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Abstract. Pathological lung segmentation (PLS) is an important, yet
challenging, medical image application due to the wide variability of
pathological lung appearance and shape. Because PLS is often a pre-
requisite for other imaging analytics, methodological simplicity and gen-
erality are key factors in usability. Along those lines, we present a bottom-
up deep-learning based approach that is expressive enough to handle
variations in appearance, while remaining unaffected by any variations
in shape. We incorporate the deeply supervised learning framework, but
enhance it with a simple, yet effective, progressive multi-path scheme,
which more reliably merges outputs from different network stages. The
result is a deep model able to produce finer detailed masks, which we
call progressive holistically-nested networks (P-HNNs). Using extensive
cross-validation, our method is tested on a multi-institutional dataset
comprising 929 CT scans (848 publicly available), of pathological lungs,
reporting mean dice scores of 0.985 and demonstrating significant quali-
tative and quantitative improvements over state-of-the art approaches.

Keywords: Progressive and multi-path convolutional neural networks ·
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1 Introduction

Pulmonary diseases are a major source of death and hospitalization worldwide,
with computed tomography (CT) a leading modality for screening [9]. Thus,
there is great impetus to develop tools for automated detection and diagnosis
from CT. Reliable pathological lung segmentation (PLS) is a cornerstone of this
goal, ensuring that disease detection is not confounded by regions outside the
lung [3,9]. Moreover, PLS is also innately useful, e.g., measuring lung volume.
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To be effective, PLS must handle the wide variability in appearance that abnor-
malities can cause.

Leading PLS approaches often rely on prior 3D shape or anatomical landmark
localization [4,9,15]. This top-down approach can help delineate regions hard to
discriminate based on intensity features alone. However, all shape or localization
variations must be accounted for [3,9]. For instance, the image acting as input
in Fig. 1, which is of a patient with only one lung, could severely challenge a
top-down method that fails to account for this variation.

In contrast, with effective image features, a bottom-up approach, i.e., one
that classifies individual pixels or patches, would, in principle, be able to handle
most cases with challenging shapes seamlessly. Existing fully bottom-up PLS
methods [5,16] show promise, but the authors of both state their methods can
struggle with severe pathologies. Instead, a fruitful direction for PLS is deep
fully convolutional networks (FCNs), which currently represents the state-of-
the-art within computer vision [7,8] and medical imaging analysis [1,10–13] for
segmentation.

Motivated by these developments, we apply a bottom-up FCN approach
to PLS. Given that PLS is often a first step prior to subsequent analysis, we
place a high premium on simplicity and robustness. For this reason, our app-
roach adapts the highly effective, yet straightforward, holistically-nested network
(HNN) deep-learning architecture [17]. To overcome issues with HNN output
ambiguity and the well-known coarsening resolution of FCNs, we introduce a sim-
ple, but surprisingly powerful, multi-path enhancement. Unlike other multi-path
works [1,7,10], that use complex coarse-to-fine pathways, we opt for a progres-
sive constraint on multi-scale pathways that requires no additional convolutional
layers or network parameters. The result is an effective and uncomplicated PLS
solution that we call progressive holistically-nested networks (P-HNNs).

Focusing on infection-, interstitial lung disease (ILD)-, and chronic obstruc-
tive pulmonary disease (COPD)-based pathologies, we test our method on a
multi-institute dataset consisting of 929 challenging thoracic CT scans exhibiting
a variety of pathology patterns, including consolidations, infiltrations, fibroses,
pleural effusions, lung cavities, and emphysema. This is the largest analysis to
date for assessing PLS performance. Importantly, 846 of the CT scans are pub-
licly available, allowing future methods to directly compare performance. We
report quantitative five-fold cross-validated metrics, providing a more realistic
picture of our tool’s generalizability than prior work [4,5,9,15,16]. With this
dataset, we obtain average Dice-scores of 0.985 ± 0.011. We share our tool online
for researchers’ use and testing1.

2 Methods

Figure 1 illustrates the P-HNN model, which progressively refines deeply-
supervised mask outputs. We will first focus on aspects shared with HNNs and
then discuss the progressive multi-path enhancement of P-HNNs.
1 https://adampharrison.gitlab.io/p-hnn/.

https://adampharrison.gitlab.io/p-hnn/
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Fig. 1. P-HNNs rely on deep supervision and multi-path enhancements, denoted by the
green and red arrows, respectively. Blue arrows denote base network components. We
use the VGG-16 network [14], minus the fully-connected layers, as our base network.
HNNs only use blue and green pathways, plus a fused output that is not shown.

To begin, we denote the training data as S = {(Xn, Yn), n = 1 . . . , N}, where
Xn and Yn = {y

(n)
j , j = 1 . . . , |Xn|}, y

(n)
j ∈ {0, 1} represent the input and binary

ground-truth images, respectively. The HNN model, originally called holistically-
nested edge detection [17], is a type of FCN [8], meaning layer types are limited
to convolutional, pooling, and nonlinear activations. HNNs are built off of a
standard convolutional neural network (CNN), e.g., the VGG-16 model [14],
that runs each image through M stages, separated by pooling layers. Unlike
the original HNN, we use batch normalization after each stage. We denote all
network parameters of these standard layers as W.

HNNs popularized the concept of deep supervision to FCNs, which is based
on the intuition that deeper layers have access to both higher levels of abstraction
but coarser levels of scale. As depicted in the green arrows of Fig. 1, the novelty
of HNNs is the use of deep supervision to guide the training by computing side-
outputs, and their loss, at intermediate stages. HNNs also merge predictions
from different network stages, allowing different levels and scales to contribute
to the final result.

More formally, a set of 1 × 1 convolutional weights w = (w(1), . . .w(m))
collapses the last activation maps of each stage into an image, i.e., a

(n,m)
j for stage

m, sample n, and pixel location j. After upsampling to the original resolution,
masks at intermediate stages are estimated using
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Pr(yj = 1|X;W,w(m)) = ŷ
(n,m)
j , (1)

ŷ
(n,m)
j = σ(a(n,m)

j ), (2)

Ŷn,m = {ŷ
(n,m)
j , j = 1 . . . , |Xn|}, (3)

where σ(.) denotes the sigmoid function and ŷ
(n,m)
j and Ŷn,m represent the pixel-

and image-level estimates, respectively. We drop n for the remainder of this
explanation.

The cross-entropy loss at each side-output can then be calculated using

�(m)(W,w(m)) = −β
∑

j∈Y+

log ŷ
(m)
j − (1 − β)

∑

j∈Y−

log
(
1 − ŷ

(m)
j

)
, (4)

where β = mean (|Y−|/|Y |) represents a constant and global class-balancing
weight, which we observe provides better PLS results than Xie et al.’s [17] orig-
inal image-specific class-balancing scheme. We also prefer to use a sample esti-
mate of the population balance, since we train on an entire training set, and not
just on individual images. Not shown in Fig. 1, HNNs also output a final fused
probability map based on a learned weighted sum of {Ŷ1, ...Ŷm}.

While highly effective, HNNs suffer from two issues. The first is inconsistency
of the fused output, where certain side outputs on their own can sometimes
provide superior results than the final fused output. This is reflected by Xie
et al.’s use of different outputs depending on the dataset [17]. Ideally, there
should be an obvious, and optimal, output to use.

The second issue is one shared by many early FCN solutions—that while
deeper stages have greater levels of abstraction, their activations are also coarser
in spatial resolution, hampering the capture of fine-level details. This issue is
often addressed using multi-path connections [1,7,10] that typically use com-
plex coarse-to-fine pathways to combine activations from earlier stages with later
ones, e.g., the ubiquitous “U”-like structure [1,7,10]. Multiple convolutional lay-
ers [1,10] or even sub-networks [7] are used to combine activations. Of these,
only Merkow et al. incorporate both multi-path connections and deep supervi-
sion [10], but their solution relies on a three-stage training process, in addition
to the extra coarse-to-fine pathway.

While these solutions are effective, they require additional parameters
totalling nearly the same number as [1,10], or more than [7], the original FCN
path. Following our philosophy of favoring simplicity, we instead propose a more
straightforward progressive multi-path connection. As illustrated in Fig. 1, we
combine activations from the current and previous stages using simple addition
prior to applying the sigmoid function. Formally, our model alters the HNN
formulation by modifying (3) to

ŷ
(m)
j = σ(a(m)

j + a
(m−1)
j ) ∀m > 1. (5)

As activations can exhibit negative or positive values, (5) forces side outputs
to improve upon previous outputs, by adding to or subtracting from the corre-
sponding activation. For this reason, we call the model progressive holistically-
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nested networks (P-HNNs). This progressive enhancement allows P-HNNs to
jettison the fused output, avoiding the inconsistent output of HNNs. Like other
multi-path solutions, gradient backpropagation cascades through multiple con-
nections. Unlike other solutions, this enhanced new capability is realized with
minimal complexity, requiring fewer parameters than standard HNNs.

Implementation Details: We train and test our method on 2D axial CT slices,
using three windows of [−1000, 200], [−160, 240], and [−1000,−775] Hounsfield
units to rescale each slice to a 3-channel 8-bit image. While 3D FCNs have been
reported [1,10], these rely on numerous sliding boxes, each with a limited field-
of-view. Because lung regions occupy significant portions of a CT scan, large
spatial contexts may be needed for accurate segmentation. In addition, due to
memory and computational constraints, 3D CNNs are often less deep and wide
than 2D variants. Moreover, recent work has demonstrated that 2D CT slices are
expressive enough for segmenting complex organs [12,13,18]. Finally, inter-slice
thicknesses of low-dose screening CTs can range from 5 to 10 mm. The associated
spatial discontinuities could severely challenge 3D-based methods. In contrast,
2D P-HNNs can work well for any inter-slice thickness. Thus, we opt for a 2D
approach, which remains simple and requires no reduction in CNN field-of-view,
depth, and width.

3 Experiments

We measure PLS performance using multi-institutional data from the Lung Tis-
sue Research Consortium (LTRC) ILD/COPD dataset [6], the University Hospi-
tals of Geneva (UHG) ILD dataset [2], and a subset of an infection-based dataset
from the National Institutes of Health (NIH) Clinical Center [9]2. LTRC masks
were initially generated using an automatic method, followed by visual inspec-
tion and manual correction if necessary [6]. For all datasets, we also visually
inspect and exclude scan/mask pairs with annotation errors. This results in 773,
73, and 83 CT scans from the LTRC, UHG and NIH datasets, respectively.

Using five-fold cross-validation (CV), separated at the patient and dataset
level, we train on every tenth slice of the LTRC dataset and all slices of the other
two. We fine-tuned from an ImageNet pre-trained VGG-16 model [14], halting
training after roughly 13.5 epochs. Validation subsets determined probability-
map thresholds. Post-processing simply fills any 3D holes and keeps the largest
two connected components if the volume ratio between the two is less than 5,
otherwise only the largest is kept. Depending on the number of slices, our system
takes roughly 10−30 s to segment one volume using a Tesla K40.

Table 1(a) depicts the mean 3D Dice scores (DSs) and average surface dis-
tances (ASDs) of HNN versus P-HNN. As can be seen, while HNN posts very
good DSs and ASDs of 0.978 and 1.063mm, respectively, P-HNN is able to
outperform it, posting even better values (p < 0.001 Wilcox signed-rank test) of

2 Due to a data-archiving issue, Mansoor et al. were only able to share 88 CT scans,
and, of those, only 47 PLS masks produced by their method [9].
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(a) (b) (c) (d) (e)

Fig. 2. Example masks of HNN and P-HNN, depicted in red and green, respectively.
Ground truth masks are rendered in cyan. (a) HNN struggles to segment the pulmonary
bullae, whereas P-HNN captures it. (b) Part of the pleural effusion is erroneously
included by HNN, while left out by P-HNN. (c) P-HNN better captures finer details
in the lung mask. (d) In this failure case, both HNN and P-HNN erroneously include
the right main bronchus; however, P-HNN better captures infiltrate regions. (e) This
erroneous ground-truth example, which was filtered out, fails to include a portion of
the right lung. Both HNN and P-HNN capture the region, but P-HNN does a much
better job of segmenting the rest of the lung.

(a) (b) (c) (d) (e)

Fig. 3. Example masks from Mansoor et al. [9] and P-HNN, depicted in red and
green, respectively. Ground truth masks are rendered in cyan. (a) P-HNN success-
fully segments a lung that Mansoor et al.’s method is unable to. (b) and (c) Mansoor
et al.’s method leaks into the esophagus and intestine, respectively. (d) Unlike P-HNN,
Mansoor et al.’s method is unable to fully capture lung field. (e) P-HNN better captures
regions with ground-glass opacities.

0.985 and 0.762 mm, respectively. Figure 4(a) depicts cumulative DS histograms,
visually illustrating the distribution of improvements in segmentation perfor-
mance. Figure 2 depicts selected qualitative examples, demonstrating the effect
of these quantitative improvements in PLS-mask visual quality and usefulness.

Using 47 volumes from the NIH dataset, we also test against Mansoor et al.’s
non deep-learning method [9], which produced state-of-the-art performance on
challenging and varied infectious disease CT scans. As Table 1(b) and Fig. 4(b)
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(a) (b)

Fig. 4. Cumulative histograms of DSs of P-HNN vs. competitors. (a) depict results
against standard HNN on the entire test set while (b) depicts results against Mansoor
et al.’s PLS tool [9] on a subset of 47 cases with infectious diseases. Differences in score
distributions were statistically significant (p < 0.001) for both (a) and (b) using the
Wilcox signed-rank test.

Table 1. Mean DSs and ASDs and their standard deviation. (a) depicts standard
HNN and P-HNN scores on the entire test dataset. (b) depicts P-HNN scores against
Mansoor et al.’s [9] PLS method on 47 volumes from the NIH dataset.

Dataset Model DS ASD (mm)

LTRC HNN 0.980 ± 0.006 1.045 ± 0.365
P-HNN 0.987 ± 0.005 0.749 ± 0.364

UHG HNN 0.971 ± 0.010 0.527 ± 0.287
P-HNN 0.979 ± 0.010 0.361 ± 0.319

NIH HNN 0.962 ± 0.032 1.695 ± 1.239
P-HNN 0.969 ± 0.034 1.241 ± 1.191

Total HNN 0.978 ± 0.013 1.063 ± 0.559
P-HNN 0.985 ± 0.011 0.762 ± 0.527

Model DS ASD (mm)

Mansoor et
al. [9]

0.966 ± 0.036 1.216 ± 1.491

P-HNN 0.980 ± 0.009 0.827 ± 0.436

(a) (b)

illustrate, P-HNN significantly (p < 0.001) outperforms this previous state-of-
the-art approach, producing much higher DSs. ASD scores were also better, but
statistical significance was not achieved for this metric. Lastly, as shown in Fig. 3,
P-HNN generates PLS masks with considerable qualitative improvements.

4 Conclusion

This work introduced P-HNNs, an FCN-based [8] deep-learning tool for PLS
that combines the powerful concepts of deep supervision and multi-path con-
nections. We address the well-known FCN coarsening resolution problem using
a progressive multi-path enhancement, which, unlike other approaches [1,7,10],
requires no extra parameters over the base FCN. When tested on 929 thoracic CT
scans exhibiting infection-, ILD-, and COPD-based pathologies, the largest eval-
uation of PLS to-date, P-HNN consistently outperforms (p < 0.001) standard
HNN, producing mean DSs of 0.985 ± 0.011. P-HNN also provides significantly
improved PLS masks compared against a state-of-the-art tool [9]. Thus, P-HNNs
offer a simple, yet highly effective, means to produce robust PLS masks. The P-
HNN model can also be applied to pathological lungs with other morbidities and
could provide a straightforward and powerful tool for other segmentation tasks.
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