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Abstract. Low dose-rate prostate brachytherapy is commonly used to
treat early stage prostate cancer. This intervention involves implant-
ing radioactive seeds inside a volume containing the prostate. Planning
the intervention requires obtaining a series of ultrasound images from
the prostate. This is followed by delineation of a clinical target volume,
which mostly traces the prostate boundary in the ultrasound data, but
can be modified based on institution-specific clinical guidelines. Here, we
aim to automate the delineation of clinical target volume by using a new
deep learning network based on residual neural nets and dilated convolu-
tion at deeper layers. In addition, we propose to include an exponential
weight map in the optimization to improve local prediction. We train
the network on 4,284 expert-labeled transrectal ultrasound images and
test it on an independent set of 1,081 ultrasound images. With respect
to the gold-standard delineation, we achieve a mean Dice similarity coef-
ficient of 94%, a mean surface distance error of 1.05 mm and a mean
Hausdorff distance error of 3.0 mm. The obtained results are statistically
significantly better than two previous state-of-the-art techniques.
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1 Introduction

Low dose-rate brachytherapy is a widely used procedure to treat localized
prostate cancer [6]. The initial step involves planning the implantation of radioac-
tive seeds in a target anatomy. For this purpose, axial transrectal ultrasound
(TRUS) images are acquired from the base to the apex of the prostate followed
by clinical target volume (CTV) delineation. The International Commission of
Radiation Units and Measurements, defines CTV as a patient-specific contour
that does not necessarily follow the exact prostate boundary and may contain
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neighboring tissues (Fig. 1) [10]. The objective of enclosing adjacent tissue to the
prostate, in CTV, is to ensure the inclusion of subclinical malignant disease. The
extent of such inclusion is subject to the experience of the radiation oncologist
and institution-specific clinical guidelines. Based on the CTV-boundary, further
modifications are carried out to determine the volume for implantation.

Current clinical approaches for CTV delineation are mostly based on man-
ual or semi-automatic techniques; they usually consist of prostate segmentation
(e.g. [5]) followed by manual correction from an expert to rectify the bound-
ary and modifications to include adjacent tissue. An automatic CTV delineation
is highly desirable to reduce user interaction and inter-observer variability. In
addition, an automatic technique ensures that certain institution-specific clini-
cal guidelines (e.g., smooth and symmetric/nearly-symmetric contour) are met,
which are often difficult to maintain in manual delineation approaches.

Recently, Nouranian et al. proposed automatic approaches for CTV gen-
eration by learning these boundaries from a set of clinician-generated, gold-
standard contours [7,8]. In [7], a multi-atlas fusion framework was presented
that transformed multiple training datasets to the coordinates of a test image.
Subsequently, the CTV was obtained by fusing the training image labels. They
extended their work in [8] by learning a sparse dictionary from a training set of
TRUS images and their label maps using K-singular value decomposition.

In this paper, we present an alternative learning technique based on deep con-
volutional neural networks (CNN) for automatic delineation of CTV in TRUS
images. In contrast to the dictionary learning technique in [8] that uses a linear
combination of dictionary elements, CNN can produce a non-linear function to
capture the relationship between input images and CTV. The use of deep CNN
in visual recognition tasks has gained popularity due to their superior perfor-
mance compared to the state-of-the-art techniques. Recently, deep CNN were
successfully applied for medical image segmentation [9], where feed-forward nets
were put together to develop a ‘U’-shape architecture. We propose an extended
CNN architecture, hereafter referred to as ResU-net, that is built upon U-net
architecture. In addition, we introduce three major modifications to improve
optimization and to enable accurate local prediction (Fig. 2(a)):

1. We use residual neural networks (res-net) [3] as the constituent net in the
proposed architecture instead of plain feed forward networks. A deep res-net
is easier to optimize compared to its plain counterpart [3]. In addition, a built-
in property of res-net is that features from each layer are combined with the
obtained features in the next layer. Therefore, higher level features (Fig. 2(b),
right branch) and lower level features (Fig. 2(b), left branch) are combined to
make the final prediction [9].

2. We use dilated convolution [11] to incorporate the learnt features at deeper
layers in the final outcome, without loss of resolution.

3. Rather than allowing for equal weights for all pixels of the prostate in a
training label map, our loss function assigns higher values to pixels close to
the CTV boundary for improved local prediction.
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Fig. 1. Examples of TRUS images in different prostate regions with superimposed
gold-standard CTV delineation. The gold-standard (red colored contour) is obtained
by using a semi-automatic prostate segmentation technique [5] followed by clinical
expert correction based on institutional guidelines. The inclusion of surrounding tissue
at the base and apex slices is shown by arrows.

Our proposed architecture is able to accurately determine CTV with respect
to gold-standard delineation, and performs statistically significantly better than
two state-of-the-art techniques.

2 Methods

2.1 Materials

A total of 5,365 clinical TRUS images from 598 subjects were used in this study.
Transverse TRUS images were acquired from the base to the apex of the prostate
at 5 mm axial spacing using a side-firing endorectal ultrasound probe. For each
patient, 7–16 TRUS images of size 415× 490 pixels were collected with a pixel
spacing of 0.15 mm× 0.15 mm. These 2D images were initially segmented using a
semi-automatic technique [5]. Subsequently, each segmented contour was mod-
ified by one of seven radiation oncologists at our institution to generate the
gold-standard CTV contours.

We resize all of the TRUS images to 224× 224 pixels to fit them to the input
of our proposed network. For training, validation and test, we divided the TRUS
images into three mutually exclusive groups with no overlapping patients (60%
vs 20% vs 20%), and they consisted of a total of 3,212 images from 358 subjects,
1,072 images from 120 subjects, and 1,081 images from 120 subjects, respectively.

2.2 Network Architecture

The proposed network architecture is demonstrated in Fig. 2(a). It takes an input
image of size of 224× 224 pixels and generates a corresponding label map of the
same size. The network consists of a contracting and an expanding branch. Each
branch comprises six layers and each layer includes two sublayers. We follow the
res-net architecture [3] to develop our sublayer unit as shown in Fig. 2(b).
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Fig. 2. The proposed deep CNN-based approach. (a) The network architecture. (b)
Architecture of a sublayer unit. (c) Increased size of the receptive field of a 3× 3
convolutional kernel with a dilation factor of 2. (d) The proposed weight map, which
assigns highest weight to the CTV boundary and decreases exponentially.

Two kinds (1× 1 and 3×3) of convolutions are used in the network. Zero
padding is applied in each convolutional layer to keep the size of feature maps
unchanged after the convolution operation. The number of feature maps succes-
sively increases from lower to higher layer. We set the number of feature maps to
64, 128, 256, 512, 512, and 512 for layers 1–6, respectively. Note that within each
layer, the number of feature maps across multiple sublayers remains the same.
In addition, dilated convolutions are applied at layers 5 and 6 in both branches
(with factor = 2 and 4 at layers 5 and 6, respectively). The advantage of using
a dilated convolution is to increase the size of the receptive field without loss of
resolution and using the same number of weights; e.g., a 3× 3 convolution with a
dilation factor of 2 represents an effective receptive field size of 7× 7 (Fig. 2(c)).

Rectified linear unit (ReLU) is used to introduce non-linearity in the network.
At layers 1–3 in the contracting path, we use max-pooling with stride of 2 pixels.
In the expanding path, we have upsampling units that successively increase the
size of the feature maps through interpolation with a factor of 2. Finally, we use a
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softmax layer to predict the label map for any given input image. The prediction
layer simply consists of a 1× 1 convolutional layer with the number of feature
maps equal to the number of possible labels (i.e., background and CTV).

2.3 Training and Loss Function

We implemented our proposed network in Caffe [4]. The weights of the convo-
lutional layers are initialized as small random numbers. In addition, the upsam-
pling unit is initialized by setting the weight matrix to a bilinear interpolation
kernel. We consider the negative log-likelihood of the softmax probability (cross-
entropy) as the loss function. Note that individual cross-entropy loss from each
pixel contributes to the total loss, and we propose to provide more weights to
the pixels close to the labeled CTV boundary (Fig. 2(d)). The weights are maxi-
mum on the CTV boundary and decrease exponentially. The idea of non-uniform
weights is also used in other works (e.g., in 3D U-net [1]); however, they assign
higher weights to all the pixels enclosed by the labeled boundary. In our app-
roach, we assign more weights only to the adjacent pixels of the boundary, which
leads to learning the CTV boundary more effectively. The validation set is used
to choose the optimum value of the maximum weight and the decay rate of the
exponential function. In addition, given a GPU memory size, one has to balance
between the number of layers and the number of feature maps to achieve opti-
mal performance. For this purpose, we train the network for a different number
of feature maps as well as a different number of layers. The results, based on
the validation set, suggest that it is preferred to increase the number of feature
maps rather than the number of layers given a GPU memory size. Therefore, we
choose only two sublayers in each main layer with more number of feature maps
over more layers with less number of feature maps. The training time for this
architecture was 14 h 23 min.

3 Evaluation

To evaluate our proposed approach, a set of 1,081 test TRUS images were used.
We computed the Dice similarity coefficient (DSC), mean surface distance error
(mSDE), and Hausdorff distance error (HDE) to quantify the estimated CTV
contour with respect to the gold-standard contour. The DSC measures the simi-
larity between two samples A and B, and it is defined as the percentage ratio of
twice the number of elements in the intersection of A and B to the summation
of the number of elements in A and B, i.e., DSC = 2n(A∩B)

n(A)+n(B) × 100, where n(.)
indicates the total number of elements in the set. The SDE at each point in the
estimated contour is defined as its Euclidean distance to the closest neighboring
point in the reference contour. mSDE and HDE are subsequently defined as the
average and maximum of SDEs across all points in the contour, respectively.

For comparison, we chose two state-of-the-art techniques: U-net [9], and
dictionary-based CTV delineation (DBCTV) [8]. To determine the statistically
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significant difference between the accuracies of the competing methods, we per-
formed paired rank-sum test. In addition, we broke down our results across dif-
ferent prostate regions to investigate the dependencies of the accuracies on the
prostate regions. Furthermore, we recorded the run-time of our trained network
to generate a label map from an input image.

We also analyzed the effect of dilated convolution and exponential weight map
(in the loss function) on the evaluation indices. To eliminate the effect of dila-
tion, we modified the proposed network by introducing max-pooling operations
at layers 4–5 in the expanding branch, removing the dilation effect in convolu-
tion at layers 5–6 in both expanding and contracting branches, and introducing
upsampling at layers 4–5 in the contracting branch. To investigate the effect of
the weight map, we nullified this effect by considering uniform weights for all
pixels in the loss function.

4 Results

Comparison with state-of-the-art: A comparison of the evaluation indices
among the proposed network (ResU-net), U-net and DBCTV is provided in
Table 1. Our method demonstrates a statistically significant improvement over
U-net and DBCTV in all three evaluation indices based on paired rank-sum test
(p << 0.05). Some example comparisons are shown in Figs. 3(a-h) for different
regions of the prostate (base, mid and apex), and we can observe the improve-
ments in CTV prediction using our network.

Comparison across prostate lobes: Figures 3(i-k) show comparisons among
accuracies at the base, mid and apex regions for our method. We observed drops
in the accuracies at base and apex regions compared to those at mid lobe.

Effect of dilation: We notice a decrease in the accuracy (Table 1) when dilated
convolutions are removed at layers 5–6. It is interesting to note that the results
without using dilated convolution are still better than those for the U-net, and
it indicates the superiority of res-net over the plain feed forward nets.

Effect of the weight map: With uniform weights, we observed a drop in
the accuracies (Table 1), indicating that effective learning of the CTV boundary

Table 1. Comparative results of the proposed network, and effect of dilated convolution
and weights.

Method DSC (%) mSDE (mm) HDE (mm)

U-net 89.62 ± 4.98 1.52 ± 0.97 4.22 ± 2.26

DBCTV 89.92 ± 5.18 1.45 ± 0.83 3.93 ± 2.17

ResU-net 93.67 ± 3.71 1.05 ± 0.71 2.96 ± 2.05

ResU-net w/o dilated convolution 91.12 ± 4.16 1.26 ± 0.86 3.96 ± 2.09

ResU-net w/o exponential weights 93.48 ± 4.06 1.13 ± 0.81 3.41 ± 2.18
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Fig. 3. CTV delineation results. (a-h) An example comparison of our technique with
U-net and DBCTV indicates substantial improvement. (i-k) Comparison among delin-
eation accuracies across different prostate regions for our proposed method.

was due to the proposed weight map. Again note that even the errors without
exponential weights are better than those for both of the competing methods.

Computation time: The computation time obtained using our GPU (NVIDIA
GeForce GTX 980 Ti) is 0.15 s for a 2D 415× 490 pixels TRUS image. This time
includes resizing the input TRUS image to 224× 224 pixels, generating the label
map through CNN, and resizing the label back to 415× 490 pixels.

5 Discussion and Conclusion

We presented ResU-net, a new learning architecture for fast, automatic delin-
eation of CTV in TRUS images of the prostate. ResU-net is based on res-net,
which leads to an improved optimization of the network. The superiority of res-
net has inspired a number of groups (e.g., [2] for endoscopic video segmentation).
In this work, in addition to res-net, we proposed to use dilated convolution to
take advantage of increased size of receptive field without loss of resolution.
Moreover, we introduced an exponential weight map in the loss function that
allowed us to obtain further improvement in CTV delineation. We achieved a
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mean DSC of 94%, a mean mSDE of 1.05 mm, and a mean HDE of 2.96 mm from
a set of 1,081 test images. We demonstrated statistically significant improvement
in CTV delineation compared to two state-of-the-art methods.

The drop of accuracy at the base and apex regions can be attributed to
the expert’s bias in the gold-standard delineation. As the prostate boundary is
poorly visible in those regions, we observed experts to be biased to the prior semi-
automatically generated delineation results. Such bias in gold-standard reduces
the effectiveness in training, subsequently affecting the delineation accuracy.

Introducing dilated convolution at deeper layers also helps with significant
improvement in our result (compare fourth and fifth rows in Table 1). Including
exponential weight map also resulted in statistical significant improvement, how-
ever, we noticed more improvement for the SDE and HDE indices (less p-values).
The probable reason is that the proposed exponential weight map emphasizes
learning features related to the CTV contour. Therefore, the above mentioned
error indices based on contour discrepancies were improved more.

A limitation of ResU-net is the absence of a batch normalization layer that
makes the training easier and less dependent on the initialization. In order to
include a batch normalization layer, we need to maintain a certain mini-batch
size, and a GPU with more memory solves such problem. Another limitation
is the loss of information due to the resizing operation between images of size
415× 490 pixels and 224× 224 pixels. One possible solution is to include the
resizing (interpolation) operation in the deep network, subsequently learning
the interpolation weights through training.

Future work includes the extension of ResU-net to delineate 3D volumes.
Furthermore, adoption of the network for multi-object segmentation is one of
our future targets. To improve robustness, we also aim to increase the size of
training set by incorporating data from other institutions. In conclusion, we have
demonstrated promising results of the proposed method to delineate the CTV
in a large set of TRUS images, and the proposed ResU-net has the potential to
find applications in other clinical tasks.
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