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Abstract. In this Chapter we provide a critical review of parametric and semi-
parametric spatial econometric approaches. We focus on the capability of each
class of models to fit the main features of spatial data (such as strong and weak
cross-sectional dependence, spatial heterogeneity, nonlinearities, and time persis-
tence), leaving aside the technicalities related to the estimation methods. We also
provide a brief discussion of the existent software developed to estimate most of
the econometric models exposed in this Chapter.
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1 Introduction and Motivation

Nowadays, the dominant paradigm in spatial econometrics is still a parametric one. The
first generation of spatial econometric models (essentially developed to handle cross-
sectional data) focused on modeling spatial dependence (or spatial spillover effects)
through different alternative linear specifications, such as the Spatial Lag or Spatial
Autoregressive Model (SAR), the Spatial Error Model (SEM), the Spatial Durbin Model
(SDM), the Spatial Autoregressive in X-variables Model (SLX), and a mix of SAR and
SEM (SAC or SARAR) (Anselin 1988; LeSage and Pace 2009). We may call this col-
lection of econometric tools as “econometrics of interaction”, since they can be applied
to any kind of network relationship among different sample units.

During the last decade, these models have been extended to handle spatial panel data
(or spatio-temporal data), that is data containing time series observations of a number
of geographical units. Elhorst (2014b) defines them second generation spatial econo-
metric models. By including a regional specific fixed or random effect, these models
prove to be particularly useful to control for unobserved spatial heterogeneity, that is
a fundamental task in empirical economic analyses, as failing to do so can introduce
omitted-variable biases and preclude causal inference. Moreover, spatial dependence
may simply be the consequence of (spatially correlated) omitted variables rather than
being the result of spillovers. Thus, controlling both for spatial dependence (through
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spatial lag terms) and spatial heterogeneity (through fixed or random effects) is a pri-
mary task when dealing with spatial data. More recent developments concern dynamic
spatial panel data models and spatial VAR (Vector-Autoregressive) models, which allow
to control for time persistence and reverse causality problems.

Notwithstanding these important advances in the literature, it is worth noting that
any parametric model is limited to specific forms of spatial variation of the parame-
ters, such as spatial regimes. They are not suitable for more general forms of spatial
heterogeneity of model parameters, i.e. when the variation of parameters is continu-
ous (smooth) over space and depends on coordinates, and when the functional form of
the relationship between the dependent variable and the regressor is unknown (poten-
tially non-monotonic). Moving away from the parametric approach, another strand of
the spatial econometric literature has proposed semiparametric methods as more flexi-
ble estimation frameworks, thus following the recommendations of McMillen (2012) of
using smoother techniques in order to remove spatial heterogeneity while considering
other potential nonlinearities.

First, following Brunsdon et al. (1996); Cho et al. (2010) have proposed an approach
that combines geographically weighted regression (GWR) and spatial autoregression
(SEM) methods, called GWR-SEM. The spatial autoregressive error term should allay
spatial dependency, while GWR addresses spatial heterogeneity by allowing the coef-
ficients to vary across observations. In the same vein, Páez et al. (2002) propose an
estimation method for cross-sectional data in which the covariance is locally varying
and that can handle spatial autocorrelation of the error terms. Another notable con-
tribution accounting for both spatial autocorrelation and nonstationarity of the para-
meters has been made by Pace and LeSage (2004): they propose a spatial autoregres-
sive local estimation based on a recursive approach for maximum-likelihood estimation
of SAR that implies estimates on subsamples related to a neighboring of each obser-
vation. More recently, combining kernel smoothing methods and standard spatial lag
models, Geniaux and Martinetti (2017) have introduced a new class of data generating
processes, called MGWR-SAR (Mixed Geographically Weighted Regression Simul-
taneous AutoRegressive Model), in which the regression parameters and the spatial
dependence coefficient can vary over space. The advantage of the last class of models
is that it allows to consider the mixed case in which some parameters are constant over
space and others are spatially varying.

Second, Basile et al. (2014); Montero et al. (2012) have combined penalized
regression spline (PS) methods (Eilers et al. 2015) with standard cross-section
spatial autoregressive models (such as SAR, SEM, SDM and SLX). An impor-
tant feature of PS-SAR, PS-SEM, PS-SDM and PS-SLX models is the possibil-
ity to include within the same specification (i) spatial autoregressive terms to cap-
ture spatial interaction or network effects (thus avoiding spatial dependence bias),
(ii) parametric and nonparametric (smooth) terms to identify nonlinear relationships
between the response variable and the covariates (thus avoiding functional form
bias), (iii) a geoadditive term, that is a smooth function of the spatial coordinates,
to capture a spatial trend effect, that is to capture spatially autocorrelated unob-
served heterogeneity (thus avoiding spatial heterogeneity bias), and (iv) the interaction
between the geoadditive term and a covariate of particular interest to identify spatially
varying effects of X-variables.
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Third, Mı́nguez et al. (2017) have proposed an extension of the PS-SAR to spatio-
temporal data when both a large cross-section and a large time series dimensions are
available. With this kind of data it is possible to estimate not only spatial trends, but
also spatio-temporal trends in a nonparametric way (Lee and Durbán 2011), so as to
capture region-specific nonlinear time trends net of the effect of spatial autocorrelation.
In other words, this approach allows to answer questions like: How do unobserved time-
related factors (i.e. common factors), such as economic-wide technological or demand
shocks, heterogeneously affect long term dynamics of all units in the sample? And how
does their inclusion in the model affect the estimation of spatial interaction effects?
In this sense, the PS-SAR model with spatio-temporal trend represents an alternative
to parametric methods aimed at disentangling common factors effects (such as com-
mon business cycle effects) and spatial dependence effects (local interactions between
spatial units generating spillover effects), where the former is sometimes regarded as
‘strong’ cross-sectional dependence, and the latter as ‘weak’ cross-sectional depen-
dence (Chudik et al. 2011).

In this paper, we propose a critical review of parametric and semiparametric spa-
tial econometric approaches trying to highlight their pros and cons. We will focus on
the capability of each class of models to fit the main features of spatial data (such as
strong and weak spatial dependence, spatial heterogeneity, nonlinearities, and time per-
sistence) leaving the estimation techniques on backstage. The plan of the paper is as
follows. Section 2 summarizes the huge literature on parametric spatial autoregressive
models. Section 3 is dedicated to the broad category of semiparametric spatial autore-
gressive models, disentangling GWR (or MGWR) models based on kernel methods and
models based on penalized spline smoothers. Section 4 provides a brief discussion of
the software available for the practitioners to apply all these models. Finally, Sect. 5
concludes.

2 Parametric Spatial Autoregressive Models

2.1 Modeling Spatial Interaction Effects: Spatial Autoregressive Models
for Cross-Sectional Data

Unlike time dependence, spatial dependence is a difficult concept to grasp, some peo-
ple find. Let us start from a generic notion of “interdependence” and, then, return to
the specific concept of spatial dependence. To introduce the concept of “interdepen-
dence”, let us consider a simple example. Imagine we want to model the scientific pro-
ductivity (SP) of a sample of researchers connected among each other in a network of
co–authorships. SP can be measured, for example, in terms of number of publications
or better in terms of a continuous outcome variable such as an evaluation score whose
distribution is assumed to be normal. For simplicity, we assume that this score depends
only on investments in human capital (such as number of books read, number of new
courses attended, number and length of academic visits abroad, and so on). To model
yi = SPi for each individual researcher i, we start from the classical linear regression
model:

yi = α +∑
k

βkxik+ εi i= 1, ...,N εi ∼ iidN
(
0,σ2

ε
)

(1)
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where xik indicates a measure of human capital investment. This model imposes a strong
assumption of independence. First, the assumptions on the error term (εi) exclude any
type of covariance. Second, the partial derivatives exclude any kind of indirect (inter-
action or spillover) effect, i.e. an investment in human capital by a researcher i will
affect only his/her own scientific productivity (yi), but not the productivity of any other
researcher (y j):

∂E [yi]/∂xik = β̂k ∂E [y j]/∂xik = ∂E [yi]/∂x jk = 0 i, j = 1, ...,N

We can write this model in matrix form as

y = ιNα +Xβ + ε E [ε] = 0 E
[
εε

′]
= σ2IN (2)

The independence assumption is quite unrealistic, however. In fact, we cannot eval-
uate the scientific performance of this sample of individuals without taking into account
the possibility of knowledge spillovers among them. Suppose that our sample is com-
posed of only five researchers (identified by the letters A, B, C, D, E). Scientific collab-
orations (co-authorship relations) will determine a network or connectivity scheme such
as the one shown in Fig. 1:

A

C

E

D
B

Fig. 1. A network scheme of scientific collaborations (co-authorship relations)

Researcher A has a co-authorship (that is a direct link) only with individuals B and
C. Researcher B has a co-authorship only with individuals A, C and E; and so on. This
network scheme can be translated into a symmetric 5×5 binary matrix W∗:

W∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B C D E
A 0 1 1 0 0
B 1 0 1 0 1
C 1 1 0 1 0
D 0 0 1 0 0
E 0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦
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with w∗
i j = 1 if i and j are classified as co-authors, and w∗

i j = 0 otherwise. This binary
matrix can be row-standardized so as wi j = w∗

i j/∑ j w
∗
i j s.t. ∑ j w

∗
i j = 1:

W=

⎡

⎢
⎢
⎢
⎢
⎣

0 1/2 1/2 0 0
1/3 0 1/3 0 1/3
1/3 1/3 0 1/3 0
0 0 1 0 0
0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

Now, we can multiply W by the vector y:

Wy =

⎡

⎢
⎢
⎢
⎢
⎣

0 1/2 1/2 0 0
1/3 0 1/3 0 1/3
1/3 1/3 0 1/3 0

0 0 1 0 0
0 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎣

y1

y2

y3

y4

y5

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

1/2y2 +1/2y3

1/3y1 +1/3y3 +1/3y5

1/3y1 +1/3y2 +1/3y4

y3

y2

⎤

⎥
⎥
⎥
⎥
⎦

Each element of the vector Wy measures the weighted average of the scientific
productivity of the co-authors of each individual. We can also compute WX and Wε .
These three terms can be used to extend model (2). For example, we can include Wy on
the r.h.s. of (2):

y= ιNα +ρWy+Xβ + ε ε ∼ iidN (0,σ2
ε IN) (3)

The reduced form of this model is:

y = (IN −ρW)−1(ιNα +Xβ + ε) (IN −ρW)−1 = IN +ρW+ρ2W2 + ...

To ensure that IN − ρW is invertible, one needs to impose some restrictions on the
parameter ρ , which for a row-normalized interaction matrix W correspond to take use
of a compact set of (1/ωmin,1), where ωmin is the minimum eigenvalue of W matrix.
Once this restriction is satisfied, using the estimated parameters of the model (ρ̂ and
β̂k), we can compute the impacts of a change in the k-th explanatory variable, i.e. the
partial derivatives of the expected value of the dependent variable y with respect to the
concerned variable, xk:

Ξ xk
y = ∂E [y]/∂xk = (IN − ρ̂W)−1β̂k (4)

Unlike to what we observe for the traditional classical linear regression model, diag-
onal elements of (4) are different from each other, off diagonal elements differ from zero
and the matrix itself is not symmetric. In particular, diagonal elements of (4) represent
own-partial derivatives, meaning the impact of a change in the k-th variable in unit i on
the expected value of the dependent variable in this unit. They are formally written as

∂E [yi]/∂xik = [Ξ xk
y ]ii i= 1, ...,N (5)

These own-partial derivatives are labeled direct impacts and include feedback loop
effects that arise as a result of impacts passing through interacting units j and back
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to unit i. As the set of interacting units is different for each unit, the feedback will be
heterogeneous by nature, giving birth to the notion of interactive heterogeneity. This
interactive heterogeneity should not be confused with parameter heterogeneity, which
refers to instability of parameters (structural breaks, clubs) or heteroskedasticity.

Off-diagonal elements of (4) represent the effects of a change in the k-th explanatory
variable in unit j on the dependent variable in unit i. As matrix (4) is asymmetric, this
further imply that this impact will not be the same as the one caused by a change in unit
i on unit j. Formally,

∂E [yi]/∂x jk = [Ξ xk
y ]i j �= ∂E [y j]/∂xik = [Ξ xk

y ] ji (6)

These cross-derivative elements are thus labeled indirect effects. Using expressions
(5) and (6), we can for example say that an investment in human capital by individ-
ual A (i.e. an idiosyncratic shock in a xk variable) will affect not only the scientific
productivity of A (direct effect), but also the scientific productivity of his/her own co-
authors (individual A will transmit part of the new knowledge to his/her own co-authors
B and C), the co-authors of his/her co-authors and so on (spillover or indirect effect).
Thus, we can say that there is a global diffusion of the idiosyncratic shock. Given the
stability condition |ρ| < 1, the intensity of these knowledge spillovers decreases with
the increase in the order of co-authorship relations. Since the matrix (IN − ρ̂W)−1 pre-
multiplies also the error term, we can also say that there is a global diffusion of shocks
in the unobserved term.

Eventually, we may introduce both Wy and WX on the r.h.s. of Eq. (1):

y= ιNα +ρWy+Xβ +WXδ + ε ε ∼ iidN (0,σ2
ε IN) (7)

Again, the reduced form of this model implies a global diffusion of both observed
and unobserved shocks. The matrix of partial derivatives of y with respect to the k-
th explanatory variable, presented in (8) and computed from the reduced form of model
(7), contains the additional term Wδk.

Ξ xk
y = ∂E [y]/∂xk = (IN − ρ̂W)−1(IN β̂k+Wδ̂k) (8)

Alternatively, we can leave the systematic part of model (2) unchanged and intro-
duce the assumption of spatial autocorrelation in the error term:

y = ιNα +Xβ + ε ε = λWε +u (9)

|λ | < 1 u ∼ iidN
(
0,σ2

uIN
)

The reduced form of this model

y= ιNα +Xβ +(IN −λW)−1u

implies a global diffusion of random shocks, but not spillovers of idiosyncratic shocks
in an observed variable. Thus, using model (9), in our example, we would exclude
knowledge spillovers from observed changes in human capital investments of researcher
A; only spillovers from unobserved factors would take place.
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Finally, we may extend model (2) by introducing on the r.h.s. only WX:

y= ιNα +Xβ +WXδ + ε ε ∼ iidN (0,σ2
ε IN) (10)

This model implies only local spillovers: an investment in new knowledge by individual
A will spill over only to his/her own co-authors, and vice-versa.

Now, let’s turn to a spatial context and image that the network structure depicted in
Fig. 1 represents a spatial network, identifying direct neighborhood links (i.e. direct
proximity relationships) between regions or firms in space. In spatial statistics and
spatial econometrics, W∗ and W are called the spatial weights matrix and the row-
standardized spatial weights matrix, respectively. Wy is called the spatial lag operator; it
works to produce a weighted average of the neighboring observations. In spatial econo-
metrics, model (3) is called the Spatial Lag Model or Spatial Autoregressive Model
(SAR), model (7) is known as the Spatial Durbin Model (SDM), model (9) is known as
the Spatial Error Model (SEM), and model (10) is known as the Spatial in X-variable
Model (SLX). Each of them allows us to capture a different spatial spillover effect.

For example, using cross-regional data, one may estimate a SDM version of the so-
called knowledge production function, according to which the knowledge produced in
a region (Ki) (approximated by the number of patents per capita or by the total factor
productivity) is an increasing function of both internal and external cumulative research
and development (R&Di, ∑ j �=i wi j lnR&Dj), and both internal and external human cap-
ital stocks:

lnKi = α +β1 lnR&Di+β2 ∑
j �=i

wi j lnR&Dj (11)

+β3 lnHi+β4 ∑
j �=i

wi j lnHj+ρ ∑
j �=i

wi j lnKj+ εi

Technological spillovers among regions may be assumed to be driven by interre-
gional trade relations, as suggested by the endogenous growth theory. Thus, if interre-
gional trade data are available for the regional sample used in the analysis, a researcher
may use them to build a W matrix. Alternatively, spatial proximity measures (such
binary contiguity measures or inverse distance) can be used.

It is worth noticing that a more parsimonious version of (11) is often esti-
mated, which imposes zero values to parameters β4 and ρ , thus assuming only
local spillovers from R&D investments carried out by direct neighboring regions
and excluding global spillovers captured by a spatial multiplier mechanism.
A natural way to proceed is to estimate model (11) and then test these restrictions on
parameters parameters β4 and ρ .

The term Wy that appears on the r.h.s. of (3) and (7) is correlated with the error term,
Cov [Wy;ε] �= 0, so that ordinary least squares (OLS) estimates are biased and inconsis-
tent. Consistent and efficient estimates can be obtained by maximum likelihood (ML)
or quasi-maximum likelihood estimates (QML) (Lee 2004). Two–Stage Least Squares
(2SLS) estimates adapt well to the case of (3) because higher orders of spatial lags
of the X variables are natural candidates to be used as instrumental variables (Kele-
jian and Prucha 1997). A more efficient estimator is the method of moments estimator
(MM) (Kelejian and Prucha 2001). Lee (2004) generalized the MM approach into a
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fully generalized method of moments (GMM) estimator for the case of the SDM model
(7), while Liu et al. (2007) proposed a GMM estimator for a SDM with dependent
structures in the error term. The GMM estimator may have, under general conditions,
the same limiting distribution as the ML or QML estimators. Moreover, the 2SLS and
the GMM estimators allow the researcher to take into account any endogeneity prob-
lems in the r.h.s., different from the spatial lag of y.

As mentioned above, direct, indirect and total marginal effects change across spa-
tial units. Specifically, they depend on the specific position of the region within the
spatial proximity network. Thus, in order to summarize the results, it could be easier to
compute average measures of direct, indirect and total effects. In the case of Eq. 3,

the average total marginal effect is computed as N−1i
′
N

[
(IN −ρW)−1 INβk

]
iN (see

Table 1). The average direct impact is N−1tr
[
(IN −ρW)−1 INβk

]
, while the average

indirect (spatial spillover) impact is the difference between average total and average
indirect effects. In order to draw inference regarding the statistical significance of aver-
age direct and indirect effects, LeSage and Pace (2009, p. 39) suggest simulating the
distribution of these effects using the variance-covariance matrix implied by the ML
estimates. Efficient simulation approaches can be used to produce an empirical distri-
bution of the parameters α,β ,θ ,ρ,σ2 that are needed to calculate the scalar summary
measures. This distribution can be constructed using a large number of simulated para-
meters drawn from the multivariate distribution of the parameters implied by the ML
estimates.

2.2 Modeling Spatial Spillovers and Unobserved Spatial Heterogeneity: Spatial
Autoregressive Models for Panel Data

2.2.1 Static Spatial Panel Data Models
Recently, spatial econometric models have been extended to deal with spatial panel
data, that is data with both a spatial and a temporal dimension (Elhorst 2014b). The
two-dimensional structure of the data allows us to control for unobserved spatial and
time heterogeneity by including individual (spatial) and time effects on the r.h.s. of the
model. Thus, for example, the static panel data SAR model can be written in vector
form for a cross-section of observations at time t (t = 1,2, ...,T ) as:

Table 1. Average total (ATE), direct (ADE), and indirect (AIE) marginal effects

Model ADE AIE ATE

Linear βk 0 βk

SAR
tr

[
(IN −ρW)−1 INβk

]

N
Total-Direct

i
′
N

[
(IN −ρW)−1 INβk

]
iN

N
SEM βk 0 βk

SDM
tr

[
(IN −ρW)−1 (INβk+Wθk)

]

N
Total-Direct

i
′
N

[
(IN −ρW)−1 (INβk+Wθk)

]
iN

N
SLX βk θk βk+θk
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yt = ρWyt +α + ιNτt +Xtβ + ε t (12)

E (ε t) = 0 E (ε tε t) = σ2IN

where, again, W is a row-standardized N ×N spatial weights matrix whose diagonal
elements wii are 0; ρ is the spatial spillover parameter satisfying the usual stability
conditions, and ρ ∑N

j=1wi jy jt captures the spatial spillover effects net of the unobserved
heterogeneity effects filtered out by the spatial fixed effects, αi, and time fixed effects,
τt .

Similarly, the static panel SEM can be expressed as:

yt = α + ιNτt +Xtβ +ϕ t ϕ t = λWϕ t + ε t (13)

E (ε t) = 0 E (ε tε t) = σ2IN

And, the static panel data SDM as:

yt = ρWyt +α + ιNτt +Xtβ +WXtθ + ε t (14)

E (ε t) = 0 E (ε tε t) = σ2IN

For example, the static panel version of the spatial Durbin knowledge production
function (11) reads as:

lnKit = β1 lnR&Dit +β2 ∑
j �=i

wi j lnR&Djt (15)

+β3 lnHit +β4 ∑
j �=i

wi j lnHjt +ρ ∑
j �=i

wi j lnKjt +αi+ τt + εit

Depending on the assumptions about individual and time effects, these models will
be estimated using fixed effects (FE) or random effects (RE). The latter, more efficient,
is adequate when the effects (individual and temporal) are independent from all regres-
sors included in the specification and are traditionally assumed normally distributed.
When this hypothesis of independence is rejected, either on the basis of a test statis-
tic (Hausman, Lagrange multiplier (LM) or likelihood ratio (LR)) or from economic
insights, the fixed effects specification should be preferred. Even though these two esti-
mation procedures are different, they both consist in first transforming the data (either
applying the within operator for the fixed effects or a quasi-within transformation when
the random effects estimation is used) and then applying standard spatial econometrics
techniques (for example, the QML estimator; Lee and Yu 2010a) on these transformed
data to obtain the estimated parameters.

It should be stressed that the spatial fixed effects can only be estimated consistently
when T is sufficiently large, because the number of observations available for the esti-
mation of each α̂i is T . Importantly, sampling more observations in the cross-sectional
domain is not a solution for insufficient observations in the time domain, since the num-
ber of unknown parameters increases as N increases, a situation known as the incidental
parameters problem. Fortunately, the inconsistency of α̂i is not transmitted to the esti-
mator of the slope coefficients β̂ in the demeaned equation, since this estimator is not
a function of the estimated α̂i. Consequently, the incidental parameters problem does
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not matter when β̂ are the coefficients of interest and the spatial fixed effects α̂i are not,
which is the case in many empirical studies.

Finally, it is important to recognize that, apart from the control for unobserved het-
erogeneity, the economic interpretation of static spatial autoregressive models is the
same as the one for cross-sectional data. Impacts measures implied by a spatial static
panel data model are indeed the same as those in a spatial autoregressive model for
cross-sectional data, as soon as the interaction matrix and the parameters of interest of
the former are assumed constant across time. Different is the case of spatial dynamic
panel data models, which give rise to the possibility of evaluating the effects of transi-
tory and permanent shocks both in the short-run and in the long-run equilibrium.

2.2.2 Dynamic Spatial Panel Data Models
In order to simultaneously deal with time persistence and spatial interdependence along
with spatial and temporal heterogeneity, a dynamic spatial panel data model with fixed
spatial and time effects is needed. The spatial econometric literature provides several
alternative specifications of spatial dynamic models. A very general one includes time
lags of both the dependent and independent variables, contemporaneous spatial lags of
both, and lagged spatial lags of both. However, as Elhorst (2014b) have pointed out,
this generalized model suffers from identification problems, and is thus not useful for
empirical research. A more parsimonious model (written in vector form for a cross-
section of observations at time t) can be expressed as:

yt = τyt−1 +ρWyt +ηWyt−1 +Xtβ +WXtθ +α +λt ιN + ε t (16)

ε t ∼ iidN (0,σ2
ε IN)

Lee and Yu (2010b); Yu et al. (2008) have proposed bias corrected QML estimators
for a dynamic model with spatial and time fixed effects. However, these estimators are
based on the assumption of only exogenous covariates except for the time and spatial
lag terms. Kukenova and Monteiro (2008) have suggested to use System-GMM estima-
tor Blundell and Bond (1998) for dynamic spatial panel model with several endogenous
variables. More specifically, they have investigated the finite sample properties of differ-
ent estimators for spatial dynamic panel models (namely, spatial ML, spatial dynamic
ML, least-square-dummy-variable, Diff-GMM and System-GMM) and concluded that,
in order to account for the endogeneity of several covariates, spatial dynamic panel
models should be estimated using System-GMM.

The stationarity conditions on the spatial and temporal parameters in a dynamic
spatial panel data model like (16) go beyond the standard condition |τ| < 1 in serial
models, and the standard condition 1/ωmin < ρ < 1 in spatial models. Indeed, to achieve
stationarity in the dynamic spatial panel data model (16), the characteristic roots of the
matrix (IN −ρW)−1(τIN +ηW) should lie within the unit circle (Debarsy et al. 2012)
which is the case when

τ +(ρ +η)ωmax < 1 if ρ +η ≥ 0
τ +(ρ +η)ωmin < 1 if ρ +η < 0

τ − (ρ −η)ωmax > −1 if ρ −η ≥ 0
τ − (ρ −η)ωmin > −1 if ρ −η < 0
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Assuming that the matrix (IN − ρW)−1 is invertible, the reduced form of model
(16) can be re-written as

yt = (IN −ρWyt)
−1(τιN +ηW)yt−1

+(IN −ρWyt)
−1(Xtβ +WXtθ +α +λt ιN + ε t)

Taking the partial derivatives of the expected value of y with respect to each k-th
variable in X in each unit i at each time t, we than obtain the so-called impacts matrices
in the short run:

[
∂E(y)
∂xk1

...
∂E(y)
∂xkN

]

t
= (IN − ρ̂W)−1(β̂kIN +Wt θ̂k)

and in the long run:
[

∂E(y)
∂xk1

...
∂E(y)
∂xkN

]
= [(1− τ̂)IN − (ρ̂ + η̂)W]−1 (β̂kIN +Wt θ̂k)

The diagonal elements of both matrices give a measure of the so-called direct effect.
The off-diagonal elements of the matrices give a measure of the so-called indirect or
spillover effect (Table 2).

Table 2. Average total, direct, and indirect short-term and long marginal effects in dynamic spatial
panels. d: operator that calculates the mean diagonal element of a matrix. rsum: operator that
calculates the mean row sum of the non-diagonal elements.

Time horizon ADE

Short-term
[
(IN − ρ̂W)−1(β̂kIN + θ̂kW)

]d

Long-term
[
[(1− τ̂)IN − (ρ̂ + η̂)W]−1 (β̂kIN + θ̂kW)

]d

AIE

Short-term
[
(IN − ρ̂W)−1(β̂kIN + θ̂kW)

]rsum

Long-term
[
[(1− τ̂)IN − (ρ̂ + η̂)W]−1 (β̂kIN +θkW)

]rsum

Moreover, Debarsy et al. (2012) derive the algorithms to calculate partial derivatives
that can quantify the magnitude and timing of dependent variable responses in each
region at various time horizons t + T to changes in the explanatory variables at time
t. They also distinguish between two different interpretative scenarios, one where the
change in explanatory variables represents a permanent or sustained change in the level
and the other where we have a transitory (or one-period) change.

In particular, the T -period-ahead (cumulative) impact arising from a permanent
change at time t in the k-th variable is1:

∂Yt+T/∂Xk =
T

∑
s=0

Ds[INβk+Wθk] (17)

1 By a permanent change at time t they mean that: ∂Xk = (xt + δ ,xt+1 + δ , ...,xT + δ ), so the
values increase to a new level and remain there in future time periods.
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where Ds = (−1)s(B−1 +C)sB−1, with s = 0, ...,T − 1, B = (IN − ρW), and C =
−(τIN +ηW).

The main diagonal elements of the N ×N matrix sums in (17) for time horizon T
represent (cumulative) own-region impacts that arise from both time and spatial depen-
dence. The sum of off-diagonal elements of this matrix reflect both spillovers measuring
contemporaneous cross-partial derivatives, and diffusion measuring cross-partial deriv-
atives that involve different time periods.2

The T -horizon impulse response to a transitory change in the k-th explanatory vari-
able at time t would be given by the main and off-diagonal elements of:

∂Yt+T/∂Xk = DT [INβk+Wθk] (18)

where DT = (−1)T (B−1C)TB−1.
Getting back to the example of the knowledge production function, the spatial

dynamic version of (15) would be:

lnKit = β1 lnR&Dit +β2 ∑
j �=i

wi j lnR&Djt +β3 lnHit +β4 ∑
j �=i

wi j lnHjt (19)

+τ lnKi,t−1 +ρ ∑
j �=i

wi j lnKjt +η ∑
j �=i

wi j lnKj,t−1 +αi+ τt + εit

The estimation of this model would allow us to compute not only spatial (contempo-
raneous) R&D spillovers, but also spatio-temporal diffusion processes of R&D shocks
originating in a region (or a country).

2.3 Modeling Spatial Dependence, Spatial Heterogeneity and Common Factors:
Spatial Autoregressive Models for Large Panel Data

When spatial panel data have both a large cross-sectional and a large time series dimen-
sion, it becomes important to distinguish between spatial spillover effects and com-
mon factors. As discussed above, spatial spillovers are due to unobserved idiosyncratic
shocks which propagate to all other regions with a distance-decay mechanism driven
by network relationships. Instead, common factors are unobserved time-related factors
which influence all regions (probably heterogeneously). Both determine cross-sectional
correlation in the residuals and make it difficult to get unbiased and efficient estimates.

On the one hand, spatial spillover effects can be analyzed by using, for example,
the spatial autoregressive model with fixed effects, described above. On the other hand,
strong cross-sectional dependence can be accommodated by the Common Correlated
Effects Pooled (CCEP) estimator proposed by Pesaran (2006). Suppose that yit is gen-
erated by the following DGP with a multifactor error structure:

yit = αi+x′
itβ + εit (20)

xit = γ
′
i ft + vit

2 The term spillover is referred to contemporaneous cross-partial derivatives, those that involve
the same time period. These cross-partial derivatives involving different time periods are
referred to as diffusion effects, since diffusion takes time.
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where ft is a m×1 vector of common factors (introduced to allow for unobserved cross-
sectional dependence), and γi the corresponding heterogeneous response. ft are allowed
to be correlated with xit , while the idiosyncratic errors, εit , are assumed to be indepen-
dently distributed over xit . Pesaran (2006) shows that, for sufficiently large N, it is valid
to use cross-sectional averages of yit and xit as observable proxies for ft . Thus, consis-
tent β parameters can be estimated using the so-called CCEP estimator, which can be
viewed as a generalized fixed effects estimator3:

yit = αi+x′
itβ +δixt +ηiyt + εit (21)

where xt = N−1 ∑N
i=1 xit and yt = N−1 ∑N

i=1 yit .
The CCEP approach has been proved to be valid in presence of both strong and

weak (or semi-strong and semi-weak) cross dependence (Chudik et al. 2011; Pesaran
and Tosetti 2011). Thus, it can easily collect even the pure spatial spillover effects.
However, economic analyses often requires the assessment of the different forms of
cross dependence, or better still, they require the assessment of spatial network effects,
net of the effects of common factors. A natural way to deal with this problem is to
combine the two approaches.

Using slightly different frameworks, Bai and Li (2015); Bailey et al. (2016); Shi and
Lee (2016); Vega and Elhorst (2016) consider a joint modeling of spatial interaction
effects and common-shocks effects:

yit = αi+ρ
N

∑
j=1

wi j,Ny jt +x′
itβ + γ

′
i ft + εit (22)

This model (we may call it SAR-CCEP model) allows one to test which type of effects
(common shocks, γ ′

i ft , and/or spatial spillovers, ρ ∑N
j=1wi j,Ny jt ) is responsible for the

cross-sectional dependence. Bai and Li (2015); Shi and Lee (2016) use principle com-
ponents to estimate common factors, while Bailey et al. (2016); Vega and Elhorst (2016)
follow Pesaran (2006) in using cross-sectional averages of yit and xit as observable
proxies for ft . Bailey et al. (2016) propose a two-stage estimation and inference strat-
egy, whereby in the first step strong cross-sectional dependence is modeled by means
of a factor model. Residuals from such factor models, referred to as de-factored obser-
vations, are then used to model the remaining weak cross dependencies, making use
of spatial econometrics techniques. Vega and Elhorst (2016), instead, suggest to model
common factors and spatial dependence simultaneously in a single-step procedure. All
these authors show that the QMLE is an effective way of estimating this model.

Getting back to the example of the knowledge production function, the SAR-CCEP
version of (15) would be:

lnKit = β1 lnR&Dit +β2 ∑
j �=i

wi j lnR&Djt +β3 lnHit +β4 ∑
j �=i

wi j lnHjt

+ρ ∑
j �=i

wi j lnKjt +αi+ γ
′
i ft + εit (23)

3 The assumption of fixed β parameters can be relaxed, and a random coefficient specification
can be assumed: β i = β + ui, with ui ∼ i.i.d.(0,Ωu). In this case the estimator proposed by
Pesaran (2006) is the common correlated effects mean group (CCEMG) estimator.
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Strong cross-sectional dependence in the errors of a knowledge production function
may arise as a result of unobserved common factors, including, for instance, aggregate
technological shocks, national policies intended to raise the level of technology or oil
price shocks that may influence TFP through their effects on product costs. The het-
erogeneous effects of these factors may be the result, for instance, of country-specific
technological constraints (Ertur and Musolesi 2016). Cross-sectional dependence in the
errors of a knowledge production function can also be regarded as a result of spatial
effects. Thus, a SAR-CCEP version of the knowledge production function seems to be
a natural choice when the panel data is large enough.

Some drawbacks of this approach are worth noticing. First, there is a large number
of incidental parameters under the joint modeling. Admittedly, this is not a serious prob-
lem as long as the model is linear, since inconsistency in the estimation of the incidental
parameters is not transmitted to the estimation of the slope parameters of interest (β );
but, it may create a problem when nonlinear terms are considered. Second, the ability of
the SAR-CCEP method to capture strong cross-sectional dependence and to disentan-
gle spatial spillover effects and common factor effects is crucially affected by the set of
covariates included in the model. On the one hand, if the estimated model contains one
or only a few regressors, the CEEP estimator may not fully control for cross-sectional
correlation (few regressors implies few cross-sectional averages as proxies for unob-
served common factors); on the other hand, if the model includes many regressors, the
resulting large number of cross-sectional averages hardly leave space for residual spa-
tial spillovers. In Sect. 3.3, we review an alternative semiparametric approach to filter
common-factor (or time-related) effects and, thus, to assess the presence of “residual”
spatial dependence effects which adequately addresses these problems.

3 Semiparametric Spatial Autoregressive Models

Parametric spatial econometric frameworks described above are unfeasible in the simul-
taneous presence of different sources of model misspecification, such as substantial
spatial dependence, nonlinear relationship of spatially correlated independent variables,
unobserved spatial heterogeneity, spatially varying relationships, and common factors.
Nonlinearities, spatial heterogeneity and time-related factors can cause spatial (or, more
generally, cross-sectional) dependence and the reverse is also true. Studies that con-
sider simultaneously spatial dependence, spatial heterogeneity, nonlinearities and com-
mon factors are still scarce in spatial econometrics literature. The recent contributions
of Basile et al. (2014); Geniaux and Martinetti (2017); Mı́nguez et al. (2017) represent
some attempts to promote more flexible estimation frameworks to address this problem.

3.1 Modeling Spatial Heterogeneity and Spatial Dependence: MGWR-SAR

What are the economic motivations underlying the specification of a spatially-varying
coefficient model? First, one can argue that models which only consider spatial autocor-
relation are not capable of correcting all the problems related to non-observable spatial
heterogeneity. This has pushed several authors to consider a non-stationary intercept
term amongst the regression variables, for example by means of a smooth interaction of
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the spatial coordinates, known as spatial trend (Wood 2006).4 Nevertheless, this argu-
ment can be extended to consider a model with spatially-varying slope coefficients. It
is also possible to consider a non-stationary spatial autocorrelation parameter. Indeed,
when the spatial weight matrix W is unknown and spatial locations are irregularly dis-
tributed over space, the choice of a neighboring scheme based only on distance or first
nearest neighbors can be tricky. Choosing one weighting scheme instead of the other
can lead to a spatial interaction matrix that is too dense or too dispersed in the heteroge-
neous parts of the space, resulting in under or overestimation of the parameters. Hence,
the use of a non-stationary spatial autocorrelation parameter could mitigate the effect
of the spatial weight matrix misspecification.

Very recently, Geniaux and Martinetti (2017) have introduced a new class of mod-
els, called MGWR-SAR (Mixed Geographically Weighted Regression Simultaneous
AutoRegressive models), where the regression parameters and the spatial dependence
coefficient can vary over space. In its most general form, the MGWR-SAR is specified
as:

y= ρ(xs1 ,xs2 ;h)Wy+X∗β ∗ +β (xs1 ,xs2 ;h)X+ ε (24)

where y is the N−vector of the continuous dependent variable, X∗ is a matrix of k1

exogenous explanatory variables entering the model linearly (i.e. with spatially station-
ary coefficients β ∗), while X is a matrix of k2 exogenous explanatory variables with
non-stationary coefficients β (xs1 ,xs2 ;h)), xs1 ,xs2 are spatial coordinates, W is the spa-
tial weights matrix, ρ the spatial spillover parameter, ε is an i.i.d. error vector.

Thus, Geniaux and Martinetti (2017) relax one of the main hypothesis generally
adopted by existing estimators of SAR models, i.e. the spatial parameter ρ and the
regression parameters β are constant over the coordinates space. In fact, in equation
(24) the value of ρ and β depends on the coordinates. The parameters ρ(xs1 ,xs2)
and β (xs1 ,xs2) are only required to be spatially smoothed. The degree of smoothness
depends on the bandwidth parameter h which allows to define the local sub-sample
around the coordinates of each point (xs1 ,xs2 ) using a given kernel function.

Because of the presence of the endogenous spatial lag term (Wy) on the r.h.s. of
Eq. (24), the marginal effects of a change in X∗ or in X must be computed starting from
the reduced form of the model. Specifically, the marginal effect of a change in X∗ is:

∂y
∂X∗ = [IN −ρ(xs1 ,xs2 ;h)W]−1 β ∗ (25)

while the marginal effect of a change in X is:

∂y
∂X∗ = [IN −ρ(xs1 ,xs2 ;h)W]−1 β (xs1 ,xs2 ;h) (26)

For the estimation of these new models, Geniaux and Martinetti (2017) resort to
the Spatial Two-Stage Least Squares (S2SLS) technique. In particular, they use a 5-step
approach, a local linear estimator (a variant of the GWR) and Cross Validation for the
selection of the bandwidth parameter.

4 It is worth noting that the spatial trend term can be included even in a model for cross-sectional
data, while spatial fixed or random effects can be included in a model to control for spatial
unobserved heterogeneity only when spatial panel data are available.
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Using cross-regional data, one may for example estimate a knowledge production
function with heterogeneous parameters:

lnKi = α(xs1,i,xs2,i)+β1(xs1,i,xs2,i) lnR&Di (27)

+β2(xs1,i,xs2,i) lnHi+ρ(xs1,i,xs2,i)∑
j �=i

wi j lnKj+ εi

The regional learning process of generating and transferring knowledge may be
affected by local social capital, i.e. the institutional and cultural context of local net-
works, trust and conventions. Therefore, heterogeneous region-specific conditions are
a source of spatial heterogeneity in intra-regional knowledge creation. In addition, het-
erogeneous region-specific conditions are related with the regional capacity of exploit-
ing external knowledge sources. Thus, model 27 would allows a researcher to assess the
spatial stationarity (homogeneity) of the parameters associated to R&D investments and
to human capital investments, as well as the spatial stationarity of the spatial knowledge
spillover parameter (ρ). Nonstationarity may be evident by inspection of basic maps,
and can be formally tested. For example, Kang and Dallerba (2016) have investigated
the spatial heterogeneity in the marginal effects of a regional knowledge production
function by using nonparametric local modeling approaches such as GWR and mixed
GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and
non-MSA counties. The results indicate a high degree of spatial heterogeneity in the
marginal effects of the knowledge input variables, more specifically for the local and
distant spillovers of private knowledge measured across MSA counties. On the other
hand, local academic knowledge spillovers are found to display spatially homogeneous
elasticities in both MSA and non-MSA counties.

A characteristic of this approach is that it only considers spatial parameter hetero-
geneity (i.e. parameter heterogeneity over the coordinates space), while neglecting the
possibility of pure nonlinearities (i.e. parameter heterogeneity over the domain of the
explanatory variable). Nevertheless, it remains very important to assess the existence of
pure nonlinearities in the relationship between the response variable and the covariates.
In fact, regional and urban economic development literature often predicts threshold
effects (for example in growth theory) or monotonic relationships (for example in urban
economics). Moreover, keeping the spatial autocorrelation parameter (ρ) constant over
space is a valid option: in that case, the feedback effects of spatial autocorrelation have
a clearer definition and the interpretation of direct and indirect effects is easier.

3.2 Modeling Spatial Dependence, Spatial Heterogeneity and Nonlinearities:
P-Spline Models for Cross-Sectional Data and Short Panels

Another recent strand of the spatial econometric literature has proposed Spatial Autore-
gressive Semiparametric Geoadditive Models as a means of simultaneously dealing
with different critical issues typically encountered when using spatial economic data;
namely, spatial dependence, spatial heterogeneity and unknown functional form (Basile
et al. 2014; Montero et al. 2012). This approach combines penalized regression spline
(PS) methods (Eilers et al. 2015) with standard spatial autoregressive models (such as
SAR, SEM, SDM and SLX). An important feature of these models is that they make it
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possible to include within the same specification: (i) spatial autoregressive terms to cap-
ture spatial interaction or network effects; (ii) parametric and nonparametric (smooth)
terms to identify nonlinear relationships between the response variable and the covari-
ates; and (iii) a geoadditive term, i.e. a smooth function of the spatial coordinates, to
capture a spatial trend effect, that is, to capture spatially autocorrelated unobserved het-
erogeneity.

The structural form of the Penalized-Spline Spatial Lag model (PS-SAR) is:

y = ρWy+X∗β ∗ + f1 (x1)+ f2 (x2)+ f3 (x3,x4) (28)

+ f4 (x1)z+ ...+h(xs1 ,xs2)+ ε

where y is a continuous univariate output variable, Wy its spatial lag, X∗β ∗ is the lin-
ear predictor for any strictly parametric component (including the intercept, all cate-
gorical covariates and eventually a set of continuous covariates). fk (.) are unknown
smooth functions of univariate continuous covariates or bivariate interaction surfaces
of continuous covariates, capturing nonlinear effects of exogenous variables. Which
of the explanatory variables enter the model parametrically or non-parametrically may
depend on theoretical priors or can be suggested by the results of model specifica-
tion tests (Kneib et al. 2009). f4 (x1)z is a varying coefficient term, where z is either
a continuous or a binary covariate. The term h(xs1 ,xs2) is a smooth spatial trend sur-
face, i.e. a smooth interaction between latitude and longitude. It allows us to control
for unobserved spatial heterogeneity, which is a primary task when dealing with spatial
data. When the term h(xs1 ,xs2) is interacted with one of the explanatory variables (e.g.,
h(xs1 ,xs2)x1), it allows us to estimate spatially varying coefficients (like in the GWR
model). Finally, ε are iid normally distributed random shocks.5

This model reflects the notion of spatial dependence made of two parts: (i) a spa-
tial trend due to unobserved regional characteristics, which is modeled by the smooth
function of the coordinates, and (ii) global spatial spillover effects, which are modeled
by including the spatial lag of the dependent variable. The introduction of the spatial
lags of the exogenous (X) variables results in what can be called the Penalized-Spline
Geoadditive Spatial Durbin Model (PS-SDM).

When the ρ parameter is not statistically different from zero, i.e. in the case of a
simpler semiparametric geoadditive model without the spatial lag of the dependent vari-
able (PS model), if all regressors are manipulated independently of the errors, f̂k (xk)
can be interpreted as the conditional expectation of y given xk (net of the effect of the
other regressors). Blundell and Powell (2003) use the term Average Structural Function
(ASF) with reference to this function. Instead, when ρ is different from zero, the esti-
mated smooth functions — f̂k(xk) — cannot be interpreted as ASF. Taking advantage
of the results obtained for parametric SAR, we can compute the total smooth effect
(total–ASF) of xk as

f̂ Tk (xk) = Σq [In − ρ̂Wn]
−1
i j bkq(xk)β̂kq (29)

5 This assumption can be relaxed by a more general specification, such as ε ∼N (0,σ2
ε Λ) being

Λ a covariance matrix reflecting cross-sectional dependence in the errors as, for example,
in Pinheiro and Bates (2000).
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where bkq(xk) are P-spline basis functions, and β̂kq the corresponding estimated para-
meters.

We can also compute direct and indirect (or spillover) effects of smooth terms in the
PS-SAR case as:

f̂ Dk (xk) = Σq [In − ρ̂Wn]
−1
ii bkq(xk)β̂kq (30)

f̂ Ik (xk) = f̂ Tk (xk)− f̂ Dk (xk) (31)

Similar expressions can be provided for the direct, indirect and total effects of the
PS-SDM (Table 3).

Table 3. Total, direct, and indirect smooth effects

Model Direct Smooth Effect: f̂ dekk (xk)

PS model bkq(xk)β̂kq

PS-SLM Σq [IN − ρ̂WN ]
−1
ii bkq(xk)β̂kq

PS-SEM bkq(xk)β̂kq

PS-SDM Σq [IN − ρ̂WN ]
−1
ii

[
bkq(xk)β̂kq+bkg(WNxk)β̂kg

]

PS-SLX bkq(xk)β̂kq

Model Indirect Smooth Effect: f̂ iekk (xk)

PS model 0

PS-SLM f̂ tekk (xk)− f̂ dekk (xk)

PS-SEM 0

PS-SDM f̂ tekk (xk)− f̂ dekk (xk)

PS-SLX bkg(WNxk)β̂kg

Model Total Smooth Effect: f̂ tekk (xk)

PS model bkq(xk)β̂kq

PS-SLM Σq [IN − ρ̂WN ]
−1
i j bkq(xk)β̂kq

PS-SEM bkq(xk)β̂kq

PS-SDM Σq [IN − ρ̂WN ]
−1
i j

[
bkq(xk)β̂kq+bkg(WNxk)β̂kg

]

PS-SLX bkq(xk)β̂kq+bkg(WNxk)β̂kg

The Spatial Error Geoadditive Model (PS-SEM) proposed by Mı́nguez et al. (2012)
augments the PS model by including a spatial autoregressive error term, while leaving
the systematic part unchanged:

y = X∗β ∗ + f1 (x1)+ f2 (x2)+ f3 (x3,x4) (32)

+ f4 (x1)z+ ...+h(xs1 ,xs2)+u

u = λWu+ ε ε ∼ iidN (0,σ2
ε )
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where λ is a spatial autoregressive parameter. As in the case of the pure PS model, if
all regressors are exogenous, f̂k (xk) = Σqbkq(xk)β̂kq can be directly interpreted as the
conditional expectation of y given xk (ASF).

Getting back to the example of the knowledge production function, the PS-SAR
counterpart of model (15) for a short panel data can be for example specified as:

lnKit = α + f (lnR&Dit , lnHit)+ρ ∑
j �=i

wi j lnKjt +h(xs1,i,xs2,i)+ εit (33)

The nonparametric part of model 33 relaxes the standard assumptions of linearity and
additivity regarding the effect of R&D and human capital. Charlot et al. (2015) use a
similar specification to analyze the genesis of innovation in the regions of the European
Union. Their results unveil nonlinearities, threshold effects, complex interactions and
shadow effects that cannot be uncovered by standard parametric formulations.

3.3 Modeling Spatial Spillovers, Spatial Heterogeneity, Nonlinearities and
Time-Related Factors: Spatio-Temporal Semiparametric Autoregressive
Models for Large Panel Data

In this section we propose a class of spatio-temporal models for large spatial panel data
which represent a generalization of the Spatial Autoregressive Semiparametric Geoad-
ditive Models discussed in Sect. 3.2. They are a flexible alternative to the parametric
models presented in Sect. 2.3 for modeling spatial panel data as long as the spatio-
temporal heterogeneity is smoothly distributed (a very common case, one may say, in
empirical economic analyses), so that we can approximate it with smooth nonparamet-
ric functions.

The general model proposed is written as:

y= f̃ (xs1 ,xs2 ,xt)+ρWy+
k

∑
δ=1

gδ (xδ )+ ε (34)

where f̃ (xs1 ,xs2 ,xt) is a smooth spatio-temporal trend, i.e. a three-dimensional smooth
function of the spatial coordinates (xs1 ,xs2 ), and of the time component xt ; gδ (.), δ =
1, . . . ,k, are also smooth functions of the covariates xδ ,it (they can be linear, or can
accommodate varying coefficient terms, smooth interactions between covariates, factor-
by-smooth curves, and so on); W is the spatial weights matrix, ρ the spatial spillover
parameter, and ε ∼ N (0,R) where R can be multiple of the identity (if errors are
independent), or include a temporal correlation structure.

In many situations the spatio-temporal trend to be estimated by f̃ can be complex,
and the use of a multidimensional smooth function may not be flexible enough to cap-
ture the structure in the data. To solve this problem, Lee and Durbán (2011) proposed an
ANOVA-type decomposition of f̃ (xs1 ,xs2 ,xt) where spatial and temporal main effects,
and second- and third-order interactions between them can be identified:

f̃ (xs1 ,xs2 ,xt) = f1(xs1)+ f2(xs2)+ ft(xt)+ f1,2(xs1 ,xs2)
+ f1,t(xs1 ,xt)+ f2,3(xs2 ,xt)+ f1,2,3(xs1 ,xs2 ,xt)
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Thus, model (34) can be written as:

y = f1(xs1)+ f2(xs2)+ ft(xt)+ f1,2(xs1 ,xs2)+ f1,t(xs1 ,xt)

+ f2,3(xs2 ,xt)+ f1,2,3(xs1 ,xs2 ,xt)+ρWNy+
k

∑
δ=1

gδ (xδ )+ ε (35)

We will refer to it as the PS-ANOVA-SAR(AR1) model. It is flexible enough to simul-
taneously control for different sources of bias: spatial heterogeneity bias, spatial depen-
dence bias, omitted-time related factors bias, and functional form bias.

First, as already pointed out in Basile et al. (2014), the geoadditive terms given by
f1(xs1 ), f2(xs2) and f1,2(xs1 ,xs2) work as control functions to filter the spatial trend out
of the residuals, and transfer it to the mean response in a model specification. Thus,
they allow to capture the shape of the spatial distribution of y, eventually conditional
on the determinants included in the model. These control functions also isolate sto-
chastic spatial dependence in the residuals, that is spatially autocorrelated unobserved
heterogeneity. Thus, they can be regarded as an alternative to individual regional dum-
mies to capture unobserved heterogeneity as long as the latter is smoothly distributed
over space. Regional dummies peak significantly higher and lower levels of the mean
response variable. If these peaks are smoothly distributed over a two-dimensional sur-
face (i.e., if unobserved heterogeneity is spatially autocorrelated), the smooth spatial
trend is able to capture them.

Second, the smooth time trend, ft(xt), and the smooth interactions between space
and time - f1,t(xs1 ,xt), f2,t(xs2 ,xt), and f1,2,t(xs1 ,xs2 ,xt) - work as control functions
to capture the heterogeneous effect of common shocks. Thus, the PS-ANOVA-SAR
model works as an alternative to the models proposed by Bai and Li (2015); Bailey
et al. (2016); Pesaran and Tosetti (2011); Shi and Lee (2016); Vega and Elhorst (2016)
based on extensions of common factor models to accommodate both strong cross-
sectional dependence (through the estimation of the spatio-temporal trend) and weak
cross-sectional dependence (through the estimation of the ρ parameter). The advantage
of the PS-ANOVA-SAR model lies in the fact that its ability to fully control for the
residual cross-sectional dependence and to assess the presence of network effects net of
common factor effects, is not crucially affected by the set of covariates included in the
model.

Furthermore, this framework is also flexible enough to control for the linear and
nonlinear functional relationships between the dependent variable and the covariates.

Getting back to the example of the knowledge production function, the PS-ANOVA-
SAR version of (33) for a panel data with a long time series would be:

lnKit = f (lnR&Dit , lnHit)+ρ ∑
j �=i

wi j lnKjt (36)

+ f1(xs1,i)+ f2(xs2,i)+ ft(xt)+ f1,2(xs1,i,xs2,i)+ f1,t(xs1,i,xt)
+ f2,3(xs2,i,xt)+ f1,2,3(xs1,i,xs2,i,xt)+ εit

4 Software

Nowadays there is a wide range of software allowing to estimate most of the economet-
ric models exposed in this Chapter. Some of them, like GeoDa (Anselin et al. 2006),
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use a menu interface which permits the user to perform spatial exploratory analysis,
and to estimate parametric spatial econometric models for cross-sectional data without
the need to learn new commands. Nevertheless, other well-known software alternatives
require some skills in the corresponding programming language to deal with the spa-
tial data. This is the case of some specialized packages in R (R Core Team 2016), the
library PySAL (Rey and Anselin 2007) written in Python (Van Rossum 1995), the tool-
box for spatial econometric models written by LeSage (2009) in MATLAB (MATLAB
2017), some functions, also in MATLAB, to estimate static and dynamic spatial panel
data models developed by Elhorst (Elhorst et al. 2013), and a suite of commands for
spatial data in SAS (SAS Institute Inc. 2013) or Stata (StataCorp. 2015). Bivand and
Piras (2015) compare the results obtained by using different software alternatives and
conclude that all of them provide similar results.

In this overview we focus on R, for the following reasons6:

• it is a well-tested free software with a growing number of packages in all statistical
fields (spatial analysis included);

• it has a huge community of users;
• the possibility to combine functional programming with object-oriented program-

ming (Chambers 2016) allows the developers to build new packages making use of
the existing ones;

• it allows to estimate most of the spatial econometric models exposed in this chapter
including both parametric models (for cross-sectional and static panel data) and
semiparametric models.

The R packages spdep (Bivand 2013) and sp (Bivand et al. 2013; Pebesma and
Bivand 2005) facilitate the creation, transformation and manipulation of spatial objects,
neighborhood matrices and the computation of descriptive measures of spatial autocor-
relation. Moreover, the package spdep allows researchers to estimate the whole set of
cross-sectional spatial autoregressive models exposed in Sect. 2.1 including SAR, SEM,
SDM, SLX and SAC models using either ML or GMM estimation in an efficient way.
Furthermore, this package also permits us to compute the marginal effects and make
inference on their values. To extend the range of standard spatial models considered,
Piras (2010) created the sphet package for estimating and testing parametric spatial
models with heteroskedastic innovations using estimation procedures based on GMM.

To deal with the static spatial panel data models discussed in Sect. 2.2.1, Millo and
Piras (2012) have developed the splm package. It includes a set of functions able to esti-
mate a full range of static spatial panel data models including fixed or random effects;
spatial lags for the error term or dependepent variable and, possibly, serial correlation
in the noise of the model. Millo (2014) provides an extensive overview of these models
including algorithms to estimate them using MLE. These packages can also be used
to estimate the SAR-CCEP model discussed in Sect. 2.3. Unfortunately, there is not a
freely available R package for he estimation and inference of dynamic spatial panel data
models, revised in Sect. 2.2.2, while some functions are available in MATLAB (Elhorst
2014a; Elhorst et al. 2013).

6 Two recent references of the use of R for spatial statistical and econometric analysis are Arbia
(2014); Brunsdon and Comber (2015). A more classical reference is given by Bivand et al.
(2013).
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Focusing on semiparametric spatial data models (Sect. 3), McMillen (2013) has
written the McSpatial package which includes routines to estimate nonparametric
and conditionally parametric versions of spatial linear regression and spatial models
with binary dependent variable. It mainly uses kernel techniques to perform the non-
parametric estimations. Moreover, the package GWmodel (Gollini et al. 2015; Lu et al.
2014) deals with geographical weighted (GW) models, and includes functions for com-
putation of GW summary statistics and regression, GW principal components analysis,
and GW discriminant analysis. The techniques to estimate MGWR-SAR models dis-
cussed in Sect. 3.1 are already included in the forthcoming R package gwrsar (Geniaux
and Martinetti 2017).

Finally, considering semiparametric regression models that include spatial or spatio-
temporal trends, both packages mgcv (Wood 2006) and R2BayesX (Belitz et al. 2016;
Umlauf et al. 2015) include some functions to estimate models including complex spa-
tial and spatio-temporal trends, parametric and non-parametric covariates and interac-
tions between them. Both packages have the possibility to choose P-spline methodology
or the combination of other type of spline bases with penalty matrices for the non-
parametric terms. The full class of models are usually estimated either by restricted
maximum likelihood (REML) or bayesian methods. The techniques to estimate PS-
SAR and PS-ANOVA-SAR models (Mı́nguez et al. 2017) discussed in Sect. 3.2 will
also be included in a forthcoming R package.

5 Conclusions

Spatial econometrics is commonly conceived as a powerful method for capturing spa-
tial spillover (or spatial interaction) effects. It is based on the assumption that, when
an idiosyncratic shock hits a specific spatial unit (a country, a region, a firm, etc.),
then its effects propagate to all other spatial units in the sample with a distance-decay
mechanism. For example, in estimating a regional knowledge production function using
a simple cross-section of regional data, we must be able to assess the impact of the
investment in R&D in a region on both its own productivity outcome (TFP) and on the
outcome of all other regions in the sample. Spatial econometricians have also derived
statistical measures of direct and indirect (spillover) marginal impacts to quantify this
phenomenon (LeSage and Pace 2009).

Nevertheless, is also important to recognize that the evidence of spatial spillovers
might (at least partially) mask other specification errors, such as wrong functional form,
unobserved spatial heterogeneity, heteroskedasticity, unobserved common factors, time
persistence, and so on. Without a proper control for these sources of bias, the esti-
mated spatial spillover effect often appears very (unrealistically) strong. For example,
in estimating a regional knowledge production function using a simple cross-section of
regional data without any control for nonlinearities and spatial unobserved heterogene-
ity, one may find evidence of an average indirect (spillover) impact of R&D on TFP sim-
ilar to the corresponding average direct marginal effect. This is obviously unreasonable.

In this Chapter we have reviewed different parametric and semiparametric
approaches recently developed to mitigate this problem. Not surprisingly, parametric
spatial panel models received most attention in the literature. In particular, dynamic spa-
tial panel data models and spatial panel autoregressive models with common factors turn
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to be very important tools for simultaneously control for spatial spillovers, unobserved
spatial heterogeneity, unobserved common factor and time persistence. However, in the
Chapter we have also pointed out that spatial autoregressive semiparametric geoaddi-
tive models (PS-SAR models; Basile et al. 2014) may play a prominent role in those
context in which the theory suggests the existence of spatial interdependence and het-
erogeneous behavior of the spatial units. These methods represent indeed some flexible
approaches which are able to address simultaneously spatial dependence, heterogeneity
and nonlinearity. Moreover, we have reviewed more recently developed semiparametric
models for longitudinal data including a non-parametric spatio-temporal trend, a spatial
lag of the dependent variable, and a time series autoregressive noise (PS-ANOVA-SAR-
AR1) which represent a valid alternative to parametric methods aimed at disentangling
strong and weak cross-sectional dependence (Mı́nguez et al. 2017). Natural directions
in which these methods can be extended are a specification for a dynamic framework.
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