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Abstract. Mammogram classification is directly related to computer-
aided diagnosis of breast cancer. Traditional methods rely on regions of
interest (ROIs) which require great efforts to annotate. Inspired by the
success of using deep convolutional features for natural image analysis
and multi-instance learning (MIL) for labeling a set of instances/patches,
we propose end-to-end trained deep multi-instance networks for mass
classification based on whole mammogram without the aforemen-
tioned ROIs. We explore three different schemes to construct deep
multi-instance networks for whole mammogram classification. Exper-
imental results on the INbreast dataset demonstrate the robustness
of proposed networks compared to previous work using segmenta-
tion and detection annotations. (Code: https://github.com/wentaozhu/
deep-mil-for-whole-mammogram-classification.git).
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1 Introduction

According to the American Cancer Society, breast cancer is the most frequently
diagnosed solid cancer and the second leading cause of cancer death among U.S.
women [1]. Mammogram screening has been demonstrated to be an effective way
for early detection and diagnosis, which can significantly decrease breast cancer
mortality [15]. Traditional mammogram classification requires extra annotations
such as bounding box for detection or mask ground truth for segmentation
[5,11,17]. Other work have employed different deep networks to detect ROIs and
obtain mass boundaries in different stages [6]. However, these methods require
hand-crafted features to complement the system [12], and training data to be
annotated with bounding boxes and segmentation ground truths which require
expert domain knowledge and costly effort to obtain. In addition, multi-stage
training cannot fully explore the power of deep networks.

Due to the high cost of annotation, we intend to perform classification based
on a raw whole mammogram. Each patch of a mammogram can be treated as
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an instance and a whole mammogram is treated as a bag of instances. The
whole mammogram classification problem can then be thought of as a standard
MIL problem. Due to the great representation power of deep features [9,19–21],
combining MIL with deep neural networks is an emerging topic. Yan et al. used
a deep MIL to find discriminative patches for body part recognition [18]. Patch
based CNN added a new layer after the last layer of deep MIL to learn the
fusion model for multi-instance predictions [10]. Shen et al. employed two stage
training to learn the deep multi-instance networks for pre-detected lung nodule
classification [16]. The above approaches used max pooling to model the general
multi-instance assumption which only considers the patch of max probability. In
this paper, more effective task-related deep multi-instance models with end-to-
end training are explored for whole mammogram classification. We investigate
three different schemes, i.e., max pooling, label assignment, and sparsity, to
perform deep MIL for the whole mammogram classification task.

The framework for our proposed end-to-end trained deep MIL for mammo-
gram classification is shown in Fig. 1. To fully explore the power of deep MIL,
we convert the traditional MIL assumption into a label assignment problem. As
a mass typically composes only 2% of a whole mammogram (see Fig. 2), we fur-
ther propose sparse deep MIL. The proposed deep multi-instance networks are
shown to provide robust performance for whole mammogram classification on
the INbreast dataset [14].

Fig. 1. The framework of whole mammogram classification. First, we use Otsu’s seg-
mentation to remove the background and resize the mammogram to 227×227. Second,
the deep MIL accepts the resized mammogram as input to the convolutional layers.
Here we use the convolutional layers in AlexNet [13]. Third, logistic regression with
weight sharing over different patches is employed for the malignant probability of each
position from the convolutional neural network (CNN) feature maps of high channel
dimensions. Then the responses of the instances/patches are ranked. Lastly, the learn-
ing loss is calculated using max pooling loss, label assignment, or sparsity loss for the
three different schemes.
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Fig. 2. Histograms of mass width (a) and height (b), mammogram width (c) and
height (d). Compared to the size of whole mammogram (1, 474 × 3, 086 on average
after cropping), the mass of average size (329 × 325) is tiny, and takes about 2% of a
whole mammogram.

2 Deep MIL for Whole Mammogram Mass Classification

Unlike other deep multi-instance networks [10,18], we use a CNN to efficiently
obtain features of all patches (instances) at the same time. Given an image I,
we obtain a much smaller feature map F of multi-channels Nc after multiple
convolutional layers and max pooling layers. The (F )i,j,: represents deep CNN
features for a patch Qi,j in I, where i, j represents the pixel row and column
index respectively, and : denotes the channel dimension.

The goal of our work is to predict whether a whole mammogram contains a
malignant mass (BI-RADS ∈ {4, 5, 6} as positive) or not, which is a standard
binary classification problem. We add a logistic regression with weights shared
across all the pixel positions following F , and an element-wise sigmoid activation
function is applied to the output. To clarify it, the malignant probability of
feature space’s pixel (i, j) is

ri,j = sigmoid(a · Fi,j,: + b), (1)

where a is the weights in logistic regression, b is the bias, and · is the inner
product of the two vectors a and Fi,j,:. The a and b are shared for different
pixel positions i, j. We can combine ri,j into a matrix r = (ri,j) of range [0, 1]
denoting the probabilities of patches being malignant masses. The r can be
flattened into a one-dimensional vector as r = (r1, r2, ..., rm) corresponding to
flattened patches (Q1,Q2, ...,Qm), where m is the number of patches.

2.1 Max Pooling-Based Multi-instance Learning

The general multi-instance assumption is that if there exists an instance that is
positive, the bag is positive [7]. The bag is negative if and only if all instances
are negative. For whole mammogram classification, the equivalent scenario is
that if there exists a malignant mass, the mammogram I should be classified
as positive. Likewise, negative mammogram I should not have any malignant
masses. If we treat each patch Qi of I as an instance, the whole mammogram
classification is a standard multi-instance task.
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For negative mammograms, we expect all the ri to be close to 0. For positive
mammograms, at least one ri should be close to 1. Thus, it is natural to use the
maximum component of r as the malignant probability of the mammogram I

p(y = 1|I,θ) = max{r1, r2, ..., rm}, (2)

where θ is the weights in deep networks.
If we sort r first in descending order as illustrated in Fig. 1, the malignant

probability of the whole mammogram I is the first element of ranked r as

{r′
1, r

′
2, ..., r

′
m} = sort({r1, r2, ..., rm}),

p(y = 1|I,θ) = r′
1, and p(y = 0|I,θ) = 1 − r′

1,
(3)

where r′ = (r′
1, r

′
2, ..., r

′
m) is descending ranked r. The cross entropy-based

cost function can be defined as

Lmaxpooling = − 1
N

N∑

n=1

log(p(yn|In,θ)) +
λ

2
‖θ‖2 (4)

where N is the total number of mammograms, yn ∈ {0, 1} is the true label of
malignancy for mammogram In, and λ is the regularizer that controls model
complexity.

One disadvantage of max pooling-based MIL is that it only considers the
patch Q′

1 (patch of the max malignant probability), and does not exploit infor-
mation from other patches. A more powerful framework should add task-related
priori, such as sparsity of mass in whole mammogram, into the general multi-
instance assumption and explore more patches for training.

2.2 Label Assignment-Based Multi-instance Learning

For the conventional classification tasks, we assign a label to each data point.
In the MIL scheme, if we consider each instance (patch) Qi as a data point for
classification, we can convert the multi-instance learning problem into a label
assignment problem.

After we rank the malignant probabilities r = (r1, r2, ..., rm) for all the
instances (patches) in a whole mammogram I using the first equation in Eq. 3,
the first few r′

i should be consistent with the label of whole mammogram as
previously mentioned, while the remaining patches (instances) should be nega-
tive. Instead of adopting the general MIL assumption that only considers the
Q′

1 (patch of malignant probability r′
1), we assume that (1) patches of the first

k largest malignant probabilities {r′
1, r

′
2, ..., r

′
k} should be assigned with the

same class label as that of whole mammogram, and (2) the rest patches should
be labeled as negative in the label assignment-based MIL.

After the ranking/sorting layer using the first equation in Eq. 3, we can obtain
the malignant probability for each patch

p(y = 1|Q′
i,θ) = r′

i, and p(y = 0|Q′
i,θ) = 1 − r′

i. (5)
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The cross entropy loss function of the label assignment-based MIL can be
defined

Llabelassign. = − 1
mN

N∑

n=1

( k∑

j=1

log(p(yn|Q′
j ,θ))+

m∑

j=k+1

log(p(y = 0|Q′
j ,θ))

)
+

λ

2
‖θ‖2.

(6)

One advantage of the label assignment-based MIL is that it explores all the
patches to train the model. Essentially it acts a kind of data augmentation which
is an effective technique to train deep networks when the training data is scarce.
From the sparsity perspective, the optimization problem of label assignment-
based MIL is exactly a k-sparse problem for the positive data points, where we
expect {r′

1, r
′
2, ..., r

′
k} being 1 and {r′

k+1, r
′
k+2, ..., r

′
m} being 0. The disad-

vantage of label assignment-based MIL is that it is hard to estimate the hyper-
parameter k. Thus, a relaxed assumption for the MIL or an adaptive way to
estimate the hyper-parameter k is preferred.

2.3 Sparse Multi-instance Learning

From the mass distribution, the mass typically comprises about 2% of the whole
mammogram on average (Fig. 2), which means the mass region is quite sparse
in the whole mammogram. It is straightforward to convert the mass sparsity
to the malignant mass sparsity, which implies that {r′

1, r
′
2, ..., r

′
m} is sparse in

the whole mammogram classification problem. The sparsity constraint means
we expect the malignant probability of part patches r′

i being 0 or close to 0,
which is equivalent to the second assumption in the label assignment-based MIL.
Analogously, we expect r′

1 to be indicative of the true label of mammogram I.
After the above discussion, the loss function of sparse MIL problem can be

defined

Lsparse =
1
N

N∑

n=1

( − log(p(yn|In,θ)) + μ‖r′
n‖1

)
+

λ

2
‖θ‖2, (7)

where p(yn|In,θ) can be calculated in Eq. 3, rn = (r′
1, r

′
2, ..., r

′
m) for mammo-

gram In, ‖ · ‖1 denotes the L1 norm, μ is the sparsity factor, which is a trade-off
between the sparsity assumption and the importance of patch Q′

1.
From the discussion of label assignment-based MIL, this learning is a kind of

exact k-sparse problem which can be converted to L1 constrain. One advantage
of sparse MIL over label assignment-based MIL is that it does not require assign
label for each patch which is hard to do for patches where probabilities are not too
large or small. The sparse MIL considers the overall statistical property of r.

Another advantage of sparse MIL is that, it has different weights for general
MIL assumption (the first part loss) and label distribution within mammogram
(the second part loss), which can be considered as a trade-off between max
pooling-based MIL (slack assumption) and label assignment-based MIL (hard
assumption).
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3 Experiments

We validate the proposed models on the most frequently used mammographic
mass classification dataset, INbreast dataset [14], as the mammograms in other
datasets, such as DDSM dataset [4], are of low quality. The INbreast dataset
contains 410 mammograms of which 100 containing malignant masses. These
100 mammograms with malignant masses are defined as positive. For fair com-
parison, we also use 5-fold cross validation to evaluate model performance as [6].
For each testing fold, we use three folds for training, and one fold for validation
to tune hyper-parameters. The performance is reported as the average of five
testing results obtained from cross-validation.

We employ techniques to augment our data. For each training epoch, we ran-
domly flip the mammograms horizontally, shift within 0.1 proportion of mam-
mograms horizontally and vertically, rotate within 45 degree, and set 50 × 50
square box as 0. In experiments, the data augmentation is essential for us to
train the deep networks.

For the CNN network structure, we use AlexNet and remove the fully con-
nected layers [13]. Through CNN, the mammogram of size 227 × 227 becomes
256 6× 6 feature maps. Then we use steps in Sect. 2 to do MIL. Here we employ
weights pretrained on the ImageNet due to the scarce of data. We use Adam
optimization with learning rate 5 × 10−5 for training models [2]. The λ for max
pooling-based and label assignment-based MIL are 1 × 10−5. The λ and μ for
sparse MIL are 5×10−6 and 1×10−5 respectively. For the label assignment-based
MIL, we select k from {1, 2, 4, 6, 8} based on the validation set.

We firstly compare our methods to previous models validated on DDSM
dataset and INbreast dataset in Table 1. Previous hand-crafted feature-based
methods require manually annotated detection bounding box or segmentation
ground truth even in test denoting as manual [3,8,17]. The feat. denotes requiring
hand-crafted features. Pretrained CNN uses two CNNs to detect the mass region
and segment the mass, followed by a third CNN to do mass classification on
the detected ROI region, which requires hand-crafted features to pretrain the

Table 1. Accuracy comparisons of the proposed deep MILs and related methods on
test sets.

Methodology Dataset Set-up Accu AUC

Ball et al. [3] DDSM Manual+feat 0.87 N/A

Varela et al. [17] DDSM Manual+feat 0.81 N/A

Domingues et al. [8] INbr Manual+feat 0.89 N/A

Pretrained CNN [6] INbr Auto.+feat 0.84±0.04 0.69±0.10

Pretrained CNN+Random Forest [6] INbr Auto.+feat 0.91± 0.02 0.76±0.23

AlexNet INbr Auto 0.81±0.02 0.79±0.03

AlexNet+Max Pooling MIL INbr Auto 0.85±0.03 0.83±0.05

AlexNet+Label Assign. MIL INbr Auto 0.86±0.02 0.84±0.04

AlexNet+Sparse MIL INbr Auto 0.90±0.02 0.89 ± 0.04
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network and needs multi-stages training [6]. Pretrained CNN+Random Forest
further employs random forest and obtained 7% improvement. These methods
are either manually or need hand-crafted features or multi-stages training, while
our methods are totally automated, do not require hand-crafted features or extra
annotations even on training set, and can be trained in an end-to-end manner.

The max pooling-based deep MIL obtains better performance than the pre-
trained CNN using 3 different CNNs and detection/segmentation annotation
in the training set. This shows the superiority of our end-to-end trained deep
MIL for whole mammogram classification. According to the accuracy metric, the
sparse deep MIL is better than the label assignment-based MIL, which is better
than the max pooling-based MIL. This result is consistent with previous discus-
sion that the sparsity assumption benefited from not having hard constraints of
the label assignment assumption, which employs all the patches and is more effi-
cient than max pooling assumption. Our sparse deep MIL achieves competitive
accuracy to random forest-based pretrained CNN, while much higher AUC than

(a) (b) (c) (d)

Fig. 3. The visualization of predicted malignant probabilities for instances/patches in
four resized mammograms. The first row is the resized mammogram. The red rectangle
boxes are mass regions from the annotations on the dataset. The color images from
the second row to the last row are the predicted malignant probability from logistic
regression layer for (a) to (d) respectively, which are the malignant probabilities of
patches/instances. Max pooling-based, label assignment-based, sparse deep MIL are in
the second row, third row, fourth row respectively.
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previous work, which shows our method is more robust. The main reasons for
the robust results using our models are as follows. Firstly, data augmentation
is an important technique to increase scarce training datasets and proves useful
here. Secondly, the transfer learning that employs the pretrained weights from
ImageNet is effective for the INBreast dataset. Thirdly, our models fully explore
all the patches to train our deep networks thereby eliminating any possibility of
overlooking malignant patches by only considering a subset of patches. This is a
distinct advantage over previous networks that employ several stages consisting
of detection and segmentation.

To further understand our deep MIL, we visualize the responses of logistic
regression layer for four mammograms on test set, which represents the malig-
nant probability of each patch, in Fig. 3. We can see the deep MIL learns not
only the prediction of whole mammogram, but also the prediction of malignant
patches within the whole mammogram. Our models are able to learn the mass
region of the whole mammogram without any explicit bounding box or segmen-
tation ground truth annotation of training data. The max pooling-based deep
multi-instance network misses some malignant patches in (a), (c) and (d). The
possible reason is that it only considers the patch of max malignant probability in
training and the model is not well learned for all patches. The label assignment-
based deep MIL mis-classifies some patches in (d). The possible reason is that
the model sets a constant k for all the mammograms, which causes some mis-
classifications for small masses. One of the potential applications of our work
is that these deep MIL networks could be used to do weak mass annotation
automatically, which provides evidence for the diagnosis.

4 Conclusion

In this paper, we propose end-to-end trained deep MIL for whole mammo-
gram classification. Different from previous work using segmentation or detec-
tion annotations, we conduct mass classification based on whole mammogram
directly. We convert the general MIL assumption to label assignment problem
after ranking. Due to the sparsity of masses, sparse MIL is used for whole mam-
mogram classification. Experimental results demonstrate more robust perfor-
mance than previous work even without detection or segmentation annotation
in the training.

In future work, we plan to extend the current work by: (1) incorporating
multi-scale modeling such as spatial pyramid to further improve whole mam-
mogram classification, (2) employing the deep MIL to do annotation or pro-
vide potential malignant patches to assist diagnoses, and (3) applying to large
datasets and expected to have improvement if the big dataset is available.
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