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Abstract. Adolescent Idiopathic Scoliosis (AIS) exhibits as an abnor-
mal curvature of the spine in teens. Conventional radiographic assess-
ment of scoliosis is unreliable due to the need for manual intervention
from clinicians as well as high variability in images. Current methods for
automatic scoliosis assessment are not robust due to reliance on seg-
mentation or feature engineering. We propose a novel framework for
automated landmark estimation for AIS assessment by leveraging the
strength of our newly designed BoostNet, which creatively integrates the
robust feature extraction capabilities of Convolutional Neural Networks
(ConvNet) with statistical methodologies to adapt to the variability in
X-ray images. In contrast to traditional ConvNets, our BoostNet intro-
duces two novel concepts: (1) a BoostLayer for robust discriminatory fea-
ture embedding by removing outlier features, which essentially minimizes
the intra-class variance of the feature space and (2) a spinal structured
multi-output regression layer for compact modelling of landmark coor-
dinate correlation. The BoostNet architecture estimates required spinal
landmarks within a mean squared error (MSE) rate of 0.00068 in 431
crossvalidation images and 0.0046 in 50 test images, demonstrating its
potential for robust automated scoliosis assessment in the clinical setting.
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1 Introduction

Adolescent Idiopathic Scoliosis (AIS) is an abnormal structural, lateral, rotated
curvature of the spine, which arises in children at or around puberty and could
potentially lead to reduced quality of life [1]. The estimated incidence of AIS is
2.5% in the general population and only 0.25% of patients will progress to a state
where treatment is necessary [2]. Early detection of progression symptoms has
potential positive impacts on prognosis by allowing clinicians to provide earlier
treatment for limiting disease progression.

However, conventional manual measurement involves heavy intervention from
clinicians in identification of required vertebrae structures, which suffers from
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high inter- and intra-observer variability while being time-intensive. The accu-
racy of measurement is often affected by many factors such as the selection of
vertebrae, the bias of observer, as well as image quality. Moreover, variabilities
in measurements can affect diagnosis when assessing scoliosis progression. It is
therefore important to provide accurate and robust quantitative measurements
for spinal curvature. The current widely adapted standard for making scoliosis
diagnosis and treatment decisions is the manual measurement of Cobb angles.
These angles are derived from a posterior-anterior (back to front) X-rays and
measured by selecting the most tilted vertebra at the top and bottom of the
spine with respect to a horizontal line [3]. It is challenging for clinicians to make
accurate measurements due to the large anatomical variation and low tissue
contrast of x-ray images, which results in huge variations between different clini-
cians. Therefore, computer assistance is necessary for making robust quantitative
assessments of scoliosis.

Segmentation and Filter-Based Method for AIS Assessment. Current
computer-aided methods proposed in the literature for the estimation of Cobb
angles are not ideal as part of clinical scoliosis assessment. Mathematical models
such as Active Contour Model [4], Customized Filter [5] and Charged-Particle
Models [6] were used to localize required vertebrae in order to derive the Cobb
angle from their slopes. These methods require accurate vertebrae segmentations
and feature engineering, which makes them computationally expensive and sus-
ceptible to errors caused by variation in x-ray images.

Machine Learning-Based Method for AIS Assessment. Machine learning
algorithms such as Support Vector Regression (SVR) [7], Random Forest Regres-
sion (RFR) [8], and Convolutional Neural Networks (ConvNet) [9,10] have been
used for various biomedical tasks, their direct application to AIS assessment
suffer from the following limitations: (1) the method’s robustness and general-
izability can be compromised by the presence of outliers (such as human error,
imaging artifacts, etc.) in the training data [11], which usually requires a ded-
icated preprocessing stage and (2) the explicit dependencies between multiple
outputs (landmark coordinates) are not taken into account, which is essential
for enhancing discriminative learning with respect to spinal landmark locations.
While [12] successfully modified the SVR to incorporate output dependencies for
the detection of spinal landmarks, their method still requires suboptimal feature
extraction which does not cope with image outliers.

Proposed Method. Our proposed BoostNet achieves fully automatic clinical
AIS assessment through direct spinal landmark estimation. The use of land-
marks is advantageous to scoliosis assessment due to the fact that a set of spinal
landmarks contain a holistic representation of the spine, which are robust to
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Fig. 1. Architecture of the BoostNet for landmark based AIS assessment. Relevant fea-
tures are automatically extracted and any outlier features are removed by the Boost-
Layer. A spinal structured multi-output layer is then applied to the output to capture
the correlation between spinal landmarks.

variations in local image contrast. Therefore, small local deviations in spinal
landmark coordinates will not affect the overall quality of the detected spinal
structure compared to conventional segmentation-based methods. Figure 1 shows
our proposed BoostNet architecture overcoming the limitations of conventional
AIS assessment. As shown in Fig. 1, the BoostNet architecture overcomes the lim-
itations of conventional AIS assessment by enhancing the feature space through
outlier removal and improving robustness by enforcing spinal structure.

Contribution. In summary, our work contributes in the following aspects:

– The newly proposed BoostNet architecture can automatically and efficiently
locate spinal landmarks, which provides a multi-purpose framework for robust
quantitative assessment of spinal curvatures.

– The newly proposed BoostLayer endows networks with the ability to effi-
ciently eliminate deleterious effects of outlier features and thereby improving
robustness and generalizability.

– The newly proposed spinal structured multi-output layer significantly
improves regression accuracy by explicitly enforcing the dependencies between
spinal landmarks.
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2 Methodology

2.1 Novel BoostNet Architecture

Our novel BoostNet architecture is designed to automatically detect spinal land-
marks for comprehensive AIS assessment. Our BoostNet consists of 3 parts: (1)
a series of convolutional layers as feature extractors to automatically learn fea-
tures from our dataset without the need for expensive and potentially subop-
timal hand-crafted features, (2) a newly designed BoostLayer (Sect. 2.1), which
removes the impact of deleterious outlier features, and (3) a spinal structured
multi-output layer (Sect. 2.1) that acts as a prior to alleviate the impact of small
dataset by capturing essential dependencies between each spinal landmark.

(a) (b) (c)

Fig. 2. Conceptualized diagram of our BoostLayer module. (a) The presence of outliers
in the feature space impedes robust feature embedding. (b) The BoostLayer module
detects outlier features based on a statistical properties. We use an orange dashed line
to represent the outlier correction stage of the BoostLayer. For the sake of brevity, we
did not include the biases and activation function in the diagram. (c) After correcting
outliers, the intra-class feature variance is reduced, allowing for a more robust feature
embedding.

BoostLayer. As shown in Fig. 2, the BoostLayer reduces the impact of dele-
terious outlier features by enhancing the feature space. The sources of outliers
in medical images typically include imaging artifacts, local contrast variabil-
ity, and human errors, which reduces the robustness of predictive models. The
BoostLayer algorithm creatively integrates statistical outlier removal methods
into ConvNets in order to boost discriminative features and minimize the impact
of outliers automatically during training. The BoostLayer improves discrimina-
tive learning by minimizing the intra-class variance of the feature space. Outlier
features within the context of this paper is defined as values that are greater
than a predetermined threshold from the mean of the feature distribution. An
overview of the algorithm is shown in Algorithm1.
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Algorithm 1. BoostLayer
1: Initialization: set μ = 0, x̂ = 0, σ = 0,

randomly initialize W , b1, b2
2: repeat
3: for k ∈ {1, · · · , n} do
4: Update μ using bootstrap sam-

pling.
5: Compute the reconstruction R =

f(x · W + b1) · WT + b2.
6: Compute the reconstruction error

ε = (x − R)2.
7: Compute x̂ using (1).
8: Compute ŷ = f(x̂ · W + b1).
9: Update W , b1, b2 via backpropa-

gation.
10: end for
11: until Convergence

The BoostLayer functions by first
computing a reconstruction (R) of
some input feature (x): R = f(x ·W +
b1) ·WT + b2 where f is the relu acti-
vation function, W is the layer weights
and WT its transpose, and b1/2 are
the bias vectors.

The element-wise reconstruction
error (ε) can be defined as ε = (x −
R)2. This can alternatively be seen
as the variance of a feature with
respect to the latent feature distribu-
tion. What we want to establish next
is a threshold such that any input
(features) with reconstruction error
larger than the threshold is replaced
by the mean of the feature in order to
minimize intra-feature variance. For our experiments, we assumed a Gaussian
distribution for the feature population and used a threshold of 2 standard devi-
ations as the criterion for determining outliers.

In other words, we want to construct an enhanced feature space (x̂) such
that:

x̂ =

{
xi εi ≤ (2σi)2

μi εi > (2σi)2
(1)

where μi is the estimated population mean of the ith feature derived through
sampling and σi is the feature’s sample standard deviation.

Each feature’s population mean can be approximated by sampling across each
mini-batch during training using μ =̃ 1

T×M

∑T
k

∑M
i x̄i, where M is the number

of mini-batches per epoch, T is the number of epochs and x̄ is the sample mean
of a batch. For our experiments, we used a mini-batch size of 100 and trained
for 100 epochs.

Finally, we transform the revised input using the layer weights such that
ŷ = f(x̂ · W + b1).

Spinal Structured Multi-output Layer. The Spinal Structured Multi-
Output Layer acts as a structural prior to our output landmarks, which alle-
viates the impact of small datasets while improving the regression accuracy.
As shown in Fig. 1, the layer captures the dependency information between the
spinal landmarks in the form of a Dependency Matrix (DM) S. We define S
as a spinal structured DM for the output landmarks, in which adjacent spinal
landmarks are represented by 1 while distant landmarks are represented by 0.
For instance, since vertebrae T1 and T3 are not directly connected, we assign
their dependency value as S[1, 3] = S[3, 1] = 0 while T1 and T2 are connected so
their dependency was set to S[1, 2] = S[2, 1] = 1 and so on. The spinal structured
multi-output layer f(ai) is defined as:
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f(ai) =

{
ai · Si ai > 0
0 ai ≤ 0

(2)

where ai = xi · Wi + bi, Si is the landmark dependency matrix, Wi the weights,
and bi the bias of landmark coordinate i.

2.2 Training Algorithm

We trained the BoostNet using mini-batch stochastic gradient descent optimiza-
tion with Nesterov momentum of 0.9 and a starting learning rate of 0.01. The
learning rate was adaptively halved based on validation error during training in
order to tune the parameters to a local minimum. We trained the model over
1000 epochs and used Early Stopping to prevent over-fitting. During training,
the loss function is optimized such that L(X,Y, θ) =

∑c
i (Yi − F (X))2+λ

∑k
i |θi|

(where c is the number of classes, Y is the ground truth landmark coordinates,
F (X) is the predicted landmark coordinates, and θ is the set of model para-
meters) is minimized. The model and training algorithm was implemented in
Python 2.7 using the Keras Deep Learning library [13].

2.3 Dataset

Our dataset consists of 481 spinal anterior-posterior x-ray images provided by
local clinicians. All the images used for training and testing show signs of scol-
iosis to varying extent. Since the cervical vertebrae (vertebrae of the neck) are
seldom involved in spinal deformity [14], we selected 17 vertebrae composed
of the thoracic and lumbar spine for spinal shape characterization. Each ver-
tebra is located by four landmarks with respect to four corners thus resulting
in 68 points per spinal image. These landmarks were manually annotated by
the authors based on visual cues. During training, the landmarks were scaled
based on original image dimensions such that the range of values lies between
0–1 depending on where the landmark lies with respect to the original image
(e.g. [0.5, 0.5] is exact centre of the image). We then divided our data according
to 431 training/validation (Trainset) and 50 testing set (Testset) such that no
patient is placed in both sets. We then trained and validated our model on the
Trainset and tested the trained model on the Testset.

Data Augmentation. Since ConvNets like our BoostNet typically require large
amounts of training data, we augmented our data in order teach our network
the various invariance properties in our dataset. The types of augmentation used
include: (a) Adding Gaussian Noise directly to our image in order to simulate
inherent noise and (b) Randomly adjusting the landmark coordinates based on
Gaussian distribution in order to simulate variability during data labelling.
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3 Results

The BoostNet achieved superior performance in landmark detection compared
to other baseline models in our crossvalidation study. Figure 3(a) shows the qual-
itative results of the BoostNet’s effectiveness in spinal landmark detection. The
BoostNet accurately detects all the spinal landmarks despite the variations in
anatomy and image contrast between different patients. The landmarks detected
by the BoostNet appear to follow the general spinal curvature more closely com-
pared to conventional ConvNet. Figure 3(b) demonstrates the effectiveness of
our BoostNet in learning more discriminative features compared to an equiva-
lent ConvNet (without BoostLayer and structured output).

BoostNet Detections

ConvNet Detections

(a) (b)

Fig. 3. Empirical results of our BoostNet algorithm. (a) The landmarks detected by
our BoostNet conforms to the spinal shape more closely compared to the ConvNet
detections. (b) The BoostNet converges to a much lower error rate compared to the
ConvNet.

Evaluation. We use the Mean Squared Error (MSE = E[(f(X) − Y )2]) and
Pearson Correlation Coefficient (ρ = E[f(X)]E[Y ]

σf(X)σY
) between the predicted land-

marks (f(X)) and annotated ground truth (Y ) as the criteria of evaluating the
accuracy of the estimations.

Crossvalidation. Our model achieved a reputable average MSE of 0.00068 in
landmark detection based on 431 images and is demonstrated as a robust method
for automatic AIS assessment. In order to validate our model as an effective way
for landmark estimation, we applied a 5-fold crossvalidation of our model against
the Trainset. Table 1(a) summarizes the average crossvalidation performance of
our model and several baseline models including ConvNet (our model without
BoostLayer and Structured Output Layer), RFR [15], and SVR [12].
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Table 1. The BoostNet achieved lowest error in landmark estimation on 5-fold cross-
validation between various baseline models on (a) Trainset and (b) held out Testset.
The units for MSE is fraction of original image (e.g. 0.010 MSE represents average of
10 pixel error in a 100 × 100 image).

Method (a) Trainset (b) Testset

MSE ρ MSE ρ

SVR [12] 0.0051 ± 0.0018 0.95 ± 0.0037 0.006 0.93

RFR [15] 0.0026 ± 0.0025 0.96 ± 0.0045 0.0052 0.94

ConvNet 0.014 ± 0.0077 0.87 ± 0.062 0.018 0.84

BoostNet 0.00068±0.004 0.97 ± 0.0082 0.0046 0.94

Test Performance. Table 1(b) demonstrates the BoostNet’s effectiveness in
a hypothetical real world setting. After training each of the models listed in
the table on all 431 images from the Trainset, we evaluated each model on the
Testset consisting of 50 unseen images. The BoostNet outperforms the other
baseline methods based on MSE rate while showing superior qualitative results
as seen in Fig. 3(a).

Analysis. The BoostNet achieved the lowest average MSE of 0.0046 and the
highest correlation coefficient of 0.94 on the unseen Testset. This is due to the
contributions of (1) the BoostLayer, which successfully learned robust discrim-
inative feature embeddings as is evident in the higher accuracy in images with
noticeable variability in Fig. 3(a) and (2) the spinal structured multi-output
regression layer, which faithfully captured the structural information of the
spinal landmark coordinates. The success of our method is further exemplified
by the more than 5-fold reduction in MSE as well as more rapid convergence
compared to the conventional ConvNet model Fig. 3(b).

4 Conclusion

We have proposed a novel spinal landmark estimation framework that uses our
newly designed BoostNet architecture to automatically assess scoliosis. The pro-
posed architecture creatively utilizes the feature extraction capabilities of Con-
vNets as well as statistical outlier detection methods to accommodate the often
noisy and poorly standardized X-ray images. Intense experimental results have
demonstrated that our method is a robust and accurate way for detecting spinal
landmarks for AIS assessment. Our framework allows clinicians to measure spinal
curvature more accurately and robustly as well as enabling researchers to develop
predictive tools for measuring prospective risks based on imaging biomarkers for
preventive treatment.
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F.: SVM multiregression for nonlinear channel estimation in multiple-input
multiple-output systems. IEEE Trans. Signal Process. 52(8), 2298–2307 (2004)

8. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Multi-scale deep
networks and regression forests for direct bi-ventricular volume estimation. Med.
Image Anal. 30, 120–129 (2016)

9. Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mrida, A., Snchez, C.I., Mann,
R., den Heeten, A., Karssemeijer, N.: Large scale deep learning for computer aided
detection of mammographic lesions. Med. Image Anal. 35, 303–312 (2017)

10. Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P.,
Rempfler, M., Armbruster, M., Hofmann, F., D’Anastasi, M., Sommer, W.H.,
Ahmadi, S., Menze, B.H.: Automatic liver and lesion segmentation in CT using
cascaded fully convolutional neural networks and 3D conditional random fields.
CoRR abs/1610.02177

11. Acuña, E., Rodriguez, C.: On detection of outliers and their effect in supervised
classification (2004)

12. Sun, H., Zhen, X., Bailey, C., Rasoulinejad, P., Yin, Y., Li, S.: Direct estima-
tion of spinal cobb angles by structured multi-output regression. In: Nietham-
mer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.)
IPMI 2017. LNCS, vol. 10265, pp. 529–540. Springer, Cham (2017). doi:10.1007/
978-3-319-59050-9 42

13. Chollet, F., Keras: (2015). https://github.com/fchollet/keras
14. S.D.S. Group: Radiographic Measurement Manual. Medtronic Sofamor Danek,

USA (2008)
15. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for

efficient anatomy detection and localization in CT studies. In: Menze, B., Langs,
G., Tu, Z., Criminisi, A. (eds.) MCV 2010. LNCS, vol. 6533, pp. 106–117. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18421-5 11

http://dx.doi.org/10.1007/978-3-319-59050-9_42
http://dx.doi.org/10.1007/978-3-319-59050-9_42
https://github.com/fchollet/keras
http://dx.doi.org/10.1007/978-3-642-18421-5_11

	Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet
	1 Introduction
	2 Methodology
	2.1 Novel BoostNet Architecture
	2.2 Training Algorithm
	2.3 Dataset

	3 Results
	4 Conclusion
	References




