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Abstract. Semantic segmentation is a fundamental problem in biomed-
ical image analysis. In biomedical practice, it is often the case that only
limited annotated data are available for model training. Unannotated
images, on the other hand, are easier to acquire. How to utilize unan-
notated images for training effective segmentation models is an impor-
tant issue. In this paper, we propose a new deep adversarial network
(DAN) model for biomedical image segmentation, aiming to attain con-
sistently good segmentation results on both annotated and unannotated
images. Our model consists of two networks: (1) a segmentation network
(SN) to conduct segmentation; (2) an evaluation network (EN) to assess
segmentation quality. During training, EN is encouraged to distinguish
between segmentation results of unannotated images and annotated ones
(by giving them different scores), while SN is encouraged to produce
segmentation results of unannotated images such that EN cannot distin-
guish these from the annotated ones. Through an iterative adversarial
training process, because EN is constantly “criticizing” the segmenta-
tion results of unannotated images, SN can be trained to produce more
and more accurate segmentation for unannotated and unseen samples.
Experiments show that our proposed DAN model is effective in utilizing
unannotated image data to obtain considerably better segmentation.

1 Introduction

Deep learning models [1,10] have achieved many successes in biomedical image
segmentation. To obtain good segmentation performance, a decent amount
of (pixel-wise) annotated images is often required to train such models. Due
to high costs of pixel-wise annotation and large image sizes in applications
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(e.g., 3D image stacks with hundreds of slices, 2D whole-tissue images with
hundreds of millions of pixels), it is common that annotation for only a small
subset of all image data is available. Thus, when training a deep learning model
using annotated images, one may also have a considerable number of unanno-
tated images at hand. Such unannotated images are often from the original data
distribution (containing useful information) and are free to use. Hence, a nat-
ural question is: How could we utilize unannotated images to benefit and improve
segmentation?

Some recent attempts [5,7] were made to utilize weakly annotated images in
natural scene image segmentation. Bounding box (to bound an object of inter-
est) and image level label (to show what objects appear in the images) are two
common weak annotation methods for their settings. However, in biomedical
image segmentation, there can be numerously more object instances (e.g., cells)
than in natural scene images, and drawing bounding box still requires a great
deal of effort. Also, there can be much fewer object classes in biomedical images
than in natural scene images, and image level labels may be less useful in bio-
medical settings since almost all the images may contain all the object classes for
segmentation (e.g., cells, glands). Thus, it is important to exploit unannotated
images as well as annotated images for effective biomedical image segmentation.

Using unannotated data together with annotated data to train a learning
model is not new. In [14], it combined an auxiliary unsupervised learning task
to help the supervised training of a neural network; the intermediate layers
are shared among both the supervised and unsupervised learning tasks. Conse-
quently, its network can be trained for better generality. Using this approach,
different choices for unsupervised learning tasks were proposed (e.g., reconstruct-
ing the input of the model through an encoding and decoding stage [8], a classi-
fication task for transforming the input to specially designed class labels [3]). As
pointed out in [9], a key drawback of this approach is that, since unsupervised
and supervised learning tasks have different goals, the unsupervised learning part
may not always be helpful to the supervised learning part via the shared model
parameters. To alleviate this problem, Ladder networks (with skip connections)
were used to reduce the burden put on the encoding layers by the unsupervised
learning part [9]. Despite this, the inherent problem of having different goals for
supervised and unsupervised learning tasks was still not well resolved.

It would be ideal to use both annotated and unannotated data to serve
the same goal (e.g., using both for training a segmentation network, as in our
problem). A major difficulty is, since no ground truth is given for unannotated
data, back-propagation errors after the forward pass cannot be directly computed
for unannotated data. Our key idea is to train a deep neural network to compute
approximate errors for unannotated data, using adversarial training [4,11].

In this paper, we propose a new adversarial training approach, i.e., a deep
adversarial network (DAN) model, for producing consistently good segmentation
for both annotated and unannotated images. Our DAN model consists of two
networks: (1) a segmentation network (SN) to conduct segmentation; (2) an eval-
uation network (EN) to assess the quality of SN’s segmentation. During training,
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EN is encouraged to distinguish between segmentation results of unannotated
and annotated samples by giving them different scores, while SN is encouraged to
produce segmentation results of unannotated images such that EN cannot distin-
guish these from the annotated ones. Through an iterative adversarial training
process, because EN is constantly “criticizing” the segmentation of unannotated
images using its learned feature mappings (describing what good segmentation
looks like), SN can be trained to produce more and more accurate segmentation
for unannotated and unseen samples. Our method is inspired by [4,6]. Different
from [6], our adversarial networks are designed to utilize unannotated images.

Experiments using the 2015 MICCAI Gland Challenge dataset [13] and a 3D
fungus segmentation dataset show that our DAN model is effective in utilizing
unannotated image data to obtain segmentation of considerably better quality.

2 Method

This section describes our adversarial training model utilizing unannotated data,
and discusses a key issue: How to construct the input for the evaluation network.

2.1 Adversarial Networks Using Unannotated Data

There are two networks in our DAN model: a segmentation network SN and an
evaluation network EN. SN takes an input image I and produces segmentation
probability maps for I. EN takes the segmentation probability maps and the
corresponding input image I, and determines a score indicating the quality of
the segmentation: 1 (for good quality) or 0 (for not good quality).

During the model training, EN is encouraged to give high scores (1) for
segmentation of annotated images and low scores (0) for segmentation of unan-
notated images. SN is trained using annotated images and is also encouraged to
produce segmentation results of unannotated images such that EN might give
them high scores. Below we describe the details of our adversarial training model.

Given M annotated training images Xm, their corresponding segmentation
ground truth Ym, and N unannotated images Un, we define the loss function as

�(θS ,θE)=
M∑

m=1

�mce(S(Xm),Ym)−λ[
M∑

m=1

�bce(E(S(Xm),Xm), 1)+
N∑

n=1

�bce(E(S(Un),Un), 0)]

where θS and θE are the parameters of the two networks SN and EN respec-
tively, �mce is the multi-class cross-entropy loss, and �bce is the binary-class
cross-entropy loss. The first term in the loss function is for the supervised train-
ing of SN using annotated images, and the second term forms the adversarial
training part. The training process minimizes part of the loss with respect to the
parameters θS of SN, while maximizing the loss with respect to the parameters
θE of EN. More specifically, training EN aims to minimize
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Fig. 1. Illustrating the processes in one iteration of our model training (with the mini-
batch size = 4). First, SN is trained using annotated images and their corresponding
ground truth images; then, EN is trained to give different scores to segmentations
of annotated images and unannotated images; finally, SN is trained to improve the
segmentation quality of unannotated images (based on EN’s learned feature mappings).

λ[
M∑

m=1

�bce(E(S(Xm),Xm), 1) +
N∑

n=1

�bce(E(S(Un), Un), 0)]

with respect to the parameters θE of EN, and training SN aims to minimize

M∑

m=1

�mce(S(Xm), Ym) − λ(
N∑

n=1

�bce(E(S(Un), Un), 0))

with respect to theparameters θS of SN.As in [4],whenupdatingSN,we replace the
term −λ(

∑N
n=1 �bce(E(S(Un), Un), 0)) by λ(

∑N
n=1 �bce(E(S(Un), Un), 1)). A stan-

dard stochastic gradient descent method can be applied to optimize this loss func-
tion. Since the adversarial training part may be less useful prior to the stage when
SN can produce reasonably good segmentation for the annotated training images,
we set λ = 0.1 initially, and set λ = 1 after 30000 iterations. The value of lambda
should be small (< 1) before SN can produce decent segmentation results. Too
large lambda (e.g. λ = 10) may cause the training to fail to train a reasonable SN.
Figure 1 shows our training process. Figure 2 gives more details of the SN and EN
architectures. Our SN largely follows the architecture of DCAN [2], but with no
split up-sampling (deconvolution) paths used. Our EN follows the main architec-
ture of the classic VGG16 network [12].



412 Y. Zhang et al.

2.2 Constructing the Input of the Evaluation Network

The input information provided to EN is crucial to the whole adversarial train-
ing system. A simple form for the input of EN could be just the segmentation
probability maps, which allow EN to examine useful morphological properties of
the segmented biomedical objects and help assess segmentation quality.

Fig. 2. Architectural details of our segmentation network (SN) and evaluation network
(EN).

A more effective way to construct input for EN is to combine segmentation
probability maps and the corresponding input image. This allows EN to explore
the correlations between the segmentation and input image for evaluating the
segmentation quality. However, giving the input image to EN could potentially be
problematic since EN might come up with a way to give an evaluation score only
based on the appearance of the input image without examining the segmentation
probability maps. This would make the whole adversarial training useless with
respect to improving the segmentation performance for unannotated images.
Below we discuss two main methods for combining the segmentation maps and
the input image to construct the input for EN.

Concatenation. Two possible ways to concatenate the segmentation probabil-
ity map and input image are: directly concatenate them, or transform them to
two feature maps and concatenate the feature maps. With either method, since
EN has separate model parameters for handling information from the segmen-
tation maps and from the input image, it is possible that only information from
the raw image input is utilized for EN’s decision making.

Element-wise multiplication. A good aspect of element-wise multiplication
is that it can “force” the segmentation probability maps and input image to mix
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at the very initial stage. Thus, all the model parameters are jointly trained using
information from both the segmentation and input image. This ensures that the
segmentation probability maps are used in EN’s decision making and in the
entire adversarial training process. However, since element-wise multiplication
essentially performs a pixel-wise gate operation (using the input image) on the
segmentation probability maps in both the forward pass from SN to EN and
backward propagation from EN to SN, it could happen that lower intensity
structures (e.g., cell nuclei, gland borders in H&E stained images) may have very
little influence on both the decision making process of EN and the parameter
updates of SN. In order to reduce this bias, we use both the input image and its
inverted image for mixing with the segmentation probability maps. Suppose I is
one channel from the raw image input and P is one probability map produced
by SN. We mix them by I · P and (1 − I) · P (two maps obtained). We mix
every possible pair of I and P and concatenate all the obtained maps to form
the input of EN.

3 Experiments and Results

To evaluate the effectiveness of our DAN model on utilizing unannotated images
for segmentation, we test and compare DAN and several related models using two
data sets: the 2015 MICCAI Gland Challenge dataset [13] for gland segmentation
in H&E stained tissue images (e.g., see the top row of Fig. 3), and an in-house
3D electron microscopy (EM) image dataset for fungus segmentation.

Gland segmentation. This dataset [13] has 85 training images (37 benign
(BN), 48 malignant (MT)), 60 testing images (33 BN, 27 MT) in part A, and 20
testing images (4 BN, 16 MT) in part B. As our unannotated training data, we
acquired 100 additional H&E stained intestinal images from an in-house dataset
(e.g., see the bottom row of Fig. 3).

Table 1 shows the gland segmentation results of our DAN model and sev-
eral closely related models. For fair comparison, an adversarial training model
(SSAN [6]), a semi-supervised learning model (Ladder networks [9]), and our
DAN model all use the same segmentation network as SN (the base model).

Fig. 3. Top row: Image samples and their corresponding instance-level segmentation in
the Gland Challenge dataset. Bottom row: Our unannotated training image samples.



414 Y. Zhang et al.

CUMedVision [2] and multichannel models [15,16] were very recently designed
especially for gland segmentation. CUMedVision [2] won the 2015 MICCAI
Gland Segmentation Challenge, and the multichannel model in [15] is the best-
known model with a sophisticated network structure. As we show, based on a
relatively simple segmentation network (SN) and effective use of unannotated
images via adversarial training, DAN (using SN) can improve the segmenta-
tion performance and give better overall segmentation results than the state-of-
the-art methods. Figure 4 gives visual segmentation results of difficult cases in
malignant tissues.

Fig. 4. Instance-level segmentation results on some malignant cases.

Table 1. Summary of the gland segmentation results. SSAN [6] is a latest adversarial
network for semantic segmentation, Ladder networks [9] are a state-of-the-art model
for semi-supervised learning, CUMedVision [2] won the 2015 MICCAI Gland Segmen-
tation Challenge, and Multichannel2 [15] is the current best published model for gland
segmentation on the MICCAI dataset.

Method # images used F1 Socre ObjectDice ObjectHausdorff

Anno. Unanno. part A part B part A part B part A part B

SN (base model) 85 0 0.9071 0.825 0.898 0.826 48.740 126.479

SSAN [6] 85 0 0.9060 0.836 0.886 0.818 53.393 128.385

Ladder networks [9] 85 100 0.9047 0.833 0.893 0.818 45.418 110.984

CUMedVision [2] 85 0 0.912 0.716 0.897 0.718 45.418 160.347

Multichannel1 [16] 85 0 0.858 0.771 0.888 0.815 54.202 129.930

Multichannel2 [15] 85 0 0.893 0.843 0.908 0.833 44.129 116.821

DAN (ours) 85 100 0.916 0.855 0.903 0.838 45.276 104.982

Fungus segmentation. We also test our DAN model using four 3D EM image
stacks (∼ size 1658 × 1705 × 100 each) for fungus segmentation. The 3D EM
images are captured from body tissues of ants. In biomedical applications, one
may often have only a limited amount of annotated 2D slices for model training
for 3D segmentation problems. To model such scenarios, we use only one slice
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Table 2. Results for pixel-level fungus segmentation in EM images.

Method # slices used Recall Precision F1 Score

Anno. Unanno.

SN (base line) 4 0 0.9020 0.9287 0.9152

SSAN [6] 4 0 0.9067 0.9295 0.9179

Ladder networks [9] 4 40 0.9168 0.9223 0.9195

DAN (ours) 4 40 0.9302 0.9428 0.9364

from each stack to form the annotated images; 10 extra slices are utilized from
each stack to form the unannotated images; 20 slices in each stack are marked
with ground truth for testing the segmentation performance of different models.

Table 2 shows the pixel-level fungus segmentation results of our model and
three closely related models. Our model produces considerably better results.

4 Conclusions

In this paper, we proposed a deep adversarial network that can effectively uti-
lize unannotated image data for training biomedical image segmentation neural
networks with better generalization and robustness.
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