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Abstract. Typical methods for abnormality detection in medical images
rely on principal component analysis (PCA), kernel PCA (KPCA), or
their robust invariants. However, typical robust-KPCA methods use
heuristics for model fitting and perform outlier detection ignoring the
variances of the data within principal subspaces. In this paper, we pro-
pose a novel method for robust statistical learning by extending the multi-
variate generalized-Gaussian distribution to a reproducing kernel Hilbert
space and employing it within a mixture model. We propose expecta-
tion maximization to fit our kernel generalized-Gaussian mixture model
(KGGMM), using solely the Gram matrix and without the explicit lift-
ing map. We exploit the KGGMM, including component means, princi-
pal directions, and variances, for abnormality detection in images. The
results on 4 large publicly available datasets, involving retinopathy and
cancer, show that our method outperforms the state of the art.

Keywords: Abnormality detection · One-class classification · Kernel
methods · Robustness · Generalized gaussian · Mixture model · Expec-
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1 Introduction and Related Work

Abnormality detection in medical images [3,10] is a one-class classification prob-
lem [13], where training relies solely on data from the normal class. This is
motivated by the difficulty of learning a model of abnormal image appearances
because of their tremendous variability. Typical methods for abnormality detec-
tion rely on principal component analysis (PCA) or kernel PCA (KPCA) [4].

In clinical applications involving large training datasets intended to represent
normal images, outliers naturally arise because of errors in specimen preparation
(e.g., slicing or staining in microscopy), patient issues (e.g., motion), imaging
artifacts, and manual mislabeling of abnormal images as normal. KPCA is very
sensitive to outliers in the data, leading to unreliable inference. Some methods
for abnormality detection [11] rely on PCA, assuming training sets to be outlier
free. Typical robust KPCA (RKPCA) methods [3,5,7–9] are heuristic in their
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modeling and inference. For instance, [7–9] employ adhoc rules for explicitly
detecting outliers in the training set. While [2,5] describe RKPCA based on
iterative data-weighting, using distance to the mean, the weighting functions
seem adhoc. CHLOE [9] also uses rules involving free parameters to weight
data based on kurtosis of individual features. One method [2] distorts data by
projecting it onto a sphere (unit norm). In contrast, we propose a method using
statistical (mixture) modeling to infer robust estimates of means and covariances.
During estimation, our method implicitly, and optimally, reweights the data, to
reduce the effect of outliers, based on the covariance structure of the data.

Typical abnormality detection methods [3,5,7,8] compute robust means and
modes of variation, but fail to compute and exploit variances along the modes.
Thus, they perform poorly when the abnormal data lies within the subspace
spanned by the normal data. In contrast, our method optimizes, in addition
to means and modes, the associated variances to improve performance. Some
methods [3,6] for robust PCA model learning rely on Lp norms (p ≥ 1) in input
space. In contrast, our method exploits Lq quasi-norms (q > 0) coupled with
Mahalanobis distances in a reproducing kernel Hilbert space (RKHS).

Some kernel methods for abnormality detection rely on the support vector
machine (SVM), e.g., one-class SVM [13] and support vector data description
(SVDD) [15]. Unlike KPCA, these SVM methods model only a spherical distribu-
tion or decision boundary in RKHS and, thus, are inferior to KPCA theoretically
and empirically [4]. Also, the SVM methods lack robustness to outliers in the
training data. In contrast, our method is robust to outliers and enables us to
model arbitrarily curved distributions as well as decision boundaries in RKHS.

We propose a novel method for robust statistical learning by extending the
multivariate generalized-Gaussian distribution to a RKHS for mixture model-
ing. We propose expectation maximization (EM) to fit our kernel generalized-
Gaussian mixture model (KGGMM), using solely the Gram matrix, without the
explicit lifting map. We model geometric and photometric properties of image
texture via standard texton-label histograms [16]. We exploit the KGGMM,
including component means, principal directions, and variances, for abnormality
detection. The results on 4 large publicly available datasets, involving retinopa-
thy and cancer, show that our method outperforms the state of the art.

2 Methods

In R
D, the generalized Gaussian [12] is parametrized by the mean μ ∈ R

D,
covariance matrix C ∈ R

D×D, and shape ρ ∈ R>0; Gaussian (ρ = 2), Lapla-
cian (ρ = 1), uniform (ρ → ∞). We extend the generalized Gaussian to RKHS
for mixture modeling. We exploit ρ < 1, when the distribution has increased
concentration near the mean and heavier tails, for robust fitting amidst outliers.

2.1 Kernel Generalized Gaussian (KGG)

Consider a set of N data points {xn ∈ R
D}N

n=1 in input space. Consider a Mercer
kernel κ(·, ·) that implicitly maps the data to a RKHS H such that each datum
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xn gets mapped to φ(xn). Consider 2 vectors in RKHS: f :=
∑I

i=1 αiφ(xi) and
f ′ :=

∑J
j=1 βjφ(xj). The inner product 〈f, f ′〉H :=

∑I
i=1

∑J
j=1 αiβjκ(xi, xj).

The norm ‖f‖H :=
√〈f, f〉H. When f, f ′ ∈ H\{0}, let f ⊗ f ′ be the rank-one

operator defined as f ⊗ f ′(g) := 〈f ′, g〉Hf . The generalized Gaussian extended
to RKHS is parametrized by shape ρ ∈ R>0, mean μ ∈ H, and covariance oper-
ator C =

∑Q
q=1 λqvq ⊗ vq, where λq is the q-th largest eigenvalue of covariance

C, vq is the corresponding eigenfunction, and Q < N is a regularization para-
meter. We set Q to the number of principal eigenfunctions that capture 95%
of the eigenspectrum energy. For f ∈ H, the squared Mahalanobis distance is
d2M(f ;μ,C) := 〈f − μ,C−1(f − μ)〉H, where C−1 =

∑Q
q=1(1/λq)vq ⊗ vq is the

sample inverse-covariance operator. Then, our generalized Gaussian in RKHS is

PG(f ;μ,C, ρ) :=
δ(ρ/2)
2|C|0.5

exp
[

−
(
η(ρ/2)d2M(f ;μ,C)

)ρ/2
]

, where (1)

δ(r) := rΓ (2/r)/(πΓ (1/r)2), |C| :=
∏Q

q=1 λq, and η(r) := Γ (2/r)/(2Γ (1/r)).

2.2 Kernel Generalized-Gaussian Mixture Model (KGGMM)

We propose to model the distribution of data x := {xn ∈ R
D}N

n=1 using a Mercer
kernel to implicitly map the data to a RKHS, i.e., {φ(xn) ∈ H}N

n=1, and then
representing the distribution in RKHS using a mixture of KGG distributions.
Consider a KGG mixture model with K components, where the k-th component
is the KGG PG(·;μk, Ck, ρ) coupled with weight ωk ∈ R≥0, such that ωk ≤ 1 and
∑K

k=1 ωk := 1. For each datum xn, let Zn be the hidden (label) random variable
indicating the mixture component from which the datum was drawn.

Eachmeanμk must lie in the span of themappeddata {φ(xi)}N
i=1. Thus,we rep-

resent each mean, using coefficient vector βk ∈ R
N , as μk(βk) :=

∑N
i=1 βkiφ(xi).

Estimating μk is then equivalent to estimating βk. We represent each covariance
operator Ck using its Q principal eigenvectors {vkq ∈ H}Q

q=1 and eigenvalues
{λkq ∈ R>0}Q

q=1. Each eigenvector of Ck must lie in the span of the mapped data.
So, we represent the q-th eigenvector of Ck, using coefficient vector αkq ∈ R

N , as
vkq(αkq) :=

∑N
j=1 αkqjφ(xj). Estimating vkq is equivalent to estimating αkq.

Model Fitting. We propose EM to fit the KGGMM to the mapped data to
maximize the likelihood function. The prior label probability P (zn = k) := ωk.
The complete-data likelihood P (z, x) :=

∏N
n=1 P (zn)PG(φ(xn);μzn

, Czn
, ρ). We

show that EM does not need the map φ(·), but only the Gram matrix G, where
Gij := 〈φ(xi), φ(xj)〉H = κ(xi, xj). In our framework, ρ is a free parameter (fixed
before EM) that we tune using training data; ρ < 1 gives best results.

Initialization. We use kernel k-means to initialize the parameters. We initialize
(i) mean μk to the k-th cluster center, (ii) weight ωk to the fraction of data
assigned to cluster k, and (iii) covariance Ck using KPCA on cluster k.
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E Step. At the t-th iteration, let the set of parameters be θt := {βt
k ∈ R

N , {αt
kq ∈

R
N}Q

q=1, {λt
kq ∈ R}Q

q=1, ω
t
k ∈ R}K

k=1. Let αk denote a N ×Q matrix, representing
the Q eigenfunctions of Ck, such that its q-th column is αkq. Let λk denote a
Q × Q diagonal matrix, representing the Q eigenvalues of Ck, such that its q-th
diagonal element is λkq. Given θt, the E step defines the function Q(θ; θt) :=
EP (Z|x,θt) [log P (Z, x; θ)] that can be simplified to

N∑

n=1

K∑

k=1

γt
nk

[
log ωk −

Q∑

q=1

[
log(λkq)

2
+

(
η
(ρ

2

) 〈φ(xn) − μk(βk), vkq(αkq)〉2H
λkq

) ρ
2
]]

excluding terms independent of θ, and where the membership of datum xn to
mixture component k, given the current parameter estimate θt, is the posterior
γt

nk := P (Zn = k|xn, θt) = ωt
kPG(φ(xn);μk, Ck, ρ)/P (xn; θt) by Bayes rule.

M Step. The M step updates parameter estimates to θt+1 := arg maxθ Q(θ; θt)
subject to constraints on: (i) weights, such that ωk ≥ 0,

∑
k ωk = 1, (ii) eigen-

values, such that λkq > 0, and (iii) coefficients, such that eigenvectors vkq(αkq)
are unit norm (‖vkq‖H = 1) and mutually orthogonal (〈vkq, vkr〉H = 0,∀q �= r).

Estimating Weights. The optimal weights ωt+1
k are given by the solution to

arg maxω

∑N
n=1

∑K
k=1 γt

nk log ωk, subject to the positivity and sum-to-unity con-
straints. The method of Lagrange multipliers gives ωt+1

k =
∑N

n=1 γt
nk/N .

Estimating Means. Given weights ωt+1
k , the optimal mean μt+1

k (βt+1
k ) is given

by βt+1
k := arg minβk

∑
n γt

nk

∑
q

(
(G�

n αkq − β�
k Gαkq)2/λkq

)ρ/2, where Gn is the
n-th column of the Gram matrix G. We optimize via gradient descent with
adaptive step size (adjusted at each update) to ensure that each update improves
the objective function value. When ρ = 2, the mean estimate is the (weighted)
sample mean that is affected by outliers. As ρ reduces, the effect of the outliers
decreases in the objective function; the gradient term for an outlier j is weighted
down far more than for the inliers, leading to robust estimates.

Estimating Eigenvectors. Given weights ωt+1
k and means μt+1

k (βt+1
k ), the

optimal set of eigenfunctions vt+1
k (αt+1

k ) is given by αt+1
k := arg minαk

∑
n γt

nk

[
(α�

k Gn − α�
k Gβt+1

k )�λ−1
k (α�

k Gn − α�
k Gβt+1

k )
]ρ/2

, subject to orthonor-
mality constraints on the set of eigenfunctions {vkq(αkq)}Q

q=1. We optimize via
projected gradient descent with adaptive step size, where each step (i) first uses
a gradient-descent step to update matrix αk to α̃k, implicitly updating the eigen-
functions to {ṽkq(α̃kq)}Q

q=1, and (ii) then updates α̃k to αt+1
k by projecting the

eigenfunction set {ṽkq(α̃kq)}Q
q=1 onto the space of orthogonal eigenfunction bases.

In Euclidean space, the projection of a set of Q vectors, represented as the
columns of a matrix M , onto the space of Q orthogonal vectors is given by LR�

where matrices L and R comprise the left and right singular vectors in the singu-
lar value decomposition (SVD) of M . In Euclidean space, LR� = M(M�M)−0.5.
In a RKHS, we replace the SVD by the kernel SVD as follows.
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Consider Q functions F := {fq ∈ H}Q
q=1 that are not orthogonal. Let the

kernel SVD of F be the operator
∑Q

q=1 sqaq ⊗ bq, where the singular values
are sq ∈ R≥0, and the left and right singular vectors are the orthonormal sets
{aq ∈ H}Q

q=1 and {bq ∈ R
Q}Q

q=1, respectively. Consider the Q×Q matrix Y where
Yij := 〈fi, fj〉H. The matrix Y also equals

∑Q
q′=1 sq′bq′ ⊗aq′(

∑Q
q′′=1 sq′′aq′′ ⊗bq′′)

that reduces to
∑Q

q=1 s2qbqb
�
q because of the orthogonality of the left singular

vectors. Thus, an eigen decomposition of the matrix Y yields the eigenvalues
as s2q and the eigenvectors as bq. Subsequently, we observe that the required
projection of F onto the space of orthogonal functions in RKHS is given by∑Q

q=1 sqaq ⊗ bq(Y −0.5) =
∑Q

q=1 sqaq ⊗ bq(
∑Q

q′=1 s−1
q′ bq′b�

q′) =
∑Q

q=1 aq ⊗ bq. In
practice, when we represent the eigenvectors using the N × Q matrix α̃k, the
matrix Y = α̃�

k Gα̃k and the projection gives us αt+1
k = α̃k(Y )−0.5.

Estimating Variances. Given weights ωt+1
k , means μt+1

k (βt+1
k ), and

eigenfunctions vt+1
k (αt+1

k ), each optimal eigenvalue is given by λt+1
kq :=

arg minλkq>0

∑N
n=1 γt

nk[0.5 log(λkq) + (η(ρ/2)a2
nkq/λkq)ρ/2], where ankq :=

G�
n αt+1

kq − (βt+1
k )�Gαt+1

kq . We optimize via projected gradient descent.

KGGMM for Abnormality Detection. We use the KGGMM with a small
number of mixture components K, such that each component k models a signifi-
cant fraction of the data, i.e., ωk are not close to zero and comparable for different
components k. After KGGMM fitting, we define a decision boundary B enclosing
the normal class by a threshold τ on the minimum Mahalanobis distance across all
K mixture components, such that, for a chosen component k, 98.5% of the proba-
bility mass lies within B. τ varies with ρ; for the univariate Gaussian (ρ = 2) and
variance σ2, τ limits the distance to 2.5σ from the component-k mean. For the
univariate generalized Gaussian, τ can be computed via the inverse cumulative
distribution function that is known analytically. Because τ relies on Mahalanobis
distance that is independent of scale, τ naturally extends to the multivariate case.
Thus, B is set automatically via ρ and θ.

3 Results and Discussion

We evaluate our method for abnormality detection on simulated data and 4
large publicly available medical image datasets. Indeed, the training, i.e., model
learning, for abnormality detection methods relies solely on data from the nor-
mal class, which includes outliers and mislabeled data incorrectly labeled to the
normal class. We compare our KGGMM method with 7 other methods: (i) KGG,
which is a special case of KGGMM with K = 1, (ii) standard KPCA [14], which
is a special case of KGG when ρ = 2, (iii) Huang et al.’s RKPCA [5], (iv) one-
class regularized kernel SVM [13], (v) regularized kernel SVDD [15], (vi) 2-class
regularized kernel SVM, and (vii) CHLOE: a software tuned for outlier detec-
tion in images [9]. We use cross validation to tune free parameters underlying all
methods, i.e., concerning the kernel, ρ (for KGGMM), and SVM regularization.
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Results on Simulated Data. We simulate data in 2D Euclidean space to
mimic what a real-world dataset would lead to in RKHS (after kernel-based
mapping). We simulate data (Fig. 1) from a Gaussian mixture having K = 2
components (normal class): mean (0, 5) and (5, 0), modes of variation as the
cardinal axes, and standard deviations along the modes of variation as (0.25, 1.4)
and (1.4, 0.25). We then contaminate the data with outliers of 2 kinds: (i) spread
uniformly over the domain; (ii) clustered at a location far away. For training, the
normal-class sample size is 5000 contaminated with 1000 outliers. For testing,
the normal-class sample size is 5000 and abnormal-class sample size is 3000.
The kernel is the Euclidean inner-product. Our KGGMM learning (with K = 2,
ρ = 0.6) is far more robust to outliers, with a classification accuracy of 93%,
outperforming (i) KGG (K = 1, ρ = 0.6; accuracy 77%), (ii) KPCA (accuracy
54%), (iii) SVDD (accuracy 70%), and (iv) 2-class SVM (accuracy 38%).

Results on Real-World Medical Image Data. We use 4 large pub-
licly available image datasets. We use 2 retinopathy datasets: Messidor
(www.adcis.net/en/Download-Third-Party/Messidor.html; Fig. 2) and Kag-
gle (www.kaggle.com/c/diabetic-retinopathy-detection; Fig. 3). We use 2
endoscopy datasets for cancer detection: chromoendoscopy in Gastric cancer
(aidasub-chromogastro.grand-challenge.org; Fig. 5) and confocal laser endomi-
croscopy in Barrett’s esophagus (aidasub-clebarrett.grand-challenge.org; Fig. 6)
comprising normal images including intestinal metaplasia and 2 kinds of abnor-
mal images including dysplasia (potentially leading to cancer) and neoplastic
mucosa (advanced stage cancer). The figures show that all 4 datasets, even
though carefully constructed, already have outliers in the normal class. We use

Fig. 1. Results on simulated data. Data from a 2D Gaussian mixture model
(2 components, shown in blue and black) contaminated with outliers (red and green).

(a) (b) (c) (d) (e) (f)

Fig. 2. Retinopathy data: Messidor. (a)–(b) Normal images. (c)–(d) Images
labeled normal, but are outliers. (e)–(f) Abnormal images.

www.adcis.net/en/Download-Third-Party/Messidor.html
www.kaggle.com/c/diabetic-retinopathy-detection
http://www.aidasub-chromogastro.grand-challenge.org
http://www.aidasub-clebarrett.grand-challenge.org
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(a) (b) (c) (d) (e) (f)

Fig. 3. Retinopathy data: Kaggle. (a)–(b) Normal images. (c)–(d) Images labeled
normal, but are outliers. (e)–(f) Abnormal images.
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(a) KGGMM only. (b) Messidor Data. (c) Kaggle Data.

Fig. 4. Results on retinopathy data. Classification accuracy after learning on train-
ing sets contaminated with outliers, for: (a) KGGMM, Messidor, varying ρ, (ρ = 2 is
Gaussian); (b) all methods, Messidor; (c) all methods, Kaggle. The box plots show
variability in accuracy with resampling (uniform random) training data (20 repeats).

(a) (b) (c) (d) (e) (f)

Fig. 5. Chromoendoscopy data: gastric cancer. (a)–(b) Normal images. (c)–
(d) Images labeled normal, but are outliers. (e)–(f) Abnormal images.

the texton-based histogram feature, using patches (9 × 9) to compute textons,
to classify regions (50 × 50) as normal or abnormal. We use the intersection
kernel [1]. From each dataset, we select training sets with 12000 normal image
regions and, to mimic a clinical scenario, contaminate it by adding another
5–10% of abnormal image regions mislabeled as normal. The test set has 8000
normal and 5000 abnormal images. KGGMM performs best when ρ < 1 in
retinopathy (Fig. 4(a)) and endoscopy datasets (Fig. 7(a)). The abnormality-
detection accuracy of KGGMM is significantly more than all other methods
for retinopathy (Fig. 4(b)–(c)) and endoscopy data (Fig. 7(b)–(c)). In almost all
cases, KGGMM (we use K = 2 for model simplicity) performs better than KGG.

Conclusion. We have proposed a novel method for robust kernel-based statistical
learning that relies on the generalization of the multivariate generalized Gaussian



28 N. Kumar et al.

(a) (b) (c) (d) (e) (f)

Fig. 6. Confocal endoscopy data: barrett’s esophageal cancer. (a)–(b) Normal
images. (c)–(d) Images labeled normal, but are outliers. (e)–(f) Abnormal images.
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(a) KGGMM only. (b) Gastric Cancer. (c) Esophageal Cancer.

Fig. 7. Results on endoscopy data. Classification accuracy after learning on train-
ing sets contaminated with outliers, for: (a) KGGMM, gastric cancer, varying ρ, (ρ = 2
is Gaussian); (b) all methods, gastric cancer; (c) all methods, esophageal cancer. Box
plots show accuracies with resampling (uniform random) training data (20 repeats).

to RKHS for mixture modeling. We fit our KGGMM using EM, using solely the
Gram matrix. We exploit KGGMM, including covariance operators, for abnor-
mality detection in medical applications where a (small) fraction of training data
is inevitably contaminated because of outliers and mislabeling. The results on
4 large datasets, in retinopathy and cancer, shows that KGGMM outperforms
one-class classification methods (KPCA, one-class kernel SVM, kernel SVDD),
2-class kernel SVM, and software tuned for outlier detection in images [9].
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