
Quality Assessment of Echocardiographic Cine
Using Recurrent Neural Networks: Feasibility

on Five Standard View Planes

Amir H. Abdi1(B), Christina Luong2, Teresa Tsang2, John Jue2, Ken Gin2,
Darwin Yeung2, Dale Hawley2, Robert Rohling1, and Purang Abolmaesumi1

1 Electrical and Computer Engineering Department, University of British Columbia,
Vancouver, Canada

amirabdi@ece.ubc.ca
2 Cardiology Lab, Vancouver General Hospital, Vancouver, Canada

Abstract. Echocardiography (echo) is a clinical imaging technique
which is highly dependent on operator experience. We aim to reduce
operator variability in data acquisition by automatically computing an
echo quality score for real-time feedback. We achieve this with a deep
neural network model, with convolutional layers to extract hierarchical
features from the input echo cine and recurrent layers to leverage the
sequential information in the echo cine loop. Using data from 509 sep-
arate patient studies, containing 2,450 echo cines across five standard
echo imaging planes, we achieved a mean quality score accuracy of 85%
compared to the gold-standard score assigned by experienced echosono-
graphers. The proposed approach calculates the quality of a given 20
frame echo sequence within 10 ms, sufficient for real-time deployment.
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1 Introduction

Despite advances in medicine and technology, cardiovascular disease remains
the leading cause of mortality worldwide. Cardiac ultrasound, better known
as echocardiography (echo), is the standard method for screening, detection,
and monitoring of cardiovascular disease. This noninvasive imaging modality is
widely available, cost-effective, and is used for evaluation of cardiac structure
and function. Standard echo studies include assessment of chamber size and
function as well as valvular stenosis and competence. However, the clinician’s
ability to interpret an echo study highly depends on image quality, which is

C. Luong—Co-first author.
T. Tsang is the Director of the Vancouver General Hospital and University of British
Columbia Echocardiography Laboratories, supervisor of the Cardiology Team, and
Co-Principal Investigator of the CIHR-NSERC grant supporting this work.

c© Springer International Publishing AG 2017
M. Descoteaux et al. (Eds.): MICCAI 2017, Part III, LNCS 10435, pp. 302–310, 2017.
DOI: 10.1007/978-3-319-66179-7 35



Quality Assessment of Echocardiographic Cine Using RNN 303

AP2 AP3 AP4 PSAXA PSAXPM

Fig. 1. The five standard echo view planes targeted in this study.

closely tied to the sonographer’s skill and patient characteristics. Suboptimal
images compromise interpretation and can adversely alter patient care.

Comprehensive evaluation with echo requires the acquisition of standardized
views for 2D measurements and precise ultrasound transducer alignment. As
ultrasound becomes increasingly available, less experienced clinicians are using
this tool with potential hazards due to inconsistent image quality and limited
expertise. Unlike other imaging modalities, ultrasound systems do not have auto-
mated image acquisition. The images obtained rely on scanner knowledge of the
cardiac structures.

To improve the consistency of ultrasound image acquisition, efforts have been
invested in detecting shadows and aperture obstructions [8,10] and optimizing
the image acquisition parameters [5]. However, those methods are generic and not
specific to echo acquisition. Quality of echo data is also dependent on optimizing
the imaging plane to obtain sharp edges of desired anatomic structures for each
standard view. View-specific quality assessment has been investigated through
searching for a binary atlas using generalized Hough transform [11] or defining a
goodness-of-fit to a parametric template model [13]. However, those techniques
mainly rely on presence of sharp edges in the image, hence are likely to fail in
low contrast settings, which is very common in clinical echo data.

In our previous work [1], we proposed an echo quality assessment approach
using convolutional neural networks which focused only on the apical four-
chamber view. However, the proposed method did not take advantage of the
information available in sequential echo images (cine echo), and the assessment
was limited to end-systolic frames.

In this work, we propose a deep learning model for quality assessment of echo
cine loops across five standard imaging planes, based on analyzing the entire cine
echo. The five standard view planes we analyze in this work are apical 2-chamber
(AP2), apical 3-chamber (AP3), apical 4-chamber (AP4), parasternal short axis
at the aortic valve level (PSAXA), and parasternal short axis at the papillary
muscle level (PSAXPM ) (Fig. 1). We designed a deep neural network with con-
volutional and recurrent layers and, a shared architecture to leverage transfer
learning. This model automatically extracts hierarchical features from differ-
ent echo view planes and relates them to a quality score determined by expert
echocardiographers. In this research, we use data from 509 separate patients
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studies, with a total of 2,450 echo cines. Using GPU-computing, the network is
able to assess an echo cine loop and assign a quality score in real time.

2 Materials and Method

2.1 Dataset and Gold Standard Quality Assessment

To train the deep learning model, we accessed an echo database on the Picture
Archiving and Communication System at Vancouver General Hospital. Differ-
ent ultrasound machines from Philips and GE, and different image acquisition
parameters contributed to the dataset. The majority of studies were performed
by certified sonographers with a small proportion scanned by cardiology and
sonography trainees. The dataset was randomly selected from the database and
is therefore expected to contain a uniform distribution among easy and diffi-
cult patient cases. For each patient, 2D cine loops were available from standard
views. In this paper, we focused on five standard 2D views, i.e. AP2, AP3, AP4,
PLAXA, and PLAXPM (Fig. 1). These views provide comprehensive evaluation
of chamber size, systolic function, and gross valvular function.

We used 2,450 cine loops from 509 echo studies with ethics approval of
the Clinical Medical Research Ethics Board and consultation with the Infor-
mation Privacy Office. The dataset was evaluated for image quality by one of
two physicians trained in echocardiography. A semi-quantitative scoring system
was defined for each view, modeled after a system proposed by Gaudet et al. [6],
which is summarized in Table 1. The scores were obtained by semi-quantitative
evaluation of component structures. Each component was assigned a quality
score of up to 2 points that were summed to produce an overall view-specific
image score, based on the following observations: 0 point) the structure was not
imaged or was inadequate for assessment; 1 point) the structure was adequately
viewed; 2 points) the view was optimized for the structure. Other components
of the score included appropriate centering (1 point), correct depth setting (0.5
points), proper gain (0.5 points), and correct axis (1 point). Since the maximum
possible score value was different for each view, the quality scores for all views
were normalized to one. We refer to the normalized ground-truth values assigned
by the trained echocardiographer as the Clinical Echo Score (CES).

Table 1. Summary of dataset and criteria for quality assessment. Note that each echo
cine can contain multiple sequences of 20 consecutive frames.

View plane #Cines #Seqs Criteria for clinical quality assessment Score range

AP2 478 1131 Centering, depth, gain, LV, LA, MV 0–8

AP3 455 1081 Centering, depth, gain, AV, MV, LA, LV, septum 0–7

AP4 575 1270 Centering, depth, gain, LV, RV, LA, RA, MV, TV 0–10

PLAXA 480 1148 Centering, depth, gain, AV and leaflets 0–4

PLAXPM 462 1189 Centering, depth, gain, papillary muscles, axis 0–5

Total 2450 5819
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Fig. 2. The proposed multi-stream network architecture. Number of kernels in each
layer and their corresponding sizes are presented above each layer.

2.2 Network Architecture

The proposed deep neural network is a regression model, consisting of convolu-
tional (conv), pooling (pool), and Long Short Term Memory (LSTM) layers [4],
and is simultaneously trained on the five echo view planes. The quality score
estimate by the neural network is referred to as the Network Echo Score (NES).

The architecture, depicted in Fig. 2, represents a multi-stream network, i.e.,
five regression models that share weights across the first few layers. Each stream
of the network has its own view-specific layers and is trained based on the mean
absolute error loss function (�1 norm), via a stochastic gradient-based optimiza-
tion algorithm.

All conv layers have kernels with the size of 3 × 3 following the VGG archi-
tecture [12], with the number of kernels doubling for deeper conv layers, i.e.,
from 8 to 32 kernels. The conv layers extract hierarchical features in the image,
with the first three shared layers modeling high level spatial correlations, and
the next two conv layers focusing on view-specific quality features. Activation
function of the conv layers are Rectified Linear Units (ReLUs). In this design,
all the pool layers are 2×2 max-pooling with a stride of 2 to select only superior
invariant features and divide the input feature-map size to half in both dimen-
sions to reduce feature variance and train more generalized models. The conv
and pool layers are applied to each frame of the echo cine, independently. To
prevent co-adaptation of features and over-fitting on the training data, a dropout
layer with the dropout probability of 0.5 was used after the third pooling layer.

The feature map of the final pool layer is flattened and sent to an LSTM unit,
a special flavor of Recurrent Neural Networks (RNN) that uses a gated technique
to selectively add or remove information from the cell state [7]. A single LSTM cell
analyzes 20 feature-sets corresponding to the 20 consecutive input frames, and
only the last output of the sequence is used. The LSTM layer uses hard sigmoid
functions for inner and output activations.
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2.3 Training

We partitioned the data into two mutually exclusive sets of training-validation
(80%) and test (20%). Network hyper-parameters were optimized by cross-
validation on the training-validation set to ensure that the network can suffi-
ciently learn the distribution of all echo views without over-fitting to the training
data. After finalizing the network architecture, the network was trained on the
entire training-validation set and its performance was reported on the test set.

Sequence Generation: Due to the variability in heart rate and frame acqui-
sition rates the number of frames per cardiac cycle varied from study to study.
We used a static sequence size of 20 frames, which encompasses nearly half the
average cardiac cycle in our dataset. This duration was sufficient to capture the
quality distribution of the echo imaging planes without adversely affecting the
run-time of the model. As a result, frames in each echo sequence sample are
not synced with the cardiac cycle, neither in the training-validation nor in the
test data set. This design decision ensured that the estimated quality score for a
given input sequence was independent of the starting phase of the cardiac data.

After partitioning studies into training-validation and test sets, each echo
cine loop was split into as many consecutive sequences of 20 frames as possible,
all of which were assigned the same quality-score as the original echo cine. As
a result, the average number of training-validation sequences per echo view was
935 (4,675 in total), and the average number of test sequences per echo view was
228 (1,144 in total), each with equal length of 20 frames (Table 1).

Batch Selection: The five regression models were trained simultaneously and
each batch consisted of eight sequences from each view. Each sequence was a set
of 20 consecutive gray-scale frames, which were downsized to 200 × 200 pixels;
no preprocessing was applied on the frames.

Since distribution of samples for each view was not uniform and the dataset
held more mid to high quality images, a stratified batch selection strategy was
implemented to prevent biases towards the quality-levels with the majority of
samples [14]. For each view plane of each mini-batch, eight quality-levels were
randomly selected and a sample, corresponding to the quality-level, was ran-
domly fetched.

The above strategy benefited the training in two ways: (1) training samples
did not follow a predefined order; (2) it guaranteed that, from the network’s
perspective, the training samples have a uniform distribution among quality-
levels for all the five echo views.

Data Augmentation: Data augmentation was applied to achieve a more gener-
alized model and to reduce the probability of over-fitting. To promote rotational
invariance, each sequence of each batch was rotated, on-the-fly, with a random
value uniformly drawn from the range [−7,+7]. A cardiologist confirmed that
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this amount of rotation does not degrade the clinical quality of the cine. Trans-
lational invariance was achieved by shifting each cine of each batch in the hor-
izontal and vertical directions with a random value uniformly drawn from the
range [−D/15,+D/15], where D is the width or height of the frame.

Training: The deep learning model was trained using the adam optimizer with
the same hyper-parameters as suggested in the original research [9]. The weight
of the conv layers were initialized randomly from a zero-mean Gaussian distribu-
tion. To prevent the deep network from over-fitting on the training data, �2 norm
regularization was added to the weights of the conv kernels. Keras deep learning
library with TensorFlow backend, was used to train and test the models [3].

3 Experiments and Results

The error distribution for each echo view, calculated as NES−CES, is depicted
in Fig. 3a. Figure 3b shows the average accuracy percentage calculated as

Accview = (1 −
Tview∑

i

|NES − CES|) × 100, (1)

where Tview is the total number of test sequences for the echo view. Performance
of the model on the test data shows an average accuracy of 85% ± 12 against
the expert scores. The accuracy of the trained models for the views are in the
same order ranging from 83%–89%. Example test results are shown in Fig. 4.

By leveraging the GPU-based implementation of neural networks by Tensor-
Flow, the trained model was able to estimate quality of an input echo cine with
20 frames of 200 × 200 pixels in 10 ms, suitable for real-time deployment.

AP2 AP3 AP4 PSAX(A) PSAX(PM)

-0.5

0

0.5

(a)

View Acc (%)

AP2 86 ± 9
AP3 89 ± 9
AP4 83 ± 14
PSAXA 84 ± 12
PSAXPM 83 ± 13

Total 85 ± 12

(b)

Fig. 3. (a) Distribution of error in each echo view. (b) Performance of the trained
models for each view calculated via Eq. (1).
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Fig. 4. Sample test results for the five standard echo imaging planes. The left bar in
each sub-figure shows the gold-standard score by an expert echocardiographer (CES),
and the right bar shows the estimated score by our approach (NES).

4 Discussion and Conclusion

Studies suggest that real-time feedback to sonographers can help optimize the
image quality [13]. Here, we propose a deep learning framework to estimate the
quality of a given echo cine and to provide feedback to the user in real time.

The results show that the trained model works with an acceptable 85% aver-
age accuracy across all the five targeted echo view planes (Fig. 3), which is supe-
rior to the performance of 82% which was achieved in our previous study on sin-
gle end-systolic frames of the AP4 view [1]. More importantly, as demonstrated
in Fig. 3, performance of the model is the same across all the views with the
error distributed evenly around zero. As a result of the stratified batch-selection
technique (Sect. 2.3), the model observes a uniformly distributed training-
set, eliminating potential biases towards a quality-level with the majority of
samples.
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The five echo imaging planes were chosen based on their importance in echo
studies. We did not provide any a priori information to the model regarding the
visual perception of these views and the proposed method does not use view-
specific templates [11,13]; hence, we expect that this approach can be easily
extended towards other echo imaging planes. More importantly, this is the first
study to leverage from the sequential information in echo cine to estimate the
quality of the cine loop. Moreover, by designing a cross-domain architecture
(Fig. 2), we leverage transfer learning to share the training sequences of each
view with other views [2]. As a result, the proposed approach requires fewer
training samples per echo view to achieve the same accuracy.

As the method does not rely on any pre-processing steps and takes advantage
of GPU computing, the model can compute the quality of a 20 frame cine in
real time. This is comparable to the speed achieved in our previous study [1]
and faster than the Hough transform method suggested by Pavani et al. [11].
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