(s, a; θ), one can learn optimal trajectories in image-space
that converge to the sought anatomical structures with maximum reward [2,4,8].

Learning the navigation policy replaces the need for exhaustive and sub-
optimal search strategies [1,5]. More importantly, this formalism can elegantly
address the question of missing structures with trajectories that leave the image
space — a natural ability of the system in contrast to explicit post-processing
heuristics. However, in the context of large incomplete volumetric 3D scans this
approach suffers from several inherent limitations. The first is related to the
spatial coverage of the acquired state descriptor s ∈ S. Acquiring limited local
information improves the sampling efficiency at the cost of local optima. On the
contrary, extracting a very large context to represent the state, poses significant
computational challenges in the 3D space. This indicates the inability to properly
exploit the image information at different scales. Secondly, the system fails to
exploit the spatial distribution of the landmarks to further increase robustness.

3 Proposed Method

To address these limitations, we propose to use scale-space theory [3] and robust
statistical shape modeling for multi-scale spatially-coherent landmark detection.

3.1 A Discrete Scale-Space Model

In general, the continuous scale-space of a 3D image signal I : Z3 → R is defined
as: L(x; t) =

∑
ξ∈Z3 T (ξ; t) I(x − ξ), where t ∈ R+ denotes the continuous scale-

level, x ∈ Z
3, L(x; 0) = I(x) and T defines a one-parameter kernel-family. The

main properties of such a scale-space representation are the non-enhancement
of local extrema and implicitly the causality of structure across scales [3]. These
properties are essential for the robustness of a search process, starting from
coarse to fine scale. We propose to use a discrete approximation of the continuous
space L while best preserving these properties. We define this discrete space as:

Ld(t) = Ψρ(σ(t − 1) ∗ Ld(t − 1)), (1)

where Ld(0) = I, t ∈ N0 denotes the discrete scale-level, σ represents a scale-
dependent smoothing function and Ψρ denotes a signal operator reducing the
spatial resolution with factor ρ using down-sampling [3].



Robust Multi-scale Anatomical Landmark Detection 197

3.2 Learning Multi-scale Search Strategies

Assuming w.l.o.g. a discrete scale-space of M scale-levels with ρ = 2, we propose
a navigation model across scales — starting from the coarsest to the finest scale-
level. For this we redefine the optimal action-value function Q∗ by conditioning
the state-representation s and model parameters θ on the scale-space Ld and
the current scale t ∈ [0, · · · ,M − 1]: Q∗(s, a | Ld, t) ≈ Q(s, a; θt | Ld, t). This
results in M independent navigation sub-models Θ = [θ0, θ1, · · · , θM−1], one for
each scale-level. Each model is trained on each individual scale-level as proposed
in [2], i.e., by optimizing the Bellman criterion on each level t < M :

θ̂
(i)
t = arg min

θ
(i)
t

Es,a,r,s′

[(
y − Q

(
s, a; θ(i)t | Ld, t

))2
]

, (2)

with i ∈ N0 denoting the training iteration. The reference estimate y is deter-
mined using the update-delay [4] technique: y = r+γ maxa′ Q

(
s′, a′; θ̄(i)t | Ld, t

)
,

where θ̄
(i)
t := θ

(j)
t represents a copy of the model parameters from a previous

training step j < i. This significantly increases the training stability [2].
The detection workflow is defined as follows: the search starts in the image

center at the coarsest scale-level M − 1. Upon convergence the scale-level is
changed to M − 2 and the search continued from the convergence-point at
M − 1. The same process is repeated on the following scales until convergence
on the finest scale. We empirically observed that optimal trajectories converge
on minimal (oscillatory) cycles. As such, we define the convergence-point as the
center of gravity of this cycle. The search-model Q(·, ·; θM−1 | Ld,M − 1) is
trained for global convergence while the models on any of the following scales
t < M−1 are trained in a constrained range around the ground-truth. This range
is robustly estimated from the accuracy upper-bound on the previous scale t+1.
Note that the spatial coverage of a fixed-size state s ∈ S is increasing expo-
nentially with the scale. This multi-scale navigation model allows the system
to effectively exploit the image information and increase the robustness of the
search (see Fig. 1).

Fig. 1. Visualization of the complete system pipeline.
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Missing Landmarks: We propose to explicitly train the global search model
θM−1 for missing landmarks to further improve the accuracy for such cases.
Assuming the CT-scans are cut only horizontally, the system is trained to con-
stantly reward the trajectories to leave the image space through the correct
volume border. For this we require for each missing landmark a ground-truth
annotation on whether it is outside above the field of view, or below.

3.3 Robust Spatially-Coherent Landmark Detection

To ensure the robust recognition of missing anatomical structures and outliers
we propose to model the spatial distribution of the considered anatomical land-
marks using robust statistical shape modeling. This step constrains the output
of the global search model θM−1 (see the complete pipeline visualized in Fig. 1).
Assuming a complete set of N anatomical landmarks, we normalize the distri-
bution of these points on all complete training images to zero mean and unit
variance. In this space, we model the distribution of each individual landmark
i ∈ [0, · · · , N − 1] as a multi-variate normal distribution pi ∼ N (μi,Σi), where
μi and Σi are estimated using maximum likelihood. This defines a mean shape-
model for the landmark set, defined as μ = [μ0, · · · ,μN−1]

�. Given an unseen
configuration of detected points at scale M − 1 as P̃ = [p̃0, · · · , p̃N ]�, one can
approximate P̃ with a translated and isotropic-scaled version of the mean model
using least linear squares as: ω̂ = arg minω=[t,s]‖P̃ − t − sμ‖22. However, for the
case of incomplete data the cardinality of |P̃ | ≤ N . In addition, outliers can
corrupt the data. To enable the robust fitting of the shape-model, we propose to
use M-estimator sample consensus [7]. Based on random 3-point samples from
the set of all triples I3(P̃ ) one can obtain the mean-model fit ω̂ = [t, s]. The
target is to optimize the following cost function based on the redescending M-
estimator [7] and implicitly maximize the cardinality of the consensus set Ŝ:

Ŝ ← arg min
S∈I3(P̃ )

|P̃ |∑

i=0

min
[

1
Zi

(φ(p̃i) − μi)
�

Σ−1
i (φ(p̃i) − μi) , 1

]

, (3)

where φ(x) = x
s − t is a projector to normalized shape-space with the estimated

fit ŵ = [t, s] on set S. The normalization coefficient Zi ∈ R+ defines an oriented
ellipsoid – determining the outlier-rejection criterion. We use the χ2

3-distribution
to select Zi such that less than 0.5% of the inlier-points are incorrectly rejected.

Detect Outliers and Reset: Enforcing spatial coherency not only corrects for
diverging trajectories by re-initializing the search, but also significantly reduces
the false-negative rate by correcting for border cases. These are landmarks very
close to the border (< 2 cm), falsely labeled as missing at scale M − 1.

Scan-range estimation: The robust fitting of the shape-model also enables the
estimation of the body-region captured in the scan. We propose to model this
as a continuous range within normalized z-axis, to ensure consistency among
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different patients. For a set of defined landmarks P in normalized shape-space,
the point pmin = minpi∈P [pz

i ] determines the 0%-point, while the point pmax =
maxpi∈P [pz

i ] the 100%-point. Assume for a given set of landmarks P̃ that the
fitted robust subset is represented by P̂ ⊆ P̃ . Using our definition of range,
the span of the point-set P̂ can be determined between 0%–100% in normalized
shape-space. This also allows the linear extrapolation of the body-range outside
the z-span of the point-set P̂ (more details follow in Sect. 4).

4 Experiments

Dataset: For evaluation we used a dataset of 2305 3D-CT volumes from over
850 patients. We determined a random split in 1887 training volumes and 418
test volumes, ensuring that all scans from each patient are either in the training
or the test-set. We selected a set of 8 anatomical landmarks with annotations
from medical experts (see Fig. 2). Each volume was annotated with the location
of all visible landmarks. To allow the fitting of the shape-model, we selected
scans with at least 4 annotations (this is not a limitation since our target for
future work is to cover more than 100 landmarks). This resulted in a 70%–30%
split of the annotations for each landmark into training and testing. Over the
entire dataset the distribution of visible−missing landmarks was approximately
as follows: 80%–20% for kidneys, 60%–40% for hip-bones, and 50%–50% for the
rest. We refer to false-positive (FP) and false-negative (FN) rates to measure
the accuracy in detecting landmarks or recognizing their absence from the scan.

System Training: A scale-space of 4 scales was defined at isotropic resolutions
of 2 – 4 – 8 and 16 mm. For the kidney center the fine resolution was set to 4 mm,
given the higher variability of the annotations. For each scale and landmark
the network structure was the same: conv-layer (40 kernels: 5 × 5 × 5, ReLU),
pooling (2× 2 × 2), conv-layer (58 kernels: 3× 3 × 3), pooling (2× 2 × 2) and
three fully-connected layers (512 × 256 × 6 units, ReLU). The compact model-
size under 8 MB per scale-level enables efficient loading and evaluation. Also the

Fig. 2. The anatomical landmarks used for evaluation. These are the front corner of
the left (LHB) and right hip bones (RHB), the center of the left (LK) and right kidneys
(RK), the bifurcation the left common carotic artery (LCCA), brachiocephalic artery
(BA) and left subclavian artery (LSA) and the bronchial bifurcation (BB).
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meta-parameters for training were shared across scales and landmarks: training-
iterations (750), episode-length (1500), replay-memory size (105), learning rate
(0.25 × 10−2), batch-size (128) and discount-factor γ = 0.9. The dimensionality
of the state was also fixed across scales to 25 × 25 × 25 voxels. Recall that on all
scales except M−1 the training is performed in a constrained image range around
the ground-truth pGT ± r. Depending on scale and landmark: r ∈ [−12, 12]3

voxels. The training time for one landmark averages to 4 h on an Nvidia Titan
X GPU. We train all models in a 16-GPU cluster in 2.5 h.

Robust Multi-scale Navigation: Given trained multi-scale models for each
landmark: Θ0, · · · ,Θ8, the search starts on the lowest scale in the center of
the scan. Let P̃ be the output of the navigation sub-models on coarsest scale.
Robust shape-model fitting was performed on P̃ to eliminate outliers and correct
for misaligned landmarks to a robust set P̂ . This reduced the FP and FN rates
from around 2% to under 0.5%. Applying the training range r to bound the
navigation on the following scales [M − 2, · · · , 0], we empirically observed that
the shape-constraint was preserved while the FP-/FN-rate were reduced to zero.

Result Comparison: In contrast to our method, the reference solution pro-
posed in [1] uses a cascade of sparse deep neural networks to scan the complete
image space. Missing structures are detected using a fixed cross-validated thresh-
old on the hypothesis-probability. The operating point was selected to maintain
a FP-rate of less than 1.5%. Table 1 shows the obtained results. Our method
significantly outperforms [1] in recognizing the presence/absence of structures
(see FP and FN rates). In terms of accuracy, the improvement is statistically
significant (paired t-Test p-value < 10−4), averaging 20–30% on all landmarks
except the kidneys. The increased apparent performance on the kidney center of
the method [1] might be explained by the high FN-rate as well as the robust can-
didate aggregation [1], which accounts for the high variability of the annotations.

Table 1. Comparison with state-of-the-art deep learning [1]. Accuracy is in mm.

Anatomical Structures

LK RK LHB RHB LCCA BA LSA BB

FP-rate MSDL [1] 1.5% 1.5% 1.1% 1.2% 1.0% 1.0% 1.1% 1.0%

Ours 0% 0% 0% 0% 0% 0% 0% 0%

FN-rate MSDL [1] 13.9% 9.4% 1.2% 0.4% 10.8% 11.3% 7.2% 4.9%

Ours 0% 0% 0% 0% 0% 0% 0% 0%

Mean MSDL [1] 6.17 6.36 4.92 3.66 4.78 5.05 5.25 5.10

Ours 6.83 6.98 3.61 2.63 4.02 4.26 4.23 4.07

Median MSDL [1] 5.64 5.80 4.70 3.44 4.17 4.54 4.62 4.53

Ours 6.32 6.63 2.83 2.49 2.86 3.46 3.21 3.77

STD MSDL [1] 3.32 3.06 2.09 1.83 3.30 3.02 3.51 2.82

Ours 3.52 3.83 2.08 1.53 3.33 2.97 3.37 2.16
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Please note: A comparison with the method [2] is not possible on this large vol-
umetric data. Training the detector only on the finest scale, as proposed in [2],
is only possible within a limited range around the ground-truth (e.g. ±15 cm).
This highlights the importance of using a scale-space model and robust shape
M-estimation, which enable training in large-range incomplete 3D data.

Runtime: Learning the multi-scale search trajectory leads to real-time detec-
tion. With an average speed of 35–40 ms per landmark, our method is 15–20
times faster than MSDL [1] which achieved an average speed of around 0.8 s.

Body-region Estimation: We defined a continuous range-model based on the
landmark set with the LHB corner at 0% and the LCCA bifurcation at 100%. The
levels of the remaining landmarks were determined in normalized shape-space
using linear interpolation. Using the robust detections P̂ as reference range, we
extrapolated the body-range above the LCCA or below the hip bones. Qualita-
tive evaluation shows that the scan in Fig. 1 extends from 21.3% to 109.0%.

5 Conclusion

In conclusion, this paper presents an effective approach for multi-scale spatially
coherent landmark detection for incomplete 3D-CT data. Learning multi-scale
search trajectories and enforcing spatial constraints ensure high robustness and
reduce the false-positive and false-negative rates to zero, significantly outper-
forming a state-of-the-art deep learning approach. Finally we demonstrate that
the detected landmarks can be used to robustly estimate the body-range.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons its future availability cannot be guaranteed.
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