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Abstract Earth-observation systems (satellites and in situ monitoring) are routinely
used to collect information about water quality. Recently, smartphone-based tools
and other citizen-science sensors have enabled citizens to also contribute to the
collection of scientifically relevant data. This chapter describes a decision support
system used to predict optical water-quality indicators in the Wadden Sea, which is
an intertidal marine system, where natural processes related to sediment transport
and primary production define the basis of its ecological values. As information
sources, the system uses satellite data, data collected with a mobile app and physical
data for the period 2003–2015. An artificial-intelligence technique, inductive
learning, is used to analyze the data and provide predictions in terms of water colour
represented via the Forel-Ule scale (a comparative scale for colour).

Introduction

The Wadden Sea is a large-scale, intertidal marine system, where natural
processes related to sediment transport and primary production define the basis
of its internationally recognized ecological values. Human pressures on the system
abound: aquaculture, fishing, tourism and recreation, mining activities, agriculture
and industry in the surrounding region. Nutrient inputs from rivers, growing tourism
and large-scale fishery activities may create conditions that negatively affect human
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society, water quality and ecological systems. Satellites and in situ monitoring are
routinely used to collect information about water quality (see Fig. 1). Recently,
smartphone-based tools and other citizen-science sensors have entered the arena to
enable citizens to collect scientifically relevant data (Graham et al. 2011; Ceccaroni
and Piera 2017), which can be used by decision support systems. This chapter
describes the Citclops Data Explorer: a knowledge-based system designed to predict
optical water-quality indicators in the Wadden Sea that may be used for aquaculture,
tourism, recreational diving, and water management. As information sources, the
system uses MERIS satellite data, data collected with the Citclops—Citizen water
monitoring app (Wernand et al. 2012) and physical data: waves, currents, river
inputs and weather data for the period 2003–2015 (MERIS data available up to
2011; app data available in 2014–2015).

Inductive Learning

The inputs to the system were a vector of numerical attribute values, and the target
value was a discrete integer. Inductive learning was used to analyse the input data
and provide predictions in terms of water colour, using the Forel-Ule (FU) scale, a
comparative scale developed in the nineteenth century. The FU scale has an implicit
relation to other water-quality properties such as turbidity, transparency, suspended
particulate matter and chlorophyll (Wernand 2011). In this way, it is possible to
learn a general function or rule from a specific set of input-target value pairs.
The system used an artificial-intelligence technique, semi-supervised learning, for

Fig. 1 In situ monitoring platform: yellow markers indicate the Dutch national water quality mon-
itoring network (Rijkswaterstaat); the red pin (NIOZ jetty) indicates the location of the observation
platform of the Royal Netherlands Institute of Sea Research (NIOZ). Source: http://kml.deltares.
nl/kml/rijkswaterstaat/waterbase/concentration_of_suspended_matter_in_water.kml and Google
Earth

http://kml.deltares.nl/kml/rijkswaterstaat/waterbase/concentration_of_suspended_matter_in_water.kml
http://kml.deltares.nl/kml/rijkswaterstaat/waterbase/concentration_of_suspended_matter_in_water.kml
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capturing the model that establishes the relationship between input and target value
pairs. Part of the water colour data was collected by ordinary citizens snapping
pictures and being asked to select the most appropriate colour via the Citclops—
Citizen water monitoring app. As this is a citizen-science setting, a degree of noise
and inaccuracies are expected and dealt with via quality control techniques that
involved: the automatic analysis of the photo image, comparison against known
satellite measured colour, and flagging of inappropriate measurements via citizen
peers.

A system with the ability to predict water quality can be useful in several
applications. Apart from direct uses in recreation apps by citizens, it can assist
water managers in long-term monitoring, system analysis and decision making on
water use. It can provide information to assess the constraints and opportunities
for sustainable use of the sea and coast, and also guide risk analysis and response
to early warnings. With the information sources mentioned above, an inductive
machine learning technique (decision trees) was employed to predict water colour
1 week in the future.

The design of the learning technique took into account three major issues: (1)
the output or target value of the model to be learned; (2) the feedback available to
system; (3) the representation of the learned model. The target value to be learned
was water colour. The type of feedback available determined the nature of the
learning problem that the system faced: semi-supervised learning, which involves
learning a function from examples of inputs and outputs. The system learned a
model represented as a function that maps observations of MERIS satellite data,
citizen data and physical data to a discrete output (colour represented as FU).
Finally, the representation of the learned information was a decision tree determined
by the type of learning algorithms being used. The last major factor in the design of
the learning system was the availability of prior knowledge. The system began with
no knowledge at all apart from the examples in the data series.

In this study, a machine learning framework is described that uses semi-
supervised learning to generate a predictive model that maps marine data coming
from heterogeneous sources to a water quality indicator: colour represented by
FU. Decision tree induction was used, being one of the most successful forms of
learning algorithms, and the model generated is explicit and natural for human data-
interpretation. Decision trees take as input a situation described by a set of attributes
(from remote sensing, citizens and in situ instruments) and return a decision: the
predicted output value for the input, i.e. the prediction of the evolution of FU colour
1 week ahead in time. The input attributes are continuous. The target value is a fixed
set of values; therefore the problem can be constructed as a classification learning
problem.
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Decision trees classify the input vector by performing a sequence of tests. Each
internal node in a tree corresponds to a test of the value of one of the attributes in
the vector, and the branches from the node are labelled with the possible values of
the test. Each leaf node in a tree specifies the value to be returned.

The aim here is to learn a model for the target label FU-Colour.

Data Description

The following list describes the data available to the system:

1. MERIS satellite data: FU, chlorophyll-a (2002–2011)—time resolution: one data
point per day (missing data on cloudy days)

2. FU data collected with the Citclops—Citizen water monitoring app (2013–2015)
3. Water quality data: total suspended matter (TSM), FU, chlorophyll-a collected

by means of a spectroradiometer mounted on the NIOZ observation platform
(2013–2015) (see Figs. 2 and 3)—time resolution: every 2 min during daylight
(some missing periods)

Fig. 2 The study area for the 2013–2015 study period is the Wadden Sea, located within the
rectangle at the center of the figure. Source: Google Earth
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Fig. 3 NIOZ jetty Wadden Sea: RS calculated water quality data (TSM, FU, chlorophyll-a) and
wave height (daily means)

4. Wave data (2003–2013) (wave height and period)—average time resolution: one
data point per hour

5. Water-current data (2003–2013)
6. River inputs, salinity, water temperature (2003–2013)—average time resolution:

one data point per day
7. Weather data: insolation, as an extra driver for algal growth; wind speed

magnitude, which correlates strongly with wave height; wind direction; and air
temperatures (2003–2013)

8. SPM, chlorophyll-a, DOC, Kd collected in situ (2003–2013)—average time
resolution: two data points per month

Methods

The following Earth observations have been finally used as part of the input: FU
colour index, TSM, chlorophyll-a and wave height. A model of the target variable
“FU colour” at future points (2 days, 4 days, 7 days) has been learned (see Fig. 4).
To do this, the initial problem was converted to a three-class classification problem
(see Fig. 5): FU colour decreases, is stable or increases.
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Fig. 4 Machine-learning pipeline

Fig. 5 Conversion to a three-class classification problem

The model’s prediction of FU has been evaluated using tenfold cross-validation.
It has then been integrated into the Citclops Data Explorer—Marine Data Analyser
(http://citclops-data-explorer.herokuapp.com/marine-data-analyser).

Results and Discussion

Note that every variable used has a small set of possible values or is continuous;
the value of FU colour index, for example, is not an integer, rather it is one of the
21 discrete values from 1 to 21. The task of finding a tree that is consistent with
the input examples and is as small as possible, no matter how size is measured,
is an intractable problem: time grows exponentially with the amount of data and
there is no way to efficiently search through the possible trees. With some simple

http://citclops-data-explorer.herokuapp.com/marine-data-analyser
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Fig. 6 Example of results using a specific feature-configuration and a support vector machine
algorithm

heuristics, however, the authors found a good approximate solution: a small (but not
the smallest) consistent tree, defining the sequence of tests and the specification of
each test in an acceptable time.

The forecasting system is composed of different decision trees (implemented in
Python), which predict if the FU colour decreases, is stable or increases over a week
(2 days, 4 days and 7 days in advance). The performance of these decision trees is
compared to the one of a support vector machine algorithm and of blind predictors.
Samples of the results of the algorithms used are presented in Figs. 6, 7 and 8.

Each figure represents the learningprotocol and experiment that was performed.
The rows of the grid on the top left of the figure are the type of attributes (wave
height, TSM, Chl-a, FU), and the columns are consecutive individual days on which
the attributes have been measured. The coloured (non-blue) squares mark the feature
configuration of the training examples. The column with the squares coloured in
orange represent the reference time point (t D 0/present time point) and are part
of the input vector. The red squares are attributes that are also included in the
input vector but from days before the reference time point. The green square is the
attribute that the model will learn to predict which will always be at a future time
point in relation with the orange column. In the top right is the learning technique
and some key configuration parameters. As an example, in Fig. 6, the target-value
attribute is FU at 2 days into the future, and the input vector includes the following
attributes: wave height, TSM, Chl-a, FU at the current time point, and wave height
at 1 day in the past.

The algorithm used adopts a greedy divide-and-conquer strategy: always test the
most important attribute first. This test divides the problem up into smaller sub-
problems that can then be solved recursively. By “most important attribute”, the
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Fig. 7 Example of results using a specific feature-configuration and random-forest decision trees

Fig. 8 Example of results using a specific feature-configuration and decision trees with a
maximum depth of 10

authors mean the one that makes the most difference to the classification of an
example. That way, the authors hope to get to the correct classification with a small
number of tests, meaning that all paths in the tree will be short and the tree as a
whole will be shallow.

In general, after the first attribute-test splits up the examples, each outcome is
a new decision-tree learning problem in itself, with fewer examples and one less
attribute. There are four cases to consider for this recursive problem:
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1. If the remaining examples are all decrease (or stable or increase), then the
algorithm provides an answer.

2. If there are some mixed decrease, stable or increase examples, then choose the
best attribute to split them.

3. If there are no examples left, it means that no example has been observed for
this combination of attribute values, and the algorithm returns a default value
calculated from the plurality classification of all the examples that were used in
constructing the node’s parent.

4. If there are no attributes left, but both positive and negative examples, it means
that these examples have exactly the same description, but different classifica-
tions. This can happen because there is an error or noise in the data; because the
domain is nondeterministic; or because an attribute that would distinguish the
examples has not been observed or taken into account. The algorithm returns in
this case the plurality classification of the remaining examples.

The accuracy of the learning protocol is compared in each case to a blind
predictor as a benchmark test. The blind predictor always classifies to the most
common class in the examples of the training set. In the case of Fig. 8, the most
common class is an increase in FU, that occurs 35% of the time. Thus a classifier
predicting always an increase would be 35% of time accurate. The accuracy by the
decision-tree algorithm is 45% thus suggesting that indeed the model has utilised
patterns in the current attributes and past attributes to predict the future value (7 days
ahead in time).

Conclusions

In this study, an artificial-intelligence technique, inductive learning, has been used to
analyze data from Earth-observation systems, citizens, marine scientists and coastal
planners and to provide predictions in terms of water colour, using the Forel-Ule
scale, a comparative scale for colour. Specifically, decision trees have been used
for learning. Note that the set of data examples is crucial for constructing the trees,
therefore the quality of the trees as a classification tool depends on the quality of
the original data. Each tree consists of just tests on attributes in the interior nodes,
values of attributes on the branches, and output values on the leaf nodes.

These trees are also bound to make some mistakes for cases where they have
seen no examples. For example, they have never seen cases of extreme FU values.
In future work, with more training examples, the learning program could correct
these mistakes.

The authors could identify the following potential applications for these trees:

• to provide sea farmers with bulletins about algal blooms, which change the water
colour;

• to maximize citizens’ experience in activities in which water quality has a role;
and
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• to provide citizens with powerful, user-friendly tools for environmental-data
interpretation.
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