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Chapter 4
Metal Ions Introduced to Proteins 
by Supramolecular Ligands
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Abstract  Congo red and other supramolecular structures may intercalate various 
foreign compounds, particularly planar ones. Such hybrid ligands, acting as a unit, 
may attach themselves to proteins and penetrate into their interior, together with any 
intercalated substances. If the intercalant is a metal complexone, a stable metallo-
protein may be formed. This chapter discusses intercalation of metal complexones 
with metal ions bound by supramolecular Congo red as a means of introducing 
contrast to amyloid-like aggregates in order to trace the initial stages of amyloido-
genesis. We investigate the applicability of Titan yellow carrying silver ions, and the 
alizarin complexone carrying tungsten and lead ions.
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4.1  �Metal Ions in Natural Biological Systems

Many proteins, including enzymes, rely on metal ions for their biological activity. 
The ions themselves are usually transition metals, such as iron, cobalt, nickel or 
copper. They enable catalysis due to their electron structure and the ability to form 
coordinate bonds. Another commonly encountered metal is zinc – it can be found 
e.g. in proteolytic enzymes known as metalloproteinases whose peculiar complex-
ation capabilities have attracted much scientific attention.

Nearly one-third of all known enzymes include some type of metal ion. Metals 
are primarily associated with catalysis, but they also play an important part in for-
mation of specific complexes, such as oxygen binding – e.g. in hemoglobin, which 
contains iron. Metals are also encountered in transcription factors, and along many 
other biochemical pathways, such as respiration. Certain protein complexes are 
dedicated to sequestration and/or accumulation of metals (e.g. siderophilin and fer-
ritin) as well as detoxification (e.g. metallothionein).

Transition metals are sometimes referred to as “d”-electron metals due to the 
involvement of their “d” orbitals in atomic interactions. They form a variety of com-
pounds with interesting spectroscopic and magnetic properties whose practical 
applications are the subject of ongoing research [1–17]. In the cell, metals are usu-
ally found in their complexed form, either as standalone ions or inside specific pla-
nar carrier compounds encapsulated by proteins  – e.g. the porphyrin ring in 
hemoglobin. Proteins provide the capability to bind metals, isolate them from water 
and may introduce favorable steric conditions [18]. A classic example is hemoglo-
bin, which enables oxygen binding without oxidation of the bivalent iron. Combining 
metal ions with proteins enhances their catalytic potential. The search for artificial 
structures with desirable catalytic properties is an important topic in medical sci-
ence. The bond between the metal and the protein should not be random in charac-
ter, since such uncontrolled complexation is usually encountered on the protein 
surface, where the metal remains in contact with water. In order to reduce polarity, 
the ion should optimally be placed right in the pocket of the active group. In prac-
tice, however, this is a very challenging task. An interesting solution is proposed in 
[19], where a metal ion was attached to streptavidin by connecting the Ru complex 
with biotin via a carboxyl group. This resulted in catalytic activity even though the 
complexed ion was located nearly on the surface (the biotin binding cavity has a 
depth of approximately 15Ǻ, which coincides with the length of the complex) [20].

4.2  �Insertion of Metal Ions into Proteins by Supramolecular 
Ligands

An entirely different approach to binding metals with proteins relies on supramo-
lecular ligands. Such ligands can form stable complexes with proteins which have 
become susceptible to penetration as a result of function-related structural changes, 
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or which possess such properties natively [21–23]. Certain proteins can be induced 
to undergo complexation with supramolecular ligands e.g. by heating, which causes 
partial unfolding of the polypeptide chain. However, only ribbonlike supramolecu-
lar structures are capable of penetrating into proteins and forming stable complexes. 
Examples include CR, EB and others [24, 25] – dyes with known affinity for amy-
loids and immune complexes [26]. Supramolecular systems (e.g. CR) may, in turn, 
intercalate a variety of planar compounds with a polyaromatic ring structure and/or 
positive charge. Hence if the intercalant itself contains a metal ion, the ion can be 
attached to the protein. As a result supramolecular ligands can bind metal ions to 
proteins by intercalating their complexons.

The supramolecular ligand usually binds outside of the protein’s active site. The 
complex is formed in the distal part of the molecule, however the ligand penetrates 
into the protein interior, where polarity is lower and no water is present – similarly 
to the active site [22, 27, 28]. Exposure of the intercalated metal ion depends on the 
structure of the resulting complex. This means that attaching metals to proteins 
seems at the moment more convenient than through the use of customized sub-
strates or enzymatic inhibitors. The ion is not delivered to the active site, but the 
resulting conformation shares some similarities with the structure of the active site, 
and may possess useful biological properties.

The goal of our team was to confirm the proposed means of attaching metals to 
proteins, and also to devise a way to equip CR – a known amyloid stain – with con-
trast for the purposes of EM imaging. The complexation of CR with amyloids is the 
subject of numerous studies [29–31]. The problem is difficult and its molecular 
underpinnings remain speculative, since CR itself is not visualized under electron 
microscopy, while amyloids – despite their ordered structure – do not attain the 
necessary level of crystallization order. One putative solution would be to add con-
trast to CR itself to visualize its distribution with respect to amyloid deposits. 
Assuming that CR binds to amyloids as a supramolecular system, the contrast could 
be introduced as a metal-containing intercalant. The proposed compound – TY – 
comprises symmetric polar groups and aromatic rings [32, 33] (Fig. 4.1). Its halves 
are linked by a tri-azo bond capable of complexing metal ions, particularly silver 
and mercury. The silver-containing complex is more convenient due to its stability 
and formation in both neutral and slightly alkaline environments. TY/Ag+ complex-
ation is also easy to detect since its spectrum differs markedly from the spectrum of 
free TY (Fig. 4.1).

The complex withstands electrophoretic dissociation in alkaline pH in a tris buf-
fer (Fig. 4.2). It dissociates in the presence of anions, yielding insoluble silver com-
pounds (solubility coefficient < 10−13), which indicates that in biological systems 
only thiol groups are effectively able to react with silver bound in the complex. A 
certain disadvantage of this complex is its notable viscosity. This is due to the spe-
cific mode of interaction between the silver ion and the tri-azene bond – it may 
involve both coordination valence electrons of silver ion, or only one, if the other 
has easy access to the tri-azene group of another dye molecule. This phenomenon 
promotes association of complexes, particularly at high dye concentrations. 
Fortunately, the viscosity of TY/Ag+ complexes is greatly decreased in the presence 
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Fig. 4.1  Spectral changes effect of silver ion complexation with TY
Inset: the formula of TY

Fig. 4.2  Agarose 
electrophoresis of dyes 
used for staining amyloids 
and amyloid-like 
aggregates. Accelerated 
migration of CR mixed 
with TY is the evidence of 
mutual complexation. 
1 – TY/Ag+, 2 – TY, 
3 – CR/TY, 4 – CR
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of CR, whose molecules separate the intercalants, preventing mutual interactions. 
Intercalation of TY enhances the contrast characteristics of CR, rendering it useful 
for EM imaging of amyloids.

Initial research involving contrast-enhanced CR has been carried out with 
amyloid-like aggregations formed by shaking of IgG light chains at increased tem-
peratures (40–45  °C), following which the precipitate was treated with the CR-
TY-Ag+ complex. The progressive appearance of structural order can be observed 
by imaging CR, which is a selective amyloid stain. In the presented case, aggrega-
tions were formed by shaking an amyloidogenic protein (IgG light chain) in condi-
tions verging on denaturation: increased temperature and pH inconsistent with the 
protein’s isoelectric point. These conditions promote the formation of amorphous 
aggregations in which seeds of order randomly emerge – typically as short, spiraling 
threads capable of binding the supramolecular dye. Such ordering is easier to 
observe and analyze along the edges of solids and/or in fine flecks of aggregates. 
The contrast medium carried by CR greatly simplifies molecular analysis.

Figure 4.3 presents the contrast-enhanced aggregate as seen under an electron 
microscope. Accurate interpretation of results requires however carefully prepared 
samples and an optimized method – still, even at this early stage it seems evident 
that the image carries useful information. Functional optimization should involve 
formation and stability of the protein-metal complex, but also even distribution of 
CR and the intercalated contrast medium. A classic amyloid aggregation formed by 
commercially available peptides (amyloid beta) is shown in Fig. 4.4 – it appears as 
twisted strands whose thickness depends on the synthesis procedure.

The proposed approach may also be used to stain antibodies engaged in immune 
complexes, since immune complexation renders antibodies susceptible to penetra-
tion by CR [34, 35]. Figure 4.5 presents sheep red blood cell membranes (ghosts) 
broken to pieces by homogenization and then agglutinated by specific antibodies 
obtained from the sensitized rabbit (anti-SRBC serum).

Another, more universal complexon analyzed in the search for convenient meth-
ods of attaching metal ions into proteins is the alizarincomplexone (Fig.  4.6). It 
fulfills all the necessary conditions – it can bind a variety of metals and is itself 
intercalated by CR.

Unfortunately, it requires acidic conditions, since metal complexation is medi-
ated by two acetic acid residues (which undergo ionization in a neutral or basic 
environment, declining their ability to bind the metal). The problem is additionally 
exacerbated by the fact that in pH < 5 CR transitions into a chinoid compound, 
becoming insoluble. Taken together, these two phenomena establish a rather narrow 
pH range where effective complexation may take place. The alizarincomplexone 
forms complexes with cobalt, lead, nickel and with the salts of certain other metals 
such as molybdenum and nickel. Complexation is evidenced by spectral changes 
(Figs. 4.7 and 4.8). Complexes persist under electrophoresis.
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Tungsten and lead complexes may serve as a contrast medium when intercalated 
by CR in 0.05 M acetate buffer (pH = 5.9).

The resulting EM images reveal various modes of aggregation, depending on the 
target polypeptide chain and environmental conditions. In most cases the aggregate 
is amorphous but contains islands of ordered structures, seen as granular chains of 
varying length, with longer chains often spirally twisted. When viewed in polarized 
light, these ordered fragments exhibit birefringence and glow, indicating that they 
constitute of ordered amyloid precursors (Figs.  4.9, 4.10, 4.11 and 4.12). 
Nevertheless, a detailed description of their structure requires further research.

Fig. 4.3  Amyloid-like particles. (A and B) The edge fragments contrasted with complex CR/TY/
Ag+ used as the stain. (C) Aggregates seen in the polarised light
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4.3  �Conclusions

Transition metal ions exhibit complexation capabilities which may be of significant 
practical importance. Biological applications focus on introduction of such ions into 
proteins, where they exhibit greater reactivity than in their unbound form. The role 
of the protein in this process is not entirely clear, although changes in environmental 
factors (particularly reduction in polarity) appear to play an important role. Under 
these assumptions, it is not necessary for the metal ion to be placed in the active site, 
since this is usually not the only area characterized by low polarity. Internalization 
of metal ions is facilitated by supramolecular ligands, capable of penetrating into 
proteins in unstable areas basically other than the active site. Such ligands can serve 
as carriers for a variety of organic molecules, including those which contain metal 
ions. The metal-containing compound is attached to the ligand via intercalation, 
which naturally leads us to search for suitable metal complexones, able to form 
strong bonds with CR. Examples include TY and the alizarin complexone. 
Confirmation of the metal-protein bond is provided by microscopic imaging of 
amyloid-like aggregations formed by the IgG light chain stained by CR in complex 
with TY/silver ions.

EM images reveal amorphous aggregations which contain ordered structures 
capable of binding the contrast medium. Such structures typically adopt the form of 

Fig. 4.4  Amyloid Beta 
1–40 (Sigma) derived 
fibrils stained by (CR/TY/
Ag+) complex seen in EM 
picture. Supplement 
picture below – the 
enlargement of fibrils
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twisted strands and function as seeds for amyloid transformation. In addition to bulk 
solids (which are difficult to study with EM), some aggregates also adopt the form 
of thin membranes, exposing the contrast medium and confirming that supramo-
lecular ligands may successfully attach metal ions to proteins. Thus, the location of 
CR concentrations in microscopic images reveals the shape of the analyzed object. 
While amyloids are known to adopt various structures, depending on the 
conformation of the unit protein and on environmental conditions, all such structures 
retain the ability to bind CR (Figs. 4.7, 4.8, 4.9 and 4.10) show fragments of amy-
loid-like aggregates with portions containing ordered structures exposed by con-
trast. As can be seen, the bulk of the aggregate remains amorphous and incapable of 

Fig. 4.5  Agglutinates of fragmented by homogenisation erythrocyte ghosts (SRBC) stained by 
CR/TY/Ag+. Insets – enlarged fragments
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binding the dye. Due to its thickness, it produces some darkening in the resulting 
images, but even so the contrast is clearly discernible. The ordered forms constitute 
seeds for amyloid transformation, which explains their ability to bind CR.

Aggregation is mediated by light chain V domains, which are less stable than the 
corresponding C domains. Prior to aggregation, V domains undergo partial unfolding 
initiated by displacement of N-terminal chain. This uncovers the interior of domains 
[21] making available a pocket in which the CR aggregate may anchor itself. It 
appears that unfolding affects the so-called upper core [36, 37] and occurs 
symmetrically in the dimeric structure of the protein. Partly unfolded V domains 
may subsequently form beta-beta bonds with adjacent molecules, creating a fibril. 

Fig. 4.6  Spectral changes associating the complexation of alisarine complexon (AC) with tung-
state ion – A and lead ion – B
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The role of the lower core (responsible for stabilization of the inter-chain interface) 
in this process is not clear, as is its involvement in structural rearrangements in the 
V domain. It seems that fibrils can form in either case; however, strand-like products 
are expected to possess different properties. Molecular interpretation of CR binding 
to amyloid fibrils formed by commercially available Amyloid Beta peptide 40 
requires further study. In contrast to native proteins which undergo structural rear-
rangements facilitating penetration of a supramolecular ligand, the packing of Beta 
peptide 40 derived amyloid fibrils is tight and uniform. The dye may potentially 
penetrate in areas where the fibril is sheared or otherwise structurally disrupted. 

Fig. 4.7  Spectral changes presented as an evidence of alizarin complexon binding different met-
als – Mo (A) as molibdate MoO4

2− and Ni2+ (B)
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Complexation is further hampered by the fact that fibrils often consist of multiple 
intertwined strands – in such cases the ligand may engage individual strands with-
out disrupting the fibril as a whole. This theory is supported by EM analysis, show-
ing that CR does not uniformly cover the entire fibril, despite an abundance of the 
dye (Fig. 4.4), and that the fibril is unwound in many areas. It should also be noted 
that ribbon-like CR may attach itself to amyloids by means of adhesion.

Immune complexes are another type of object which can be visualized in the 
same manner – this is due to the fact that, by binding their natural ligand, antibodies 

Fig. 4.8  Spectral changes presented as an evidence of alizarincomplexon binding ions of different 
metals – Cu (A) and Co (B). The spectrum change marked by dotted line indicates that Cu2+ com-
plexation reveals the formation of modified complex at the excess of Cu2+ ions added. Molar ratio 
of AC: Cu2+ 1:2
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incur local structural instabilities which render them susceptible to penetration by 
supramolecular dyes, such as CR.

The proposed ligands and the procedure outlined in this work are both prelimi-
nary in scope. The technique can be further optimized by carefully selecting reagents 
and modifying the manner in which metal ions are transported by supramolecular 
ligands.

Fig. 4.9  Islands of ordered 
structures formed within 
the amyloid-like particle 
stained selectively with 
CR/AC/WoO4

2− complex

Fig. 4.10  Amyloid-like 
particles with ordered 
structures inside stained 
with CR/AC/Pb+2
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Fig. 4.11  Islands of ordered structure within amyloid-like particle stained selectively with (A) 
CR/AC/Pb2+ complex used as the contrast for EM studies. (B and B’) - enlarged fragments, (C) - 
islands of ordered structures seen in amyloid-like particle in polarised light

Fig. 4.12  The ordered 
structures bearing fragment 
outgrowing unstructured 
amyloid particle stained by 
CR/AC/Pb+2. Local burst 
of ordered structures
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