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Abstract. Skin cancer is the most common cancer world-wide, among
which Melanoma the most fatal cancer, accounts for more than 10,000
deaths annually in Australia and United States. The 5-year survival rate
for Melanoma can be increased over 90% if detected in its early stage.
However, intrinsic visual similarity across various skin conditions makes
the diagnosis challenging both for clinicians and automated classifica-
tion methods. Many automated skin cancer diagnostic systems have been
proposed in literature, all of which consider solely dermoscopy images in
their analysis. In reality, however, clinicians consider two modalities of
imaging; an initial screening using clinical photography images to capture
a macro view of the mole, followed by dermoscopy imaging which visu-
alizes morphological structures within the skin lesion. Evidences show
that these two modalities provide complementary visual features that can
empower the decision making process. In this work, we propose a novel
deep convolutional neural network (DCNN) architecture along with a
saliency feature descriptor to capture discriminative features of the two
modalities for skin lesions classification. The proposed DCNN accepts
a pair images of clinical and dermoscopic view of a single lesion and is
capable of learning single-modality and cross-modality representations,
simultaneously. Using one of the largest collected skin lesion datasets, we
demonstrate that the proposed multi-modality method significantly out-
performs single-modality methods on three tasks; differentiation between
15 various skin diseases, distinguishing cancerous (3 cancer types includ-
ing melanoma) from non-cancerous moles, and detecting melanoma from
benign cases.

1 Introduction

Over 5 million skin cancer cases are diagnosed annually in America and Aus-
tralia [13]. In Australia, the mean cost per patient for classification and staging
of suspicious lesions (specialized surveillance and stage III in year 2) is over
$3,000 [14]. Also, the availability of fully trained dermatologists worldwide is
highly limited [4]. Shortage of experts and high costs make computer aided
diagnosis (CAD) a necessary as an cost-effectiveness and data-driven skin dis-
ease diagnosis tool to fight against the increasing mortality of skin cancers.
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A skin lesion is visually examined in two steps: clinical screening followed
by dermoscopic analysis. Dermoscopy images are highly standardized images
obtained through a high-resolution magnifying imaging device in contact with
the skin. Clinical images, on the other hand, are taken by a standard digital
camera and present more variations in view, angle and lighting. The majority
of automated skin disease classification methods [7] could exhibit limited gen-
eralization capability when both dermoscopic and clinical modalities are being
used because their domain-specific hand-crafted features are designed specifically
for dermoscopy images [1]. Self feature learning scheme like deep convolutional
neural networks (DCNNs) trained on very large datasets [11] has shown impres-
sive performance in visual tasks such as object recognition and detection [12].
More importantly, those learned networks can be easily adapted to other domain
tasks such as medical image segmentation [2] and skin cancer feature detec-
tion [5], all of which only cater for single image modality of dermoscopy.

To take advantage of multi-modality information embedded within der-
moscopy and clinical images of the skin lesion, we develop a jointly-learned
multi-modality DCNN along with a saliency-based feature descriptor to address
the challenging problem of skin disease classification. The contributions of this
paper are the following: (i) We propose and analyze several strategies to optimize
DCNNs parameters learning of two image modalities. (ii) We propose a DCNN-
based feature descriptor Class Activation Mapping-Bilinear Pooling (CAM-BP)
which is able to locate saliency areas of skin images. During inference, CAM-
BP assists the decision making process by producing probability maps, which
improves the overall performance. (iii) We conduct comprehensive experiments
and show the effectiveness of the proposed method on three diagnostic use cases:
multi-class skin disease classification (across 15 disease categories), skin cancer
recognition and melanoma detection.

2 Methods

In this work we explore the advantages of connecting two image modalities
through a joint learning DCNN framework, and propose a novel saliency fea-
ture descriptor for multi-modality skin disease classification task. In Sect. 2.1,
we first introduce two schemes for multi-modality learning (Sole-Net and Share-
Net), then discuss our proposed framework Triple-Net. In Sect. 2.2, we introduce
CAM-BP and explain how and why saliency information is important for dis-
criminative feature pooling.

2.1 Cross-Modality DCNN Learning

Sole-Net: We first explore Sole-Net which is a fairly intuitive DCNN method
combining information of two modalities. Each DCNN parameters are being
learnt separately from each modality, and the final decision is obtained by aver-
aging of outputs from the two trained models. The architecture of Sole-Net is
illustrated in Fig. 1(a). We first denote (xC , xD) the pair training set where xC
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Fig. 1. Figure shows comparison of several DCNN frameworks which accept multi-
modal inputs. (a) Sole-Net: Features from the two modalities are learnt in an dissoci-
ated manner with two separate loss functions (network blocks in two different colors).
(b) Triple-Net: To improve upon the cross modelling ability, a new sub-network is
trained on concatenated feature maps from middle layers.

and xD are the clinical and dermoscopy images from one lesion. Each of those
two DCNNs CC and CD contains a singe-modality learning sub-network with
different parameters in different colors (blue and yellow). The cost function of
each modality sub-network can be computed as1:

costC = ||pC(xC) − yC/D||22 (1)

costD = ||pD(xD) − yC/D||22 (2)

where costC represents the cost for clinical image and costD denotes the cost for
dermoscopy image inputs. pC(xC) and pD(xD) (p1 and p2 in the Figure) are the
outputs of each network. yC/D is the shared one-hot vector disease label of the
observed lesion.

Share-Net: Then we explore the Share-Net where the architecture is similar
to Sole-Net except CC and CD are sharing identical parameters. The gross cost
function of Share-Net can be defined as:

costS = ||pS(xC) − yC/D||22 + ||pS(xD) − yC/D||22 (3)

During training, the Share-Net allows its parameters across two sub-networks
to be updated in a mirrored manner, The advantage of this architecture is that
with the inputs of the same semantic meaning (i.e. both modalities belonging
to same lesion), sharing weights across sub-networks means fewer parameters to
train, which in turn means that less data required, and the model is less prone
to overfitting [3].

Triple-Net: Sole-Net is capable to capturing single-modality information. How-
ever, it lacks the ability to generalize to other modalities (see Sect. 3.1). Share-
net can obtain cross-modality knowledge to some extend, but it is limited by
1 In the experiment, we observed minor overall performance difference between mean

square loss and cross-entropy loss.
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its capacity to learn discriminative cross-modality features because of sharing
weights scheme. To exploit the merits of using cross-modality and single-modality
information simultaneously, we propose Triple-Net. The proposed framework
takes advantage of Sole-Net and Share-Net, but also contains extra sub-network
and loss to improve discriminative cross-modality feature learning. As illustrated
in Fig. 1, our proposed DCNN framework consists of three sub-networks. The first
two sub-networks configure the same as the Share-Net. The third sub-network
CT takes in two corresponding convolutional feature maps RCl and RDl from a
stage output (lth layer) of two sub-networks CCl and CDl. The Triple-Net has
multiple cost functions and the cross-modality cost can be computed as:

costT = ||pT (plC(xC), plD(xD)) − yC/D||22 (4)

plC/D denotes the lth layer output of the network. pT indicates the cross repre-
sentation sub-network output. With the costs computed from Eq. (3) and (4),
the overall Triple-Net cost is calculated as:

costoverall = costS + α ∗ costT (5)

where α is a hyper-parameter to setup the trade-off between single-modality and
cross-modality learning rates. During prediction process, both single-modality
and cross-modality are being used for decision making. The single-modality sub-
network takes as pC(xC) + pD(xD) an indicator for class prediction while cross-
modality sub-network takes pT (plC(xC), plD(xD)) as the evidence for decision.
Triple-Net employs the combinations of those two.

2.2 Saliency Feature Learning

To take advantage of fine-grained information contained in the appearance of
skin lesions, feature pooling method such as Bilinear Pooling (BP) [10] applied to
DCNNs is a good candidate to capture fine-grained details within the image [6].
In short, it performs outer-product pair-wisely between two sub-feature maps
from two DCNNs to generate distinctive representations (more details in [6,10]).
However, the major disadvantage of BP is that grid-based local points are equally
weighted (see Fig. 2) which leads to inability to catch saliency such as lesion area
of skin images. To deal with this issue, we propose to pool BP features with
spatial weights dependent on a saliency map.

Saliency map can be interpreted as the area that is most likely to belong
the foreground and to contain crucial information of the image. Class activation
map (CAM) is a technique to generate class activation maps using the global
average pooling [15]. Each labeled category gets a class-based activation map
which indicates the discriminative regions by the CNN to identify that class.
CAM provides evidences which can be used to measure the probability to be a
foreground object. In our proposed CAM-BP, we apply CAM as a saliency map
to weight BP features. An illustration of CAM-BP is shown in Fig. 2. It can be
formulated as: ∑

C

∑
k wc

kfk(i, j)
Z

� vec(fk(i, j)fk(i, j)T ) (6)
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Fig. 2. Proposed saliency-based CAM-BP method: CAM activation map and BP are
extracted separately. Then, the output of BP is spatially-weighted based on CAM to
generate CAM-BP representation.

f(i, j)k ∈ R
d denotes the activation of feature map k in one of the convolutional

layer at location (i, j). Where wk indicates the importance of the activation
unit k at spatial location (i, j) driving to the final decision of class c. Z is a
term to normalize the equation sums up to 1. The left side of element-wise
production in Eq. 6 indicates how CAM is calculated and right side denotes
BP. vec() is the vectorization operation to compute the outer-product, thus
vec(fk(i, j)fk(i, j)T ) ∈ R

d2
. Average sum pooling is calculated to produce the

final feature representation.

3 Experiments

Dataset: The dataset used in this work is provided by MoleMap2. The images
are annotated by expert dermatologists with disease labels. To validate the effec-
tiveness of our methods, we select a subset of 13,292 lesions which contains at
least one image from each modality. We then randomly acquire two images from
each lesion covering both modalities to prepare the dataset, resulting in 26,584
images from 15 skin conditions; 12 benign categories3 and 3 types of skin can-
cer including melanoma, basal cell carcinoma and squamous cell carcinoma. We
randomly partition the dataset into the ratio 7:3 for training and testing.

Network and training: We use VGG-16 CNN architecture [12] pre-trained to
92.6% top-five accuracy on the 2012 ImageNet Challenge as the base model for
our evaluated frameworks. The extra sub-network in Triple-Net takes network
blocks starting from the last Conv layer of VGG-16 and trained from scratch
with batch normalization. We then use fine-tuning to optimize the parameters of
the DCNNs given the amount of available training data. All layers of the network
are fine-tuned with a learning rate of 0.001 and a decay factor of 0.95 every epoch.

2 http://molemap.co.nz.
3 Actinic Keratosis, Blue Naevus, Bowens Disease, Compound Naevus, Dermal Nae-

vus, Dermatofibroma, Hemangioma, Junctional Naevus, Keratotic Lesion, Sebor-
rheic Keratosis, Sebaceous Hyperplasia and Solar Lentigo.

http://molemap.co.nz
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Stochastic gradient decent (SGD) with momentum of 0.9 and decay of 5e–5 is
used to train the network. During training, images are augmented with random
mirroring. α in Eq. 5 is fixed to 1.5 to ensure a relatively high updating rate
because of raw parameters. Following the training process as in [15], GoogLeNet
is used as the base network to generate CAM and trained individually.

3.1 Analysis of Cross-Modality Learning

First, we validate the importance of cross-modality on three various of DCNNs
described in Sect. 2.1 using 15-class skin disease classification task. The results
are reported as overall accuracies. In this task from first two blocks of Table 1
we observe that: (1) Share-Net outperforms Sole-Net on both modalities, 54.1%
vs 52.2% on clinical images and 55.0% vs 53.1% on dermoscopy images. (2)
Cross-modality outputs boost the performance significantly. Compared with
single-modality prediction, cross-modality predictions of Sole-Net and Share-Net
results in nearly 16% and 15% improvement, respectively. (3) Triplet-Net out-
performs Sole-Net and Share-net achieving 68.2% accuracy. Some classification
samples of our proposed method are illustrated in Fig. 3.

The benefits of cross-modality learning can be further investigated in terms
of swapping the modality inputs. Ideally, the performance of a well-regularised
DCNN should be robust to modality swapping as the pair inputs represent the
same semantic meaning (same lesion). From experimental results, we observed
the performance drop is 7% less on Triple-net compared to Sole-Net, which shows
that Triple-Net is more tolerable to modality swapping.

3.2 Results with CAM-BP

To conclusively evaluate the proposed CAM-BP, we apply it to both multi-
modal approach of Share-Net and Triplet-Net, which reflect the generalization
of this feature descriptor to various DCNNs. Figure 3 (bottom row) shows a
few image samples demonstrating the effectiveness of CAM-BP in capturing

lesion 1 lesion 3lesion 2 lesion 4

Fig. 3. The bottom row of the figure shows CAM-BP activation maps of two modalities
clinical (left patch) vs. dermoscopy (right patch) for four different moles. The upper
row shows samples where using only one modality has resulted in misclassification
(marked in red block), but when both modalities are used in our proposed system the
disease label is picked up correctly.



256 Z. Ge et al.

Table 1. Results on 15-disease classification

Methods Modality Accuracy

Sole-Net Dermoscopic/Clinical 53.1%/52.2%

Share-Net Dermoscopic/Clinical 55.0%/54.1%

Triple-Net Dermoscopic/Clinical 60.1%/59.4%

Sole-Net Cross 61.2%

Share-Net Cross 62.9%

Triple-Net Cross 68.2%

Share-Net + CAM-BP Dermoscopic/Clinical 57.4%/58.1%

Triple-Net + CAM-BP Dermoscopic/Clinical 61.3%/61.2%

Share-Net + CAM-BP Cross 64.6%

Triple-Net + CAM-BP Cross 70.0%

Fig. 4. Figure on the left shows our proposed method performance on three different
skin disease detection tasks.

complementary saliency area from both modalities. This is important in clinical
practice because visualizing the activation area provided by CAM-BP makes the
model more interpretable. From last block of Table 1, the improvements across
different DCNNs varies, but the overall performance improvement is consistent
reaching 70% accuracy for 15-class skin disease classification.

3.3 Comparative Study and Other Detection Tasks

We have re-produced the results of the two other related DCNN-based meth-
ods modified on our image set: the residual network (ResNet) which achieved the
state-of-the-arts on ImageNet 2015 challenge [9], and residual network with bilin-
ear pooling (ResNet-BP) [8] which achieved the best performance on the ISBI
16 skin classification challenge. Figure 4 (right) shows the comparison results of
our proposed method with previous competitive methods on 15 skin disease clas-
sification using single and cross modalities. Although the pre-trained network
(VGG-16) being used in our method is smaller than ResNet in terms of number of
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layers and parameters, we obtain 6.7% relative performance gain against ResNet-
BP on 15 diseases classification task using multiple image modalities.

Moreover, we have examined the performance of our method on another two
use cases including detecting 3 cancer types, and more specifically recognizing
melanoma. In Fig. 4 (left), we observe that by combing two modalities, our pro-
posed Triple-Net CAM-BP achieves impressive results on distinguishing between
cancerous and non-cancerous moles with an accuracy of 82.0%, and detecting
melanoma from benign lesions with 96.6% accuracy.

4 Conclusion

In this work, we demonstrate the effectiveness of cross-modality learning of
DCNN for skin classification on a method accept both dermoscopy and clinical
inputs. The key advantage of our method resides in two parts: (i) the use of cross-
modality learning that extracts comprehensive features from sub-networks. (ii)
the use of CAM-BP helps to locate the saliency area where the most important
information can be retrieved, and produces discriminative features for inference.
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