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Abstract. The Tucker decomposition is a higher-order analogue of the
singular value decomposition and is a popular method of performing
analysis on multi-way data (tensors). Computing the Tucker decomposi-
tion of a sparse tensor is demanding in terms of both memory and com-
putational resources. The primary kernel of the factorization is a chain of
tensor-matrix multiplications (TTMc). State-of-the-art algorithms accel-
erate the underlying computations by trading off memory to memoize the
intermediate results of TTMc in order to reuse them across iterations.
We present an algorithm based on a compressed data structure for sparse
tensors and show that many computational redundancies during TTMc
can be identified and pruned without the memory overheads of mem-
oization. In addition, our algorithm can further reduce the number of
operations by exploiting an additional amount of user-specified memory.
We evaluate our algorithm on a collection of real-world and synthetic
datasets and demonstrate up to 20.7× speedup while using 28.5× less
memory than the state-of-the-art parallel algorithm.

1 Introduction

Tensors, which are the generalization of matrices to higher orders, are a natural
way of representing multi-way data (i.e., data which features variables interacting
in more than two dimensions). Tensors occupy three or more dimensions (called
modes) which can represent multi-way interactions between variables. Tensor
factorization is a technique for enabling structure discovery on multi-way data.
The objective of tensor factorization is to model the potentially high-dimensional
data in a low rank form that captures the key multi-way interactions found
in the data. Tensor factorization is used extensively in areas such as anomaly
detection [9], healthcare [29], recommender systems [20], and web search [28].
Common traits among all of these applications are the high dimensionality and
extreme level of sparsity of the data.

Tensor factorization takes several forms, with the two most popular being the
canonical polyadic decomposition (CPD) and the Tucker decomposition [14].
The CPD has been extensively studied by the HPC community in recent
years [12,13,26]. However, the Tucker decomposition, which is computationally
more challenging than the CPD, has received relatively less attention. Com-
puting the Tucker decomposition of a sparse tensor is challenging in terms of
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 653–668, 2017.
DOI: 10.1007/978-3-319-64203-1 47



654 S. Smith and G. Karypis

both time and space. At its core is a tensor-times-matrix chain (TTMc), which
multiplies a sparse tensor by dense matrices aligned to all but one of its modes.

Existing strategies for performing TTMc either rely on memoizing intermedi-
ate results to save computation [2,11] or operating in a memory-efficient manner
at the expense of additional floating-point operations (FLOPs) [15]. The memory
overhead of memoization is closely tied to the dimensionality and the sparsity
pattern of the tensor, and can result in significant memory overhead. Meanwhile,
the memory-efficient strategies require orders of magnitude more computation
and are often impractical for large and sparse tensors.

We restructure the underlying computations in order to remove two forms of
redundant computations that occur during TTMc. We present an algorithm for
performing TTMc with a sparse tensor that is often as computationally efficient
as memoized algorithms, while requiring a negligible amount of additional inter-
mediate memory. Our algorithm relies on the recently-developed data structure
for tensors called compressed sparse fiber (CSF) [22]. The CSF data structure
provides a view of the tensor’s sparsity structure that makes these redundan-
cies possible to exploit. Furthermore, we show that an additional, user-specified
amount of memory can be used to further reduce computational costs by con-
structing additional views of the tensor. Our contributions include:

1. A parallel algorithm for TTMc which is memory-efficient while being compu-
tationally competitive to the state-of-the-art.

2. An analysis of the TTMc algorithm and demonstration of its potential for
asymptotic improvement.

3. A strategy for leveraging multiple compressed tensor representations to fur-
ther reduce the number of required operations.

4. An experimental evaluation against the state-of-the-art parallel algorithms
across a variety of real-world datasets.

5. Integration of our source code into SPLATT [23], an open source library for
sparse tensor factorization.

The rest of the paper is organized as follows. Section 2 provides an overview
of tensors and tensor factorization. Section 3 reviews related work on TTMc.
Section 4 presents and analyzes our algorithm for performing TTMc operations
that leverage the sparse tensor representation. Section 5 discusses the benefits
of using multiple views of the tensor data and provides a heuristic algorithm
for selecting advantageous views. Section 6 presents experimental results. Lastly,
Sect. 7 offers concluding remarks.

2 Preliminaries

2.1 Notation

Matrices are denoted using bold letters (A) and tensors using bold calligraphic
letters (X ). Tensors have N modes with lengths I1, . . . , IN , respectively. We
denote the number of non-zeros in a tensor as nnz(X ). Entries in matrices and
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Fig. 1. TTMc with an I ×J ×K tensor. The result is a dense tensor Y ∈ R
I×F2×F3 ,

which can conceptually be unfolded to Y(1) ∈ R
I×F2F3 .

tensors are denoted A(i, j) and X (i1, . . . , iN ), respectively. A colon in the place
of an index takes the place of all non-zero entries. For example, X (i, j, :, . . . , :) is
the set of all non-zeros in X whose first two indices are (i, j). Similarly, A(i, :) is
the ith row of A. A fiber is the generalization of a row or column and is the result
of holding all but one index constant (e.g., X (i1, . . . , iN−1, :) or X (:, i2, . . . , iN )).

2.2 Tensor and Matrix Operators

Unfolding. Tensors can be “unfolded” along a mode to form a matrix. Unfolding
is accomplished by forming columns from the fibers that run along the desired
mode. For example, a mode-1 unfolding is denoted X(1) and has dimension
I1×

∏N
j=2 Ij .

Kronecker Product. The Kronecker product (KP) of A ∈ R
m×n and B ∈ R

p×q,
denoted A ⊗ B, is an mp×nq matrix and defined as

A ⊗ B =

⎡

⎢
⎣

A(1, 1)B . . . A(1, n)B
...

. . .
...

A(m, 1)B . . . A(m,n)B

⎤

⎥
⎦ .

The KP is a generalization of the vector outer product. Throughout our discus-
sion, we will work in terms of KPs but refer to visualizations of outer products.
They are the same operations, but outer products better visualize growth in
dimensionality.

Tensor-Matrix Product. The tensor-matrix product, or n-mode product [14],
multiplies a tensor by a matrix along the nth mode. Suppose B is an F × In

matrix. The tensor-matrix product for the nth mode, denoted X ×n B, emits a
tensor with dimensions I1× . . .×In−1×F×In+1× . . .×IN . Elementwise,

(X×nB)(i1, . . . , in−1, f, in+1, . . . , iN ) =
In∑

in=1

X (i1, . . . , iN )B(f, in).
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Fig. 2. A rank-{F1, F2, F3} Tucker factorization of an I × J ×K tensor.

Note that the resulting mode-n fibers are generally dense regardless of the spar-
sity pattern of X .

A common task is to multiply a tensor by a set of matrices. This operation is
called the tensor-times-matrix chain (TTMc). When multiplication is performed
with all N modes, we write X × {A}, where {A} is the set of N matrices.
More commonly, one wishes to multiply with all modes but one. We write this
operation as X ×−n {B}, where n is the mode left unmultiplied:

X×−n{B} = X ×1 B(1) ×2 · · · ×n−1 B(n−1) ×n+1 B(n+1) ×n+2 · · · ×N B(N).

This case is the focus of this work, and we will refer to solely it as TTMc for
the remaining discussions. TTMc for n = 1 is illustrated in Fig. 1. Due to the
increasingly dense output of each n-mode product, the size of the intermediate
results during TTMc can greatly exceed the size of the inputs or output. This is
referred to as the intermediate blowup problem [15].

2.3 Tucker Decomposition

Illustrated in Fig. 2, the objective of the Tucker decomposition is to model a
tensor X with a set of orthonormal matrices A(1) ∈ R

I1×F1 , . . . ,A(N) ∈ R
IN×FN

and a core tensor, G ∈ R
F1×...×FN . The orthonormal matrices are referred to as

factor matrices. The resulting optimization problem is non-convex:

minimize
{A},G

1
2 ||X − G × {A}||2F

subject to A(n)T A(n) = I n = 1, . . . , N.

Several optimization algorithms have been developed to compute the Tucker
decomposition, including the higher-order SVD (HOSVD) [7] and higher-order
orthogonal iterations (HOOI) [8]. HOSVD is popular for decomposing dense
tensors and efficient parallel algorithms have been developed [1,5]. However, the
computation becomes progressively more dense during HOSVD and it is not
often applied to sparse computations. Thus, HOOI is the most popular algo-
rithm for sparse tensors and is the focus of this work. HOOI is an iterative
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Algorithm 1. Tucker Decomposition with HOOI
1: while G not converged do
2: for n = 1, . . . , N do
3: Y ← X ×−n {AT }
4: A(n) ← Fn leading left singular vectors of Y(n)

5: end for
6: G ← Y ×N A(N)T

7: end while

Fig. 3. Two encodings of a 2 × 2× 2× 3 tensor with 5 non-zeros.

algorithm which cyclically updates each factor matrix until convergence. Algo-
rithm1 details the steps in computing the factor matrices and core tensor using
HOOI. TTMc (Line 3) is the dominant computation during each update.

Most applications involving sparse tensors are not interested in an exact
model of a tensor, but instead a low-rank factorization. Therefore, in this work
we focus on the case when max(F1, . . . , FN ) � max(I1, . . . , IN ).

2.4 Data Structures for Sparse Tensors

The most prevalent data structure for representing sparse tensors is coordinate
format. Each non-zero is encoded as a tuple of indices and a non-zero value
(Fig. 3a). Dimension trees are flexible data structures which partition the modes
of a tensor in a hierarchical fashion [10]. An important configuration arranges the
tensor modes into a binary tree with N leaves [11]. A special case of the dimension
tree is the linear arrangement of modes equivalent to coordinate format.

In previous work, we proposed a compressed data structure for sparse tensors
called compressed sparse fiber (CSF) [22,26]. CSF can be viewed as a general-
ization of compressed sparse row, a popular storage format for sparse matrices.
Shown in Fig. 3b, CSF stores the sparsity pattern as a forest of I1 trees, each
with N levels. Each path from a root to a leaf node encodes a non-zero. The
nnz(X ) leaf nodes store the final index in the non-zero’s coordinate and are also
accompanied by the non-zero value.

3 Related Work

Li et al. developed parallel algorithms for performing a single TTM kernel for
both dense [16] and sparse [17] tensors.
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Memory-Efficient Tucker [15] avoids memory blowup by selectively comput-
ing columns or elements of Y(n) at a time. Intermediate memory costs are mini-
mized at the expense of additional FLOPs and passes over the tensor structure.

Baskaran et al. [2] observed that partial computations can be reused across
TTMc kernels. Consider updating the first two factors of a four-mode tensor.
Each TTMc kernel constructs the partial computation X ×3 A(3)T ×4 A(4)T ,
despite its value not changing between kernels. Baskaran et al. introduced mem-
oization to TTMc by partitioning the tensor modes into two halves, and reusing
the computations from one half to accelerate the computations in the other half.
Kaya and Uçar extended this memoization strategy by using binary dimension
trees to accelerate both the Tucker decomposition [11] and CPD [13]. They store
intermediate computations in the nodes of the tree and can effectively limit the
number of individual n-mode products to log(N) per TTMc operation.

Kaya and Uçar also showed that one can avoid intermediate blowup by
processing individual non-zeros [11]. For example, the following is used for
mode-1:

Y(1)(i1, :) ← Y(1)(i1, :) + X (i1, . . . , iN )
[
A(2)(i2, :) ⊗ · · · ⊗ A(N)(iN , :)

]
. (1)

A row of Y(1) is the only memory required to process a non-zero. The com-
putational complexity of using (1) to perform one TTMc kernel via streaming
through each non-zero is

nnz(X )
N∑

i=2

i∏

j=2

Fj

︸ ︷︷ ︸
KP construction

+ nnz(X ) 2
N∏

j=2

Fj

︸ ︷︷ ︸
accumulation

= O
⎛

⎝nnz(X )
N∏

j=2

Fj

⎞

⎠ . (2)

4 TTMc with a Compressed Sparse Tensor

We now detail our operation- and memory-efficient parallel algorithm for TTMc.
We first perform a reformulation of the underlying computations in order to
remove redundancies and then describe a parallel algorithm which uses CSF to
exploit these redundancies. We then analyze the computational complexity of
our algorithm.

4.1 Formulation

We work from (1) which processes individual non-zeros. There are two forms of
arithmetic redundancies that we eliminate during TTMc:

Distributive Kronecker Products. Consider two adjacent non-zeros in a three-
mode tensor. Performing a TTMc operation for the first mode results in the
following computations:

Y(1)(i, :) ← Y(1)(i, :) + X (i, j, k1)
[
A(2)(j, :) ⊗ A(3)(k1, :)

]
, (3a)

Y(1)(i, :) ← Y(1)(i, :) + X (i, j, k2)
[
A(2)(j, :) ⊗ A(3)(k2, :)

]
. (3b)
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Fig. 4. TTMc with CSF and coordinate data structures. The number of FLOPs per-
formed on a node is equal to its volume. Circled nodes produce updates to the output.

The KP is a distributive operation, and so we combine (3a) and (3b) to eliminate
a KP and reach a more efficient update:

Y(1)(i, :) ← Y(1)(i, :) + A(2)(j, :) ⊗
[
X (i, j, k1)A

(3)(k1, :) + X (i, j, k2)A
(3)(k2, :)

]
.

This can be exploited for any set of non-zeros that reside in the same fiber.
For each fiber, we accumulate all of the linear combinations of rows of A(3)

into a row vector, followed by a single KP. This eliminates the construc-
tion and accumulation of nnz(X (i, j, :))−1 KPs, resulting in a reduction of
2F2F3 (nnz(X (i, j, :))−1) FLOPs. This strategy generalizes to any number of
modes:

Y(1) ←
∑

X(i1,:,...,:)
A

(2)(i2, :)⊗

⎛

⎜⎜⎝
∑

X(i1,i2,:,...,:)
A

(3)(i3, :)⊗. . .

⎛

⎜⎜⎝
∑

X(i1,...,iN−1,:)
X(i1, . . . , iN )A(N)(iN , :)

⎞

⎟⎟⎠

⎞

⎟⎟⎠.

Redundant Kronecker Products. Consider the case of performing mode-3 TTMc:

Y(3)(k1, :) ← Y(3)(k1, :) + X (i, j, k1)
[
A(1)(i, :) ⊗ A(2)(j, :)

]
,

Y(3)(k2, :) ← Y(3)(k2, :) + X (i, j, k2)
[
A(1)(i, :) ⊗ A(2)(j, :)

]
.

Note that [A(1)(i, :) ⊗ A(2)(j, :)] appears in the processing of both non-zeros.
We eliminate operations by reusing the KP for both non-zeros. Reusing the
shared KP for an entire fiber saves F1F2(nnz(X (i, j, :))−1) FLOPs. As before,
this process can be generalized to any number of tensor modes.

Operation-Efficient Algorithm. Using the two previous optimizations, we
can devise an algorithm which uses the CSF data structure to eliminate redun-
dant operations. A branch in the tree structure at the ith level represents a set
of non-zeros which overlap in the previous i−1 indices, which is precisely the sce-
nario that the previous optimizations target. Our TTMc algorithm is described
in Algorithm 2 and illustrated in Fig. 4. Intuitively, partial computations begin at
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Algorithm 2. TTMc with a CSF Tensor (Fig. 4).
1: function TTMc(X , mode)
2: for i1 = 1, . . . , IN in parallel do
3: construct(X (i1, :, . . . , :), mode, 1)
4: end for
5: end function
6: � Construct Kronecker products and push them down to level mode−1.
7: function construct(node, mode, above)
8: d ← level(node) � The level in the tree (i.e., distance from the root).
9: id ← node id(node) � The partial coordinate of a non-zero (Fig. 3).
10:
11: if d < mode then
12: above ← above ⊗ A(d)(id, :)
13: for c ∈ children(node) do
14: construct(c,mode, above)
15: end for
16:
17: else if d = mode then
18: below ←∑

c∈children(node) accumulate(c)

19: Lock mutex id.
20: Y(d)(id, :) ← Y(d)(id, :) + (above ⊗ below) � Update Y(d).

21: Unlock mutex id.
22: end if
23: end function
24: � Pull Kronecker products up from the leaf nodes.
25: function accumulate(node)
26: id ← node id(node)
27: if level(node) = N then

28: return X (i1, . . . , id) · A(N)(id, :)
29: else
30: return A(d)(id, :) ⊗∑c∈children(node) accumulate(c)

31: end if
32: end function

the root and leaf levels of the tree and grow inward towards the level represent-
ing the mode of computation. Algorithm2 avoids intermediate memory blowup
by processing the tree depth-first, which limits the intermediate memory to a
single row of Y(n).

Parallelism. Algorithm 2 is parallelized by distributing the I1 trees to threads.
Each thread performs a depth-first traversal, and thus the thread-local storage
overhead is asymptotically limited to a single row of Y(n). A consequence of
this distribution is the potential for write conflicts when updating any modes
other than the first. This can be observed in Fig. 3, in which node IDs are only
unique within the root-level nodes. The same synchronization challenges are
present while computing the CPD, which was the first application of the CSF
data structure. We present synchronization using mutexes for simplicity, but
note that the algorithm can benefit from other mechanisms such as tiling [22] or
transactional memory [25].

4.2 Complexity Analysis

We now analyze the computational complexity of Algorithm2. Let nodes(i) be
the number of nodes present in the ith level of a CSF structure (by convention,
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the 1st level is the root level). The number of FLOPs required to perform TTMc
for the nth mode is

∑N
i=1 nodes(i) × cost(i, n), where “cost” is defined as

cost(i, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i−1∏

j=1

Fj if i < n,

2
N∏

j=i

Fj if i > n,

2
N∏

j=1
j �=i

Fj if i = n.

(4)

Intuitively, the cost of a node above level-n is the cost of constructing a KP, and
the cost at or below level-n is the cost of constructing and accumulating a KP.

When computing for the leaf mode of the tensor, Algorithm2 assembles KPs
and pushes them down the tree from root to leaves. The complexity grows with
each level of the tree, with the final level having the same asymptotic complexity
as (2). At the other extreme, when n = 1, the computation moves upwards from
leaves to root. Interestingly, the dimensionality of the KPs is non-decreasing, and
at the same time the number of nodes in each level is non-increasing. In the worst
case, non-zeros have no overlapping indices and the algorithm is equivalent to
operating with a tensor stored in coordinate format. However, lower complexities
are possible under some assumptions on the CSF structure and the ranks of the
factorization. To see, compare the costs of levels i and i−1:

nodes(i) × 2
∏N

j=i Fj

nodes(i−1) × 2
∏N

j=i−1 Fj

=
nodes(i)

nodes(i−1)Fi−1
.

Suppose that the cost of the ith mode always exceeds mode i−1:

nodes(i) > nodes(i−1)Fi−1, i = 2, . . . , N

then the Nth mode dominates the computation, arriving at a reduced complexity
of O(nodes(N)FN ) = O(nnz(X )FN ).

5 Utilizing Additional CSF Representations

Section 4.2 showed that Algorithm 2 has the potential for an asymptotic speedup
over the competing memory-efficient approaches. This depends on the costs of
the lower levels of the tree dominating those at the top, which is possible if: (i)
the branching factor at each level is larger than the corresponding rank; and
(ii) the mode on which we are operating is found at or near the top of the
tree. Fortunately, CSF places no restriction on the ordering of modes. Indeed,
constructing a unique CSF representation for each mode of the tensor was used in
other kernels to expose parallelism [26] and to reduce communication costs [24].
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Table 1. Summary of datasets.

Dataset Modes Non-zeros Dimensions

NELL-2 [4] 3 77M 12K, 9K, 29K

Netflix [3] 3 100M 480K, 18K, 2K

Enron [19] 4 54M 6K, 6K, 244K, 1K

Alzheimer [27] 5 6.27M 5, 1K, 156, 1K, 396

Poisson3D, Poisson4D [6] 3,4 100M 3K, . . . , 3K

K and M stand for thousand and million, respectively.

We construct multiple CSF representations in order to minimize the required
number of operations. Utilizing multiple CSF representations allows computa-
tions to occur near the roots of the tree structures while also favoring mode
orderings which result in large branching factors.

There are N ! possible orderings of the tensor modes. To evaluate the cost of a
representation, we must sort the non-zeros in order to inspect the tree structure
and count the number of nodes. Thus, an exhaustive search is impractical for
even small values of N . We begin from an existing heuristic: sort the modes by
their lengths, with the shortest mode placed at the top level [26]. The intuition
behind this heuristic is that ordering shorter modes prior to longer ones discovers
indices with high levels of overlap, resulting in a large branching factor.

Suppose there is memory available for up to K representations of the tensor
data, denoted X 1, . . . ,XK . We select X 1 by sorting the modes as previously
discussed. The remaining K−1 representations are selected in a greedy fashion:
at step k, use (4) to examine the costs associated with TTMc for each mode
when provided with X 1, . . . ,X k−1. The mode with the highest cost is placed at
the top level of X k, and the remaining modes are sorted by increasing length.
At the end of this procedure, each mode has the choice of K representations to
use for TTMc computation. We assign each mode to the representation with the
lowest cost, and use that representation for TTMc. Importantly, if ties are broken
in a consistent manner, then it happens in practice that several modes can be
assigned to the same X k, meaning that fewer than K representations need be
kept in memory for computation. This is later demonstrated in Sect. 6.2.

6 Experimental Methodology and Results

6.1 Experimental Setup

Experiments are conducted on the Mesabi supercomputer at the Minnesota
Supercomputing Institute. Compute nodes have two twelve-core Intel Haswell
E5-2680v3 processors and 256 GB of RAM. Our source code is written in C and
parallelized with OpenMP. All source code is configured to use double-precision
floating point numbers and 32-bit integers. We compile with the Intel compiler
version 16.0.3 and Intel MKL for BLAS/LAPACK routines. We bind threads to
cores via KMP AFFINITY=granularity=fine,compact,1.
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Reported runtimes are the arithmetic mean of twenty iterations. We measure
only the time spent on TTMc, as that is the focus of this study and the remaining
computational steps do not differ between the implementations. Reported times
and speedups are based on performing all of the required computations for TTMc
over a full HOOI iteration. Measuring a full HOOI iteration instead of individual
kernels allows us to compare memoized and non-memoized algorithms.

We compare against two algorithms implemented in the C++ library Hyper-
Tensor [11], the state-of-the-art parallel software for the Tucker decomposition.
HyperTensor uses MPI for distributed-memory parallelism and OpenMP for
shared-memory parallelism. The efficient distributed-memory algorithm used by
HyperTensor combines the communication steps associated with the TTMc and
the following truncated SVD, preventing us from measuring the runtime cor-
responding to only TTMc. Thus, we run HyperTensor with one MPI rank and
twenty-four OpenMP threads. We denote the two algorithms as HT-FLAT, which
is a direct implementation of (1), and HT-BTREE, which uses memoization via
binary dimension trees.

Datasets. Table 1 provides an overview of the datasets used in our evaluation.
NELL-2 is from the Never Ending Language Learning project [4] and its modes
represent entities, relations, and entities. Netflix [3] is constructed from movie
ratings and has modes representing users, movies, and dates. Enron [19] is parsed
from an email corpus spanning three years. Its non-zero values are word fre-
quency and its modes represent senders, receivers, words, and dates. Alzheimer
is constructed from public gene expression data related to Alzheimer’s disease,
provided by MSigDB [27]. Its values are binary and its five modes represent cell
type, drug, binned dosage, gene, and binned amplitudes. Poisson is a set of
synthetically-generated tensors whose values follow a Poisson distribution. We
generated tensors following the method of Chi and Kolda [6] with three and four
modes of length 3000 and 100-million non-zeros. All tensors except Netflix and
Alzheimer are freely available as part of the FROSTT collection [21].

6.2 Results

Operation Efficiency. Figure 5 shows the number of FLOPs required to per-
form TTMc. HT-FLAT (coordinate format) is used as a baseline because a CSF
tensor will match its complexity if it achieves no compression.

A single CSF representation (CSF-1) reduces computational costs by 59% −
83% compared to the baseline. Interestingly, CSF-1 is nearly identical in cost to
the memoized HT-BTREE algorithm on the three-mode datasets. This is due to
the limited amount of memoization possible for a three-mode tensor: one TTMc
is computed at full cost and is used to optimize the remaining two operations.
This matches the limitation of CSF-1, in which the leaf-level mode must still be
computed at full cost. Optimizing for the leaf mode by using CSF-2 is sufficient
to achieve the best-possible FLOP performance on all three-mode tensors.

Both HT-BTREE and the CSF variants improve over HT-FLAT as the num-
ber of modes increase, because additional tensor modes bring additional TTMc
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Fig. 5. The number of required FLOPs for rank-20 TTMc on all modes, relative to
HT-FLAT (i.e., coordinate form). CSF-X is the solution found using X CSF represen-
tations. No dataset utilized more than three CSF representations. CSF-BEST is the
optimal configuration using multiple CSF representations, found by exhaustive search.

operations which can be optimized. The benefits of CSF are most apparent on
the five-mode Alzheimer tensor, in which the greedily-selected CSF-A requires
555× fewer FLOPs than HT-FLAT and 61× fewer FLOPs than HT-BTREE.

Observe that HT-BTREE is more operation-efficient than CSF-based meth-
ods on the synthetic Poisson4D tensor. The number of X (i1, i2, :, . . . , :) sub-
tensors is 88% of the total number of non-zeros, meaning that the redundancies
that CSF exploits do not exist in the lower levels of the tree.

Parallel Scalability. Figure 6 shows speedup as we scale from 1 to 24 cores.
We include results for CSF-A which dedicates a CSF representation for each
mode of the tensor, despite fewer representations being sufficient in terms of
FLOP efficiency. CSF-A allows us to measure performance without fine-grained
synchronization overheads because there are no race conditions to consider when
the output mode is located at the root level of the tree.

Synchronization overheads prevent CSF-1 from scaling beyond one CPU
socket, whereas additional CSF representations achieve near-linear scaling. The
cost of synchronization dominates when computing for the bottom levels of the
CSF structure: there are more nodes present in the tree (i.e., more synchroniza-
tions) and also the amount of work performed during synchronizations exponen-
tially increases.

All methods exhibit poor scalability on the Alzheimer tensor. This is
attributed to its unusually short dimensions; the presented methods parallelize
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Fig. 6. Parallel speedup for rank-20 TTMc. CSF-A denotes dedicating one CSF rep-
resentation for each mode of the tensor.

over the outer dimensions of the tensor and thus have idle threads when the outer
dimension is small. This limitation has also been observed in other tensor ker-
nels [18], and has been remedied via alternative parallel decompositions [2,25].
Exploring these alternative decompositions is left to future work.

Runtime and Memory Trade-Offs. Figure 7 shows the memory costs and
average runtime for TTMc. We measure memory consumption via instrumented
source code which tracks the storage used for the tensor structure, thread-local
storage, and memoization. We omit the storage dedicated to the factor matrices
and output because they are the same between methods.

Despite CSF-A not providing additional computational savings, we can see
that it always achieves the best runtime across all datasets and algorithms. This
is expected due to its lack of synchronization overheads and structured writes
to memory. CSF-A ranges from 1.5× − 20.7× faster than HT-BTREE, and also
uses less memory for four of the six datasets. We note that while Poisson4D
is the only tensor for which memoization achieves a better operation reduction
than the CSF variants, but CSF-A is 1.5× faster in runtime.

We can see the benefit of supporting a flexible number of CSF representa-
tions. CSF-1 is always the most space-efficient, while CSF-A is always the fastest
algorithm. CSF-2 provides a reasonable trade-off when time and space are both
limited by dedicating a special CSF representation to the most expensive mode
which will also exhibit the highest synchronization costs.
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Fig. 7. Time and space trade-offs for rank-20 TTMc on 24 cores. Time is the mean
number of seconds spent on TTMc during a full iteration of HOOI. Memory is the
storage required for the tensor memoization, and structures for parallelism.

7 Conclusions and Future Work

A sparse tensor-times-matrix chain (TTMc) is the key computational kernel
when computing the Tucker decomposition, which is an important technique for
analyzing sparse tensors. We presented a formulation, complexity analysis, and
performance evaluation for performing sparse TTMc with a compressed data
structure (CSF). We showed that our formulation is both memory-efficient and
can be asymptotically faster than competing methods. Our performance evalua-
tion demonstrated up to 20× speedup over the state-of-the-art while at the same
time using 28× less memory on a real-world dataset. This effectively reduces the
time-to-solution from several hours to a few minutes on a workstation.

Furthermore, we presented a method of tuning the trade-off between the
time and memory footprint of the computation. Users can have either the fastest
execution, the smallest memory footprint, or in-between the two extremes.

There are several topics of future work. One major advantage of multiple CSF
representations is the enhanced scalability via eliminated mutexes. Other CSF
algorithms have had success with techniques such as tiling [22,25] or transac-
tional memory [25], and we will investigate their benefits on TTMc. Alternative
parallel decompositions (such as tiling) are also expected to improve parallel scal-
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ability on tensors such as Alzheimer, which presented difficulties for all methods.
Lastly, our cost model could be improved by considering synchronization costs.
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