Nonintrusive AMR Asynchrony
for Communication Optimization

Muhammad Nufail Farooqi'®), Didem Unat'®), Tan Nguyen?,
Weiqun Zhang?, Ann Almgren?, and John Shalf?

! Kog University, Istanbul, Turkey
{mfarooqil4,dunat}@ku.edu.tr
2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{tannguyen,weiqunzhang,asalmgren, jshalf }@1bl.gov

Abstract. Adaptive Mesh Refinement (AMR) is a well known method
for efficiently solving partial differential equations. A straightforward
AMR algorithm typically exhibits many synchronization points even
during a single time step, where costly communication often degrades
the performance. This problem will be even more pronounced on future
supercomputers containing billion way parallelism, which will raise the
communication cost further. Re-designing AMR algorithms to avoid syn-
chronization is not a viable solution due to the large code size and com-
plex control structures. We present a nonintrusive asynchronous app-
roach to hiding the effects of communication in an AMR, application.
Specifically, our approach reasons about data dependencies automati-
cally using domain knowledge about AMR applications, allowing asyn-
chrony to be discovered with only a modest amount of code modification.
Using this approach, we optimize the synchronous AMR algorithm in the
BoxLib software framework without severely affecting the productivity
of the application programmer. We observe around 27-31% performance
improvement for an advection solver on the Hazel Hen supercomputer
using 12288 cores.

Keywords: Asynchronous execution - Adaptive mesh refinement -
AMR algorithm - Communication hiding

1 Introduction

Many computational science and engineering problems are modelled in the form
of partial differential equations (PDEs). Although a high resolution mesh is
required for improved accuracy of PDE solvers, usually some mesh regions are of
more interest, where additional accuracy is desired. Adaptive mesh refinement
(AMR) provides the mechanism to locally refine areas of interest [8]. Block-
structured AMR (SAMR) is a type of AMR method that uses structured grids
organized into a grid hierarchy. Areas of interest are refined gradually in a nested
manner from the coarsest level, which covers the whole domain to the finest.

© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 682-694, 2017.
DOI: 10.1007/978-3-319-64203-1_49

Nonintrusive AMR Asynchrony for Communication Optimization 683

One of the scalability challenges for AMR applications is that they consist
of many synchronization points. These costly synchronization points appear in
the nearest-neighbor communication including boundary exchange, in the global
reduction, and in the inter-AMR, level update. The former has become increas-
ingly costly due to the system design trend focusing on fewer but more powerful
compute nodes [6]. Asynchronous execution can reduce synchronization cost with
the help of description of dependencies between AMR subgrids and the partial
ordering among them. Given the partial ordering information, a scheduler can
assign ready subgrids on available resources while other subgrids are waiting on
their inputs.

In this paper we propose an asynchronous AMR algorithm that reduces the
most of the synchronization costs without bringing too much programming over-
head. In our asynchronous algorithm, each subgrid at different AMR levels is
considered as a task. A task within a specific level can perform computation
independent of other tasks at the same level as soon as its boundary data is avail-
able. Even though there is more opportunity for overlap in an AMR algorithm,
for example, a subgrid located at any level can perform computation indepen-
dent of other subgrids, we enforce the completion of computation of subgrids in
a single level before moving onto the computation at other levels for the sake
of programming simplicity. Our method enables legacy application implemented
using the synchronous AMR algorithm to get the benefits of the communication
and computation overlap. We discuss the implementation of our asynchronous
algorithm in the context of the BoxLib AMR framework and present results on
the advection solver, which contains all the communication scenarios present in
a typical AMR application. We compared our results with the existing BoxLib
execution model, where communication at each level is completed before starting
computation. The performance improvement is about 27% for both strong and
weak scaling on 12288 cores.

Rest of the paper is organized as follows. Next section discusses related work.
In Sect.3 we provide some background on Block-Structured AMR. Section 4
explains the AMR algorithm in general and Sect.5 proposes a methodology
to asynchronously execute the AMR algorithm. Implementation is discussed in
Sect. 6. Results are shown in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Work

A plethora of work can be found in literature that focuses on speeding up of
AMR computations using diverse techniques while targeting specific problems
or architectures. Some of the high level AMR frameworks are BoxLib [1], Cac-
tus [12], Chombo [10], Enzo [2], FLASH [11], and Paramesh [15]. Wahib et
al. [20] presented a compiler-based framework named Daino that generates par-
allel AMR code optimized for GPUs from an annotated uniform grid code. In
[19], authors introduced an asynchronous integration scheme with local time
stepping for multi-scale gas discharge simulations.

Chan et al. [9] classified AMR execution models into four modes ranging from
fully synchronous to fully asynchronous. The trade-off between the modes is the

684 M.N. Farooqi et al.

amount of synchronization and the programmability. The more asynchronous
the execution becomes, the harder it is to program and debug. Full synchro-
nous is the most restricted one, which will be discussed in Algorithms 1 and 3
in Sect.4. Rank synchronous reduces the global synchronization down to rank
level and runs synchronously within a rank. Rank synchronous model avoids
global synchronization but enforces local restrictions on task processing order.
BoxLib currently implements a rank synchronous model. In phase asynchronous,
a subgrid within a specific level can perform computation independent of other
subgrids at the same level as soon as dependencies are met and communication
for a subgrid is overlapped within a single time step. Each rank will finish its
communication for all the subgrids before starting computation on any subgrid.
In a fully asynchronous model, a subgrid located at any level can perform com-
putation independent of other subgrids as soon as its own dependencies are met.
Here we present an asynchronous AMR algorithm that is analogous to the phase
asynchronous execution model.

To the best of our knowledge, the literature that explains the asynchronous
AMR algorithm and its corresponding implementation is rare. A few notable
contributions are as follows. Langer et al. [14] proposed a distributed regridding
algorithm to enable fully asynchronous AMR execution for oct-tree based AMR
implementations. They used Charm++ [13] for implementation where each sub-
grid is represented by a chare that can run independently and communication
of one chare is overlapped with computation of another. Our proposed asyn-
chronous algorithm can work with traditional regridding algorithms and can be
implemented using any threading library. Uintah [16] is a software framework
that implements a runtime to execute AMR applications asynchronously. They
also use subgrid level asynchronous task execution to overlap communication
and computation. They mostly discussed the runtime optimization details but
do not explain the asynchronous AMR algorithm.

3 Block-Structured Adaptive Mesh Refinement (SAMR)

AMR provides a computationally efficient approach for solving PDEs by using
finer meshes only at regions of interest. SAMR [8], one of the many AMR meth-
ods, is established on a chain of nested and logically rectangular grids. Starting
from a coarse grid that covers the entire domain at level 0, grids are refined to
finer grids at the higher levels with the finest grid at the top level. Figures la
and b show sample SAMR grids having two levels of refinements. Each level is
composed of non-overlapping rectangular grids nested from grids on the lower
level in the hierarchy. The nested grid at a finer level is extended from a single
grid or multiple adjacent grids at the coarser level. All grids at a level are of
the same resolution. Given maximum number of levels at start, the number of
refinement levels can vary dynamically during the simulation.

Generally, two types of communication are involved in the parallel AMR
implementations: (1) intra-level communication is only between neighbor-
ing/adjacent grids, and (2) inter-level communication is only between consec-
utive levels. Two basic operations, restriction and prolongation, are needed for

Nonintrusive AMR Asynchrony for Communication Optimization 685

(b) Top view

Fig. 1. Block-structured AMR in 2 dimensions with two levels of refinement

inter-level communication. In prolongation, data is interpolated when commu-
nicated from a coarser grid to a finer one. In restriction, data is averaged when
copied from a finer to coarser grid.

4 Synchronous AMR Algorithm

Algorithms 1 and 2 show the basic AMR, algorithm described in [18]. Algorithm 1
contains a time step loop, which runs a specified number of times. In each iter-
ation it first finds the time step dt for the current time step. Computing dt
generally involves a global reduction operation to find a minimum value. Next a
recursive procedure AMRTimeStep is called that starts from the coarsest level
and iterates over all levels to compute a single time step.

Algorithm 2 shows the recursive procedure that computes a single time step of
the AMR algorithm. The procedure first checks whether regridding the finer level
is needed. If needed, it estimates the error at finer level (I+1) and regrids the finer
level. When a regrid operation is performed on a finer level, it will subsequently
be carried out for all the upper levels up to the finest level. Boundary data is filled
from current refinement level [if available otherwise data is filled from physical
boundary conditions or interpolated from the coarser level [— 1. Upon receiving
of all the boundary data, all the grids at the current level [are integrated in
time. Next, the AMRTimeStep procedure is called r times recursively to compute
the finer level at smaller time steps. This is known as subcycling in time where
r specifies the desired number of cycles that is normally set to the refinement
ratio. The value of r can be set to 1 if no-subcycling is desired. Data between
the current level and the finer level is synchronized after the finer level reaches
the same time ¢ as the current level. All the levels are integrated independent of
each other. Lastly, data is synchronized between two successive levels to resolve
the inconsistencies at coarse and fine level boundaries.

In the synchronous execution of an AMR algorithm there are multiple syn-
chronization points. First synchronization point is in the computation of time
step value dt where a global reduction operation occurs. Next synchronization
point is when boundary data is filled and this synchronization happens every time

686 M.N. Farooqi et al.

Algorithm 1 Basic AMR algorithm Algorithm 2 Single Time Step
Procedure AMRTimeLoop(time ¢, Procedure AMRTimeStep(level [, time

num of steps s) t, dt)
for i — 1 to s do if isRegrid({ + 1) then
dt « compute_dt() estimateError(l + 1)
AMRTimeStep(0, t, dt) generateGrids(l + 1)
t—t+dt end if
end for if { =0 then
Procedure AMRTimeLoop fillBoundary(level 0 « level 0)
else
fillBoundary(l < [and [- 1)
end if

for each grid g in grids at level | do
integrate(l, t + dt, g)

end for

if | <4 then
repeat j < 1 to r times:

AMRTimeStep (I + 1, t, IX%)

end if

synchronizeData(l «— [+ 1)

End Procedure AMRTimeStep

the AMRTimeStep procedure is called. Last synchronization is when data is syn-
chronized between two adjacent levels to correct coarse and fine level boundaries.
Next, we discuss our proposed asynchronous algorithm that overcomes some of
these synchronization overheads.

5 Asynchronous AMR Algorithm

In the AMR algorithm listed in Algorithm 2 data needed for all grids at a level
is communicated before starting computation on that level. Thus all the grids at
the same level are computed when all of their dependencies are fulfilled. In the
synchronous algorithm, all grids at the same level are considered as one big task
that is carried out as a whole. For an asynchronous execution, we reduce the task
granularity to subgrid size where each subgrid is considered as a task. A task
can start computing as soon as its dependencies are fulfilled. Here, dependencies
for a task are the data at boundaries that are copied from other tasks.

The asynchronous version of Algorithm1 is the same as the synchronous
except the reduction operation is performed asynchronously. Algorithm 3 shows
the asynchronous AMR algorithm for a single time step. Before executing Algo-
rithm 1, a task graph is created that contains information about tasks at all levels
and their dependencies. Dependencies in the task graph are based on the grid
structure therefore the task graph remains valid until there is a change in the
grid structure. Asynchronous task graph is updated when a regridding occurs to

Nonintrusive AMR Asynchrony for Communication Optimization 687

reflect the changes in the grids and their dependencies. In Algorithm 3 all the
fillboundary_send calls are non-blocking while the receives are blocking.

Algorithm 3 Asynchronous AMR, Algorithm - Single Time Step

Procedure AMRTimeStep(level [, time ¢, dt, iteration iter)
if isRegrid (I + 1) then
estimateError(l + 1)
generateGrids(l + 1)
updateTaskGraph(l + 1)
end if
if FirstTimeStep and iter = 1 and | < lyq2 then
if [= 0 then fillBoundary_send_allGrids (level 0 « level 0) //non-blocking
fillBoundary _send_allGrids (I + 1 « [+ 1) //non-blocking
end if
for each grid g in grids at level [do //Out-of-order loop iterator
if [=0 then
fillBoundary receive(level 0 «— level 0, g) //blocking
else
fillBoundary _receive(l <« l and [- 1, g) //blocking
end if
integrate(l, t + dt, g)
if | < l,hae then
fillBoundary_send (I+1 < I, g) //non-blocking
else
fillBoundary_send (I < I, g) //non-blocking
end if
end for
if | < l,q2 then
repeat j < 1 to r time: AMRTimeStep (I + 1, t, X
end if
if | < ljmae then synchronizeData_receive_allGrids (I « I + 1) //blocking
if I > 0 then synchronizeData_send_allGrids (I - I < 1) //non-blocking
if | < lmae then fillBoundary send_allGrids (I < [) //non-blocking
End Procedure AMRTimeStep

dt
)

7)

In the first time step, to overlap the intra-level communication at the finer
level (I+1) for timestep (t) with computation of the current level (1) for timestep
(t), we can start sending the boundary data for the finer level because data
at that level is already initialized during the initialization of the application.
After initiating the intra-level communication at the finer level, a loop iterates
over all grids at the current level. The loop iterator is designed to iterate over
the grids for which dependencies are met and it uses the dependency graph to
identify the task dependencies. This out-of-order execution enables ready grids
to start computing while allowing more time for grids which are still waiting
for their boundary data. Receive calls although blocking do not wait idle for
communication because the loop iterator ensures that the dependencies for the

688 M.N. Farooqi et al.

Fig. 2. Asynchronous computation and communication overlap

subgrid are already met. As the dependencies for the task are met, the grid fills
the boundaries with the received data from current and coarser level (I—1). After
performing the computation (integrate) on the grid, the boundary data is sent to
the dependent grids at finer level(I + 1) when current level is not the finest level.
If the current level is the finest level (I = ;4.) then it sends the boundary data
to dependent grids at the same level for next time step (¢ + dt) or next iteration
if subcycling is enabled. Thus boundary data communication between adjacent
levels or within the finest level for next subcycling iteration is overlapped with
computation of the current level (I) or current subcycling iteration. Next, data
at current level is synchronized with the received data from the finer level for
all grids and the synchronized data is then sent to the coarser level. Lastly, for
levels below the finest level we can initiate its intra-level communication for the
next time step (¢ + dt) or the next subcycling iteration. This enables to overlap
intra-level boundary data communication for finer levels with the computation
at next time step of their coarser levels. However, for iterations within a time
step when subcycling is enabled the overlap will only be with the computation of
grids at the same level. For the coarsest level (0), this can be possibly overlapped
with the global reduction operation required for the next time step value.
Figure 2 shows an example how we enable overlap of computation and com-
munication for Algorithm 3. After computation of grid GO at level 0, communi-
cation for boundary data takes place as shown by arrows 1 and 2. For example,
if the communication represented by arrow 1 completes first the grid G1 at level
1 will start computation. After G1 finishes computation it can start sending
the boundary data (shown with arrows 3 and 4) to the grids G3 and G4 at
level 2. Communication represented with arrows 3 and 4 will be overlapped with

Nonintrusive AMR Asynchrony for Communication Optimization 689

computation of the grid G2 at level 1. After completion of the grid G2 and initi-
ating the boundary data communication (shown with arrows 5 and 6), any grid
at level 2 that receives its boundary data can start computation. That is if 3
finishes first then G3 can start its computation or if both 4 and 5 finish first
then G4 can start its computation. Similarly G5 can start computation when 6
is finished.

6 Implementation

We implemented the asynchronous AMR algorithm in BoxLib [1], which is a
publicly available software framework used for implementing Block-Structured
AMR applications. Some of the large BoxLib applications are for astrophysics
(CASTRO [3] and MAESTRO [7]), cosmology (Nyx [5]) and low Mach num-
ber combustion (LMC [4]) simulations. BoxLib contains two notable classes,
Amr and AmrLevel, that are related to the AMR algorithm implementation.
The Amr class implements the AMR algorithm described in Algorithms 1 and 2.
AmrLevel manages data and operations required on them for a single level. Amr-
Level contains some virtual functions that the application programmers override
to implement their solver. These virtual functions are called for each level inside
the Amr class’s function that implements the AMR algorithm. Two of these
virtual functions are advance and post_timestep. The advance subroutine should
implement the fill boundary data and integration part of the AMR algorithm.
Data management and MPI communication is handled by BoxLib as it provides
fillPatch subroutine that manages the fill boundary data and the programmer
can use it in the advance subroutine to fill the boundary data. Programmer over-
rides the post_timestep subroutine to synchronize data between the levels. Data
synchronization between the levels also known as restriction can be performed
using the average_down subroutine provided by BoxLib.

To implement the asynchronous execution of the AMR algorithm, we
extended some of the BoxLib functionalities. We added two more virtual func-
tions initAsynchronousEzec and finalize A synchronousFExec to the AmrLevel class
so that applications can override them to initialize and destroy asynchronous
task graphs for a level. Task graphs from all levels are combined together inside
BoxLib to construct dependencies for the entire AMR grid hierarchy. FillPatch
and average_down previously implement synchronous MPI communication for
all grids at a level. To enable communication for a single grid without waiting
for the other grids, we divided the execution of FillPatch and average_down into
two parts; push and pull. FillPatch_push starts sending boundary data from a
single grid to all dependent grids whether at current level or at the finer level.
FillPatch_pull receives the boundary data for a single grid from all the relevant
grids. To pick the ready tasks, we implemented an iterator that iterates over
all the tasks in the asynchronous task graph. Our scheduler similar to the run-
time scheduler in [17], backs the iterator to support out-of-order execution. The
scheduler keeps track of the ready tasks and handles all the communications
generated by the asynchronous fillPatch and average_down subroutines.

690 M.N. Farooqi et al.

Both new applications and legacy applications developed using BoxLib can be
easily adapted to the new asynchronous framework with reasonable programming
effort. Application programmers need to implement the initAsynchronousFExec
and finalize AsynchronousFEzxec virtual functions to initialize the task graphs for
the corresponding level. To ease this process, we implemented a class named
RegionGraph that can create a task graph for a level automatically using the
metadata from BoxLib. A programmer can create a task graph simply by passing
an object of the MultiFab class to the RegionGraph class constructor. A MultiFab
contains all grids for a single level. A programmer has to replace the function calls
to fillPatch and average_down with their asynchronous push and pull versions.
Inside the newly developed task graph iterator, programmers can first pull, then
compute, and then push the tasks using these asynchronous function calls. End
users are insulated from the rest of the complexity involved in the asynchronous
execution, which is handled inside the asynchronous BoxLib framework.

Currently, our implementation of the asynchronous AMR algorithm is
restricted to a single time step. The asynchronous execution starts before com-
putation of the coarsest level and continues all the way up to the finest. We
synchronize all the processes after data is synchronized for the coarsest level.
We currently compute the time step using a synchronous global reduction and
our implementation does not support asynchronous regridding yet. In the future
we will further increase asynchrony, which would support asynchronous task
graph update when grid structure changes, asynchronous global reduction to
compute time step, and asynchronous communication across time steps.

7 Results

We carried out performance study on the Hazel Hen supercomputer located
at the HPC Centre, Stuttgart Germany. Compute node specifications on Hazel
Hen are provided in Table 1. For performance measurement we use an explicit
advection code based on BoxLib. The advection solver advects a scalar field
with a prescribed time-dependent velocity on adaptive meshes. A finite-volume
method with explicit time stepping is employed to solve the PDE. Although this
is a simple system, the code contains all the AMR algorithmic components and
communication patterns for building an explicit solver for a more complicated
system of conservation law equations such as gas dynamics. For example, inter-
and intra-AMR-level communication are needed for filling ghost cells. The mis-
match of finite-volume flux at the coarse/fine interface needs to be corrected so
that the conservation law is preserved. For comparison we use the existing Boxlib
execution model as our baseline which implements Algorithm 2 with rank syn-
chronous execution model discussed in the related work section. BoxLib reduces
the global synchronization down to rank level and runs synchronously within a
rank. All the experiments were performed using three levels of refinement, two
subcycling iterations and a refinement ratio of 2.

Figure 3 shows strong scaling up to 12K cores where each bar is labeled with
percent improvement obtained by the proposed asynchronous algorithm over

Nonintrusive AMR Asynchrony for Communication Optimization 691

Table 1. Machine specifications for Hazel Hen

CPUs Intel E5-2680 v3 | Shared L3 (MB) 30
(Haswell)

Sockets/cores per socket|2/12 Main memory (GB)|128

Threads per core 2 Memory bandwidth 68 (GB/s)

Clock rate (GHz) 2.5 Network bandwidth |11.7 (GB/s)

Proposed Asynchronous BoxLib (Rank Synchronous)

20

=

§ 15

w

£

= 10

3

Q

[

£ 5

£ 23-4% 14.8% 4.8%
0 FZETA

3072 6144 12288
Number of Cores

Fig. 3. Strong scaling for advection code on Hazel Hen

BoxLib. We used 10243 grid size as input for strong scaling studies. The y-axis
shows the time spent in a single step of Algorithms 2 and 3. It does not include
the time spent in timestep dt computation and global reduction. Proposed asyn-
chronous algorithm achieves up to 28.6% performance improvement over BoxLib
on 1536 cores. Performance improvement declines as we further increase the num-
ber of cores because the number of subgrids per process becomes too small to
overlap any computation. There are a total of 6041 subgrids with size ranging
from 1283 to 8. For the maximum performance improvement case there are
about 95 subgrids/rank while it reduces to less than 12 subgrids/rank in 12K
cores. Although not shown here, we observe the same strong scaling behavior
when two levels of refinements with subcycling and three levels of refinements
without subcycling are used.

Figure 4 compares weak scaling for BoxLib’s rank synchronous and proposed
asynchronous algorithms. Grid size starts from 10243 for 768 cores and then
doubled in x, y and z directions respectively. The proposed asynchronous algo-
rithm achieves the same weak scaling behavior as BoxLib but with sustained
performance improvement of more than 27%. This is possible because there are
always sufficient number of subgrids per process to hide communication.

A breakdown (for strong scaling) of the time spent during computation (inte-
gration), restriction and prolongation for rank synchronous algorithm compared

692 M.N. Farooqi et al.

~—Proposed Asynchronous == BoxLib (Rank Synchronous)

a

._/\A /
i —
27.0% E 28.5% 28.4%
—a—
— ——

v

31.0%

----4

!
27.2% :

IS

L

N

Time per timestep (s)
w

iy

0
768 1536 3072 6144 12288
Number of Cores
Fig. 4. Weak scaling for advection code on Hazel Hen
B Compute Time M Restriction M FillPatch 4 M Proposed Asynchronous
20 I_— BoxLib (Rank Synchronous) — 1
18
z 16
g 14
é 12
g 8
[
£ °
F o
2
0

192 384 768 1536
Number of Cores

Fig. 5. Breakdown of performance for strong scaling achieved on Hazel Hen

to the proposed asynchronous algorithm is shown in Fig. 5. Both restriction and
prolongation introduce communication. We can overlap only prolongation with
computation because while performing restriction there is no computation to
overlap with. The proposed asynchronous algorithm hides about 80% of the
communication overhead due to prolongation behind the computation as shown
in Fig. 5.

8 Conclusions

In this paper, we presented an asynchronous execution model for the AMR algo-
rithm. Our asynchronous execution model allows a subgrid within a level to

Nonintrusive AMR Asynchrony for Communication Optimization 693

perform computation independent of other subgrids at the same level to pro-
vide scalability but also maintains the programming simplicity for both AMR
framework developers and the end users. We also discussed how our asynchro-
nous algorithm can be integrated into an AMR framework. The results show
that with affordable programming effort our asynchronous AMR algorithm can
be adapted into AMR software frameworks to achieve decent speedup and
scalability.

Acknowledgments. Authors from Kog University are supported by the Turkish Sci-
ence and Technology Research Centre Grant No: 215E185. Dr. Unat is supported by
the Marie Sklodowska Curie Reintegration Grant 655965 by the European Commis-
sion. We acknowledge PRACE for awarding us access to the Hazel Hen supercomputer
in Germany. Authors from Lawrence Berkeley National Laboratory were supported by
the Office of Advanced Scientific Computing Research in the Department of Energy
Office of Science under contract number DE-AC02-05CH11231.

References

1. Boxlib: An AMR software framework. https://ccse.lbl.gov/BoxLib/

Enzo: AMR project. http://enzo-project.org/

3. Almgren, A.S., Beckner, V.E., Bell, J.B., Day, M.S., Howell, L.H., Joggerst, C.C.,
Lijewski, M.J., Nonaka, A., Singer, M., Zingale, M.: CASTRO: a new compress-
ible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715(2),
1221-1238 (2010)

4. Almgren, A.S., Bell, J.B., Rendleman, C.A., Zingale, M.: Low Mach Number Mod-
eling of Type la Supernovae. I. Hydrodynamics. Astrophys. J. 637(2), 922-936
(2006)

5. Almgren, A., Bell, J., Lijewski, M., Lukié¢, Z., Van Andel, E.: Nyx: a massively
parallel AMR code for computational cosmology. Astrophys. J. 765, 39 (2013)

6. Ang, J., Barrett, R., Benner, R., Burke, D., Chan, C., Cook, J., Donofrio, D.,
Hammond, S., Hemmert, K., Kelly, S., Le, H., Leung, V., Resnick, D., Rodrigues,
A., Shalf, J., Stark, D., Unat, D., Wright, N.: Abstract machine models and proxy
architectures for exascale computing. In: 2014 Hardware-Software Co-Design for
High Performance Computing, pp. 25-32. IEEE, November 2014

7. Bell, J.B., Day, M..S., Lijewski, M.J.: Simulation of nitrogen emissions in a premixed
hydrogen flame stabilized on a low swirl burner. Proc. Combust. Inst. 34(1), 1173—
1182 (2013)

8. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differen-
tial equations. J. Comput. Phys. 53(3), 484-512 (1984)

9. Chan, C.P., Bachan, J.D., Kenny, J.P., Wilke, J.J., Beckner, V.E., Almgren, A.S.,
Bell, J.B.: Topology-aware performance optimization and modeling of adaptive
mesh refinement codes for exascale. In: Proceedings of 1st Workshop on Opti-
mization of Communication in HPC, COM-HPC 2016, pp. 17-28. IEEE Press,
Piscataway (2016)

10. Colella, P., Graves, D.T., Johnson, J.N., Johansen, H.S., Keen, N.D., Ligocki, T.J.,
Martin, D.F., Mccorquodale, P.W., Modiano, D., Schwartz, P.O., Sternberg, T.D.,
Straalen, B.V.: Chombo software package for AMR, applications design document.
Technical report (2003)

o

https://ccse.lbl.gov/BoxLib/
http://enzo-project.org/

694

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M.N. Farooqi et al.

Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,
MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: Flash: an adaptive mesh hydro-
dynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J.
Suppl. Ser. 131(1), 273 (2000)

Goodale, T., Allen, G., Lanfermann, G., Massé, J., Radke, T., Seidel, E., Shalf, J.:
The cactus framework and toolkit: design and applications. In: Palma, J.M.L.M.,
Sousa, A.A., Dongarra, J., Herndndez, V. (eds.) VECPAR 2002. LNCS, vol. 2565,
pp. 197-227. Springer, Heidelberg (2003). doi:10.1007/3-540-36569-9-13

Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system
based on C++4. In: Proceedings of Conference on Object Oriented Programming
Systems, Languages and Applications, pp. 91-108 (1993)

Langer, A., Liflander, J., Miller, P., Pan, K.C., Kalé, L.V., Ricker, P.: Scalable
algorithms for distributed-memory adaptive mesh refinement. In: 2012 IEEE 24th
International Symposium on Computer Architecture and High Performance Com-
puting, pp. 100-107, October 2012

MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARA-
MESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys.
Commun. 126(3), 330-354 (2000)

Meng, Q., Luitjens, J., Berzins, M.: Dynamic task scheduling for the Uintah frame-
work. In: 2010 IEEE Workshop on Many-Task Computing on Grids and Supercom-
puters (MTAGS), pp. 1-10. IEEE (2010)

Nguyen, T., Unat, D., Zhang, W., Almgren, A., Farooqi, N., Shalf, J.: Perilla:
Metadata-based optimizations of an asynchronous runtime for adaptive mesh
refinement. In: Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2016, pp. 81:1-81:12. IEEE Press,
Piscataway (2016)

Rendleman, C.A., Beckner, V.E., Lijewski, M., Crutchfield, W., Bell, J.B.: Paral-
lelization of structured, hierarchical adaptive mesh refinement algorithms. Comput.
Vis. Sci. 3(3), 147157 (2000)

Unfer, T., Boeuf, J.P., Rogier, F., Thivet, F.: Multi-scale gas discharge simulations
using asynchronous adaptive mesh refinement. Comput. Phys. Commun. 181(2),
247-258 (2010)

Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel
and efficient AMR on GPUs. In: Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2016, pp. 53:1—
53:12. IEEE Press, Piscataway (2016)

http://dx.doi.org/10.1007/3-540-36569-9_13

	Nonintrusive AMR Asynchrony for Communication Optimization
	1 Introduction
	2 Related Work
	3 Block-Structured Adaptive Mesh Refinement (SAMR)
	4 Synchronous AMR Algorithm
	5 Asynchronous AMR Algorithm
	6 Implementation
	7 Results
	8 Conclusions
	References

