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Abstract. While modern imaging technologies such as fMRI have
opened exciting possibilities for studying the brain in vivo, histologi-
cal sections remain the best way to study brain anatomy at the level
of neurons. The procedure for building histological atlas changed little
since 1909 and identifying brain regions is a still a labor intensive process
performed only by experienced neuroanatomists. Existing digital atlases
such as the Allen Reference Atlas are constructed using downsampled
images and can not reliably map low-contrast parts such as brainstem,
which is usually annotated based on high-resolution cellular texture.

We have developed a digital atlas methodology that combines infor-
mation about the 3D organization and the detailed texture of different
structures. Using the methodology we developed an atlas for the mouse
brainstem, a region for which there are currently no good atlases. Our
atlas is “active” in that it can be used to automatically align a histolog-
ical stack to the atlas, thus reducing the work of the neuroanatomist.

1 Introduction

Pioneered by Korbinian Brodmannn in 1909 [3], the classical approach to map-
ping distinct brain regions is based on visually recognizing the cellular textures
(cytoarchitecture) from images of sections of a brain. Several paper atlases have
been created in this way for the brains of different species [10].

The primary methods for expert annotation of brain regions have changed
little since then. It still is a labor intensive process performed only by the most
experienced neuroanatomists. In this paper we propose a machine learning app-
roach for atlas construction that uses automated texture recognition to immitate
human pattern recognition in the annotation task.

There exist several section-based digital atlases that were constructed using
automated registration algorithms. The best known is the Allen Reference Atlas
for mouse [1,4,6], which is based on downsampled images of 50µm per pixel. At
this resolution, registration can be performed by maximizing intensity similarity
using metrics such as correlation and mutual information.
c© Springer International Publishing AG 2017
M. Descoteaux et al. (Eds.): MICCAI 2017, Part I, LNCS 10433, pp. 3–11, 2017.
DOI: 10.1007/978-3-319-66182-7 1



4 Y. Chen et al.

Fig. 1. A demonstration of the limitation of reduced resolution brain images.
The “Original” image was taken at 0.5µm/pixel. “Detector 1, 2, 3” represent the detec-
tion of three brain structures based on texture by the trained classifiers. The “Down-
sampled” image lacks the high-resolution details needed to distinguish the structure.
(Best viewed in color)

The problem is that at this resolution the information on cellular texture is
discarded, which results in poor localization in regions that lack high contrast
boundaries (see Fig. 1). In this work we focus on the mouse brainstem, a part
that has numerous cytoarchitecturally identifiable nuclei but is relatively homo-
geneous at low resolution. To overcome this limitation we have developed the
active atlas, a texture-based atlas that operates on the full-resolution images and
uses texture classifiers to differentiate structures not identifiable at low resolu-
tion. This distinguishes our approach from both the Allen atlas and those based
on MRI or optical volumes [8,9,11,13].

The contributions of this work are:

• Detection of cytoarchitectural textures visible only at high resolution.
• Identification of discrete structures in addition to overall registration.
• Characterization of the positional variability of brain structures.
• Use of iterative refinement to reduce human annotation effort.

The paper is organized as follows. Section 2 describes the procedure for build-
ing an active atlas. Section 3 presents evaluation results that demonstrate the
confidence of registration and accuracy of texture detection.

2 The Active Atlas

The active atlas has two components:

1. Anatomical model: stores for each of 28 structures in the brainstem, the
position statistics and probabilistic shape.

2. Texture classifiers: predict the probability that a given image patch corre-
sponds to a particular structure.

The construction of the atlas is iterative, starting with an initialization step
that required significant human labor, followed by refinement steps which require
little or no expert labor (see Fig. 2). In our case, the initial step was to anno-
tate three stacks of images, which required 30 h of work of an experienced neu-
roanatomist. From these annotated stacks, an initial anatomical model and a set
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Fig. 2. Incremental atlas building workflow

of texture classifiers were constructed. The refinement then uses nine additional
stacks that were not annotated. These stacks were aligned to the initial atlas and
the information from this alignment was used to refine the atlas and to estimate
the variability from brain to brain. Below we provide more details on each step.

2.1 Preprocessing

Our dataset consist of sagittal brain sections from twelve mice of identical strain
and age. The 20µm sections are mounted with a tape-transfer system [12] to
ensure minimal distortion. Each specimen gives roughly 400 sections, stained
with Nissl and scanned at 0.5µm resolution, demonstrating clear cytoarchitec-
tonic features. The sections of each brain are registered via in-plane correlation-
maximizing rigid transforms and stacked to reconstruct a 3D volume. The suf-
ficiency of rigid transforms is proved by the smooth structure boundaries on
virtual coronal sections of reconstructed volumes.

2.2 Estimation of Anatomical Model

Model estimation takes as input a current model (initially null) and a set of
manually or automatically annotated brains. From each annotated brain one can
collect an aligned contour set for each structure (Fig. 3b), which can be converted
into a 3D mesh or volume (Fig. 3c). Based on them we derive the average centroid
position and the average shape of each structure, which constitute a refined
model.

2.2.1 Position Estimation
All brains are co-registered using the method described in Sect. 2.4. Centroid
positions of the same structures in the common space are averaged over all
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brains. Those of paired structures are further adjusted to ensure symmetry of
left and right hemispheres. The covariance matrices of centroid positions are
also computed. They quantify brain variability and are used as structure-specific
constrains for aligning future data.

2.2.2 Shape Estimation
All meshes of the same structure are aligned using Iterative Closest Point algo-
rithm [2] (Fig. 3d) and converted to aligned volumes. The average shape as a
probabilistic volume is then computed by voxel-voting (Fig. 3e).

Combining average shapes with average centroid positions, we obtain a prob-
abilistic atlas volume A where A(p) denotes the 28-dimensional probability vec-
tor at location p.

Fig. 3. (a) Structure boundaries drawn by an expert (b) Aligned contour series in 3D
(c) Facial motor nucleus from both hemispheres of different brains (d) Meshes aligned
(e) Probabilistic average shape (f) Anatomical model with 28 structures

2.3 Learning Texture Classifiers

We train texture classifiers to differentiate a structure from its immediate sur-
rounding region. We found that this gives better results than training against
the entire background. The probable reason is that the anatomical model elimi-
nates most of the uncertainty in gross positions, allowing the texture classifiers
to focus on correcting small-scale error.

Image patches roughly 100µm by 100µm are used as units for classification.
For each structure, a binary logistic regression classifier is trained using a positive
patch set extracted from the interior of structure boundaries and a negative
set extracted from the surrounding region within 50µm from the boundaries.
The feature vectors encoding the patches are the 1024-dimensional output of a
pre-trained deep convolutional neural network (Inception-BN [7]). Although the
network was originally trained for classifying natural images, it proves effective
also for classifying histology textures.

For an unannotated image, these classifiers are applied to patches with 25µm
spacing, resulting in score maps for different structures. All score maps of a same
structure in one stack undergo the previously computed intra-stack alignment to
form a set of 3D score volumes. Each volume represents a probabilistic estimate
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Fig. 4. (a) An example score map for facial motor nucleus (b) Stacking 2D score maps
forms a 3D score volume. (c,d) Score volumes for other structures.

of a particular structure’s position in the reconstructed specimen (Fig. 4). Denote
by S(p) the vector consisting of the scores for different structures at location p.

2.4 Registering Atlas to Specimen

Registration is driven by maximizing the correlation at all voxels between the
score vectors of the specimen volume and the probability vectors of the atlas
volume. A global 3D transform first aligns the atlas roughly with the whole
specimen. Affine transform is used to account for non-vertical cutting angle and
scale change due to dehydration. Separate 3D translations are then applied to
each structure so independent variations can be captured.

Let Ω be the domain of the atlas. For global transform, the objective to
maximize is simply F global(L,b) =

∑
p∈Ω A(p)·S(Lp + b), where L ∈ R

3×3 and
b ∈ R

3 are respectively the linear and translation parts of the affine transform.
For the local transform of structure k, only the voxels inside the structure

and those in a surrounding region within a 50µm radius are concerned. Denote
the two sets by Ω+

k and Ω−
k respectively. The objective is

F local(t) =
∑

p∈Ω+
k

A(p) · S′(p + t) −
∑

p∈Ω−
k

A(p) · S′(p + t) − ηtTCkt , (1)

where t ∈ R
3 is the local translation and S′ is the globally transformed score

volume. The regularization term penalizes deviation from the mean position
defined in the atlas model, where Ck is the inverse of the position covariance
matrix (see Sect. 2.2.1).

Optimization for both cases starts with grid search, followed by gradient
descent where the learning rate is determined using Adagrad [5]. From Fig. 5
one can visually verify the accuracy of registration. This registration effectively
annotates new stacks for the 28 structures.

2.5 Evaluating Registration Confidence

The registration algorithm seeks a local maxima of the objective functions. We
quantify the confidence of the registration by considering the height and the
width of the converged local maxima. The height of the peak is normalized by
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Fig. 5. (a) Reference model globally registered to the specimen. (b) Global registration.
Showing the structure contours on a section. Structures are roughly aligned. (c) Local
registration. Structures are aligned perfectly.

considering a z-test relative to the variance within a sphere around the peak.
The width can be computed for any direction, based on the Hessian of the
z-score around the peak, as the distance away from peak that the z-score drops
to 0. Figure 6 shows examples where different directions have different localiza-
tion confidence.

Fig. 6. (a, b) Confident structures (c) Two unconfident structures (d) Uncertainty
ellipsoids. The elongated structure VLL (yellow) is uncertain only in its axial direction,
while Sp5I (red) is uncertain in rostral-caudal direction because its rostral and caudal
boundaries are ambiguous. (Best viewed in color)

2.6 Updating Atlas

After new brains are co-registered with the atlas, average positions and shapes for
all structures are re-estimated. Additional training patches can also be collected
from the automatic annotations to improve the classifiers.

3 Results

3.1 Confidence of Registrations

The global registrations across all specimens have an average peak z-score of
2.06. The average peak radius is 98µm in the steepest direction and 123µm in
the flattest direction. This suggests that the derived reference model captures the
common anatomy of this population and matches all specimens with little space
for adjustment. Figures 7 and 8 show these for the per-structure registrations.
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Fig. 7. Average z-scores of the local registrations of different structures.

Fig. 8. Average peak width of per-structure registrations of different structures.

The average z-score is 1.79 and the width is between 90µm and 250µm for most
structures. Generally, small structures tend to be registered more confidently
than large ones. This aligns well with intuition if one considers how position
shifts affect the overlap between the structure and the texture map. For a small
structure, a small translation might completely eliminate any overlap, while a
large structure is less sensitive.

3.2 Variability of Structure Position

Variability is captured by the amount of per-structure translation. Figure 9 shows
these for different structures across all specimens. Most structures vary within
100 um of the mean position defined in atlas. Some structures are particularly
variable, which are also the ones whose boundaries are difficult to define. The
same structure in left and right hemispheres generally have similar variability.
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Fig. 9. Variability of centroid positions for different structures. Same color indicates
the same structure in left (L) and right (R) hemispheres.

3.3 Accuracy of Texture Classifiers

Figure 10 shows the test accuracy for the classification of different structures.
They range from 0.7 to 0.9 with a mean of 0.79. Larger structures tend to be
harder to classify possibly due to their texture being more inhomogeneus.

Fig. 10. Accuracy of texture classifiers. (Structures sorted by increasing size)

4 Conclusion

The results demonstrate a form of co-training between the anatomical model and
the texture classifiers. On the one hand, registrations perform well despite the
classifiers for some structures are suboptimal, due to the strong constraint by the
anatomical model. On the other hand, confident detection of the characteristic
textures of many structures allows specimen-specific deviations from the current
anatomical model to be discovered, contributing to more accurate variability.
The synergy between the anatomical information and texural information is the
key feature of the proposed active atlas.
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