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Abstract. There are many different types of pancreatic cysts. These
range from completely benign to malignant, and identifying the exact cyst
type can be challenging in clinical practice. This work describes an auto-
matic classification algorithm that classifies the fourmost common types of
pancreatic cysts using computed tomography images. The proposed app-
roach utilizes the general demographic information about a patient as well
as the imaging appearance of the cyst. It is based on a Bayesian combi-
nation of the random forest classifier, which learns subclass-specific demo-
graphic, intensity, and shape features, and a new convolutional neural net-
work that relies on the fine texture information. Quantitative assessment
of the proposed method was performed using a 10-fold cross validation on
134 patients and reported a classification accuracy of 83.6%.

1 Introduction

Pancreatic cancer, or pancreatic ductal adenocarcinoma (PDAC) as it is for-
mally known, is one of the most lethal of all cancers with an extremely poor
prognosis and an overall five-year survival rate of less than 9%. There are no
specific early symptoms of this disease, and most of the cases are diagnosed
at an advanced stage after the cancer has spread beyond the pancreas. Early
detection of the precursors of PDAC could offer the opportunity to prevent the
development of invasive PDAC. Two of the three precursors of PDAC, intra-
ductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms
(MCNs), form pancreatic cysts. These cysts are common and easy to detect with
currently available imaging modalities such as computed tomography (CT) and
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magnetic resonance imaging. IPMNs and MCNs can be relatively easily identified
and offer the potential for the early identification of PDAC. However, the issue
is complicated because there are many other types of pancreatic cysts. These
range from entirely benign, or non-cancerous cysts, such as serous cystadeno-
mas (SCAs), which do not require surgical intervention, to solid-pseudopapillary
neoplasms (SPNs), which are malignant and should undergo surgical resection.
These issues highlight the importance of correctly identifying the type of cyst to
ensure appropriate management [5].

The majority of pancreatic cysts are discovered incidentally on computed
tomography (CT) scans, which makes CT the first available source of imaging
data for diagnosis. A combination of CT imaging findings in addition to general
demographic characteristics, such as patient age and gender, are used to dis-
criminate different types of pancreatic cysts [5]. However, correctly identifying
cyst type by manual examination of the radiological images can be challenging,
even for an experienced radiologist. A recent study [9] reported an accuracy of
67–70% for the discrimination of 130 pancreatic cysts on CT scans performed
by two readers with more than ten years of experience in abdominal imaging.

The use of a computer-aided diagnosis (CAD) algorithm may not only assist
the radiologist but also ameliorate the reliability and objectivity of differentiation
of various pancreatic cysts identified in CT scans. Although many algorithms
have been proposed for the non-invasive analysis of benign and malignant masses
in various organs, to our knowledge, there are no CAD algorithms for classifying
pancreatic cyst type. This paper presents a novel non-invasive CAD method
for discriminating pancreatic cysts by analyzing imaging features in conjunction
with patient’s demographic information.

2 Data Acquisition

The dataset in this study contains 134 abdominal contrast-enhanced CT scans
collected with a Siemens SOMATOM scanner (Siemens Medical Solutions,
Malvern, PA). The dataset consists of the four most common pancreatic cysts:
74 cases of IPMNs, 14 cases of MCNs, 29 cases of SCAs, and 17 cases of SPNs.
All CT images have 0.75 mm slice thickness. The ages of the subjects (43 males,
91 females) range from 19 to 89 years (mean age 59.9 ± 17.4 years).

Fig. 1. Examples of pancreatic cyst appearance in CT images
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One of the most critical parts in the computer-aided cyst analysis is segmen-
tation. The effectiveness and the robustness of the ensuing classification algo-
rithm depend on the precision of the segmentation outlines. The outlines of each
cyst (if multiple) within the pancreas were obtained by a semi-automated graph-
based segmentation technique [3] (Fig. 1), and were confirmed by an experienced
radiologist (E.F.). The histopathological diagnosis for each subject was confirmed
by a pancreatic pathologist (R.H.H.) based on the subsequently resected spec-
imen. The segmentation step was followed by a denoising procedure using the
state-of-the-art BM4D enhancement filter [6].

3 Method

This work describes an ensemble model, designed to provide an accurate histo-
pathological differentiation for pancreatic cysts. This model consists of two prin-
cipal components: (1) a probabilistic random forest (RF) classifier, which ana-
lyzes manually selected quantitative features, and (2) a convolutional neural
network (CNN) trained to discover high-level imaging features for a better dif-
ferentiation. We propose to analyze 2D axial slices, which can be more efficient
in terms of memory consumption and computation compared to the analysis of
3D volumes. The overall schema of the proposed method is illustrated in Fig. 2.

Fig. 2. A schematic view of the proposed classification ensemble of (a) a random for-
est trained to classify vectors of quantitative features, and (b) a convolutional neural
network for classification based on the high-level imaging features. Their Bayesian
combination (c) generates the final class probabilities.

3.1 Quantitative Features and Random Forest

The most common features mentioned in the medical literature that are used
for initial pancreatic cyst differentiation involve gender and age of the subject,
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as well as location, shape and general appearance of the cyst [9]. In this paper,
we define a set Q of 14 quantitative features to describe particular cases by:
(1) age a ∈ Q and gender g ∈ Q of the patient, (2) cyst location l ∈ Q,
(3) intensity I ⊂ Q and (4) shape S ⊂ Q features of a cyst. The importance
and discriminative power of these features are described below.

1. Age and Gender. Several studies reported a strong correlation between
age and gender of a patient and certain types of pancreatic cysts [1,5]. For
example, MCN and SPN often present in women of premenopausal age. In
contrast, IPMNs have an equal distribution between men and women, and
typically present in patients in their late 60s.

2. Cyst location. Certain cyst types are found in particular locations within
the pancreas. For example, the vast majority of MCNs arise in the body or
tail of the pancreas.

3. Intensity features. Due to the differences in the fine structure of pancreatic
cysts, such as homogeneity versus common presence of septation, calcification
or solid component, we use the set {Ī , s, κ, γ,M} ∈ I, which are the mean,
standard deviation, kurtosis, skewness and median of intensities, respectively,
as the global intensity features for coarse initial differentiation.

4. Shape features. Pancreatic cysts also demonstrate differences in shape
depending on the category. Specifically, cysts can be grouped into three cat-
egories: smoothly shaped, lobulated and pleomorphic cysts [1]. To capture
different characteristics of the shape of a cyst, we use volume V ∈ S, surface
area SA ∈ S, surface area-to-volume ratio SA/V ∈ S, rectangularity r ∈ S,
convexity c ∈ S and eccentricity e ∈ S features summarized in [11].

Given a set D = {(x1, y1), ..., (xk, yk)} of examples xi of pancreatic cysts of known
histopathological subtypes yi ∈ Y = {IPMN,MCN,SCA, SPN}, we compute
a concatenation qi = (ai, gi, li, Īi, si, κi, γi,Mi, Vi, Si, SAi, SA/Vi, ri, ci, ei) of the
described features for all k samples in the set D.

Following feature extraction, we use an RF classifier to perform the clas-
sification of a feature vector qm computed for an unseen cyst sample xm. RF-
based classifiers have shown excellent performance in various classification tasks,
including numerous medical applications, having high accuracy of prediction and
computation efficiency [7,8].

More formally, we use a forest of T decision trees implemented with the scikit-
library1. Each decision tree θt predicts the conditional probability Pθt

(y|qm) of
histopathological class y, given a feature vector qm. The final RF class proba-
bility can be found as the following:

P̃1(ym = y|xm) = P̃RF(ym = y|qm) =
1
T

T∑

t=1

Pθt
(ym = y|qm). (1)

For more details, we refer the reader to the technical report [2].

1 http://scikit-image.org.

http://scikit-image.org
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3.2 CNN

As described in Sect. 4, RF trained on the proposed quantitative features can
be used for cyst classification with reasonably high accuracy. However, despite
high generalization potential, the proposed features do not take full advantage of
the image information. In particular, due to variations in the internal structure
of pancreatic cysts, they show different image characteristics: SCA often has a
honeycomb-like appearance with a central scar or septation, MCN demonstrates
a “cyst within cyst” appearance with peripheral calcification, IPMN tends to
have a “cluster of grapes” appearance, and SPN typically consists of solid and
cystic components [12]. However, these imaging features can overlap, especially
when the cyst is small and the internal architecture cannot be differentiated.

We apply CNN as a second classifier, which can better learn barely percep-
tible yet important image features [10]. The proposed CNN, shown in Fig. 2(b),
contains 6 Convolutional, 3 Max-pooling, 2 Dropout and 3 Fully-connected (FC)
layers. Each convolutional and the first two FC layers are followed by the rec-
tified linear unit (ReLU) activation function; the last FC layer ends with the
softmax activation function to obtain the final class probabilities.

The data for training and testing the proposed CNN were generated as fol-
lows. Each 2D axial slice XSlice

ij of the original 3D bounding box {XSlice
ij } with a

segmented cyst xi was down-/up-sampled to 64×64 pixels squares, using bicubic
interpolation. Visual examination confirmed the preservation of the important
features. Due to the generally spherical shape of a cyst, slices near the top and the
bottom of the volume do not contain enough pixels of a cyst to make an accurate
diagnosis. Therefore, slices with the overlap ratio less than 40%, defined as the
percentage of cyst pixels in a slice, were excluded. We also incorporated a data
augmentation routine to increase the size of the training dataset and to prevent
over-fitting: (1) random rotations within [−25◦; +25◦] degree range; (2) random
vertical and horizontal flips; (3) and random horizontal and vertical translations
within [−2;+2] pixels range.

The network was implemented using the Keras library2 and trained on 512-
sized mini-batches to minimize the class-balanced cross-entropy loss function
using Stochastic Gradient Descent with a 0.001 learning rate, momentum of 0.9,
weight decay of 0.0005 for 100 epoch. In the testing phase, each slice with the
overlap ratio more than 40% was analyzed by the CNN separately, and the final
probabilities were obtained by averaging the class probabilities for each slice:

P̃2(ym = y|xm) = P̃CNN(ym = y|{XSlice
ij }) =

1
Jm

Jm∑

j=1

PCNN(ym = y|XSlice
mj ), (2)

where PCNN (ym = y|XSlice
mj ) is the vector of class probabilities, and Jm is the

number of 2D axial slices used for the classification of cyst sample xm.

2 Chollet, F.: Keras. https://github.com/fchollet/keras (2015).

https://github.com/fchollet/keras


Classification of Pancreatic Cysts in Computed Tomography Images 155

3.3 Ensemble

Although our dataset is representative of the types of cysts that arise in the
population, we still recognize that it contains limited information and might
not include enough cases of cysts of rare imaging appearance, which is crucial
for obtaining robust CNN performance. Therefore, we hypothesize that the RF
classifier will show a better performance at classifying small cysts, which do not
have enough distinctive imaging features, by utilizing the clinical information
about the patient and the general intensity and shape features, whereas CNN is
expected to show a similar performance but at analyzing large cysts.

It has been shown that combinations of multiple classifiers, classifier ensem-
bles, achieve superior performance compared to single classifier models [4], by
learning different, presumably independent classification subproblems separately.
Therefore, after training RF and CNN classifiers independently, we perform a
Bayesian combination to ensure that a more robust and accurate classifier has
more power in making the final decision. Mathematically, the final histopatho-
logical diagnosis ŷ can be written in the following way:

ŷm = arg max
y∈Y

P̃1(ym = y|xm)P̃2(ym = y|xm)
∑

y′∈Y
∏2

c=1 P̃c(ym = y′|xm)
. (3)

4 Results and Discussion

We evaluated the performance of the proposed method using a stratified
10-fold cross-validation strategy, maintaining similar data distribution in train-
ing and testing datasets to avoid possible over- and under-representation of
classes due to the imbalance in the dataset. Classification performance is
reported in terms of the normalized averaged confusion matrix and the overall
classification accuracy. We also analyze the dependency between the accuracy of
the individual and ensemble classifiers and the average size of the misclassified
cysts.

All experiments were performed using an NVIDIA Titan X (12 GB) GPU.
The training of RF and CNN classifiers took approximately 1 s and 30 min,
respectively, during each cross-validation loop. The test time for the final class
probabilities took roughly 1 s to compute for a single sample.

Table 1. Confusion matrices of the RF (left) and CNN (right) classifiers

Ground Truth
RF Prediction (%)

IPMN MCN SCA SPN

IPMN 95.9 1.4 2.7 0.0
MCN 21.4 64.3 14.3 0.0
SCA 51.7 3.5 37.9 6.9
SPN 5.9 0.0 0.0 94.1

Ground Truth
CNN Prediction (%)

IPMN MCN SCA SPN

IPMN 93.2 4.0 1.4 1.4
MCN 57.1 28.6 14.3 0.0
SCA 37.9 0.0 48.3 13.8
SPN 0.0 0.0 0.0 100.0
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Results of the individual classifiers. We first compare the performance of
the RF and CNN classifiers separately, and the overall accuracy is 79.8% and
77.6%, respectively. The quantitative details are provided in Table 1. The exper-
iments showed that the accuracy of 30 trees in RF lead to the error convergence
and was sufficient to achieve the best performance. Prior to developing the pro-
posed set of quantitative features, we also evaluated the performance of the RF
classifier when using only age, gender, and the location of the cyst within the
pancreas, as the most objective criteria used by clinicians. The overall accuracy
was 62%, and adding the volume of the cyst as a feature improved the classifi-
cation by 2.2%. In addition, we investigated the performance advantages for the
CNN when using the data augmentation routine. Specifically, we found that the
use of data augmentation improves the overall accuracy of the CNN by 13.2%.

One of the interesting, but also expected, outcomes is the average size of
the misclassified cysts. In particular, the CNN classifier struggles to correctly
interpret cysts of a volume smaller than 9 cm3 or 2.3 cm in diameter (average
volume and diameter of misclassified cysts are 5.1 cm3 and 1.3 cm, respectively),
which are reasonably challenging due to the absence of distinctive appearance.
However, the accuracy of the RF does not show such dependence (average volume
and diameter of misclassified cysts are 81 cm3 and 5.2 cm, respectively).

Results of the ensemble classifier. In this experiment, we test the effect of
the Bayesian combination of the RF and CNN classifiers on the performance,
and the results are presented in Table 2. The overall accuracy is 83.6%, which
is higher than the performance of the individual classifiers. It is also interesting
to note the change in the average volume and diameter of the misclassified
cysts, which are 65 cm3 and 4.8 cm for the ensemble model, respectively. These
results validate our hypothesis and justify the decision to combine the RF and
CNN classifiers into a Bayesian combination to consider their separate diagnoses
depending on how accurate they have been at analyzing the training dataset.

Table 2. Confusion matrix of the final ensemble classifier.

Ground truth Ensemble Prediction (%)

IPMN MCN SCA SPN

IPMN 95.9 1.4 1.4 1.4

MCN 14.3 64.3 21.4 0.0

SCA 34.5 3.5 51.7 10.3

SPN 0.0 0.0 0.0 100.0

5 Conclusion and Future Work

In this work, we proposed an ensemble classification model to identify pancreatic
cyst types automatically. The proposed algorithm is based on a Bayesian com-
bination of an RF classifier and a CNN to make use of both clinical information
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about the patient and fine imaging information from CT scans. The reported
results showed promising performance and achieved an overall accuracy of 83.6%.
However, our study faces some limitations. In particular, our dataset was limited
to only four most common pancreatic cyst types. Future work will extend the
model to include other types and will evaluate the ability of the algorithm to
differentiate IPMNs and MCNs with low- or intermediate-grade dysplasia from
those with high-grade dysplasia or an associated invasive adenocarcinoma. This
differentiation is critical in determining appropriate therapy.
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