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Abstract. Although simulators provide approximate, faster and easier
simulation of an application execution in Clouds, still many researchers
argue that these results cannot be always generalized for complex appli-
cation types, which consist of many dependencies among tasks and var-
ious scheduling possibilities, such as workflows. DynamicCloudSim, the
extension of the well known CloudSim simulator, offers users the capa-
bility to simulate the Cloud heterogeneity by introducing noisiness in
dozens parameters. Still, it is difficult, or sometimes even impossible to
determine appropriate values for all these parameters because they are
usually Cloud or application-dependent. In this paper, we propose a new
model that simplifies the simulation setup for a workflow and reduces
the bias between the behavior of simulated and real Cloud environments
based on one parameter only, the Cloud noisiness. It represents the noise
produced by the Cloud’s interference including the application’s (in our
case a workflow) noisiness too. Another novelty in our model is that it
does not use a normal distribution naively to create noised values, but
shifts the mean value of the task execution time by the cloud noisiness
and uses its deviation as a standard deviation. Besides our model reduces
the complexity of DynamicCloudSim’s heterogeneity model, evaluation
conducted in Amazon EC2 shows that it is also more accurate, with
better trueness (closeness to the real mean values) of up to 9.2% and
precision (closeness to the real deviation) of up to 8.39 times.

Keywords: Accuracy · Makespan · Modeling · Precision · Simulator ·
Trueness

1 Introduction

Sciences of various domains other than computer science use scientific work-
flows to model their complex computational pipelines, which brings them many
benefits such as reusing the results of parts or entire workflows, failure manage-
ment, or parallelisation. Managing the workflows’ execution is a complex task, as
each workflow requires different computing, memory or I/O capacity, making the
designing of a common, but appropriate, distributed environment for all work-
flows types very difficult and sometimes almost impossible. Workflows can also be
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executed in Cloud as similar as in traditional clusters, as many workflow manage-
ment services that allow the effective utilisation of the Cloud’s elastic resources
already exist [23]. Still, Cloud produces many additional challenges compared
with the traditional clusters [2] caused by its on-demand elastic resource provi-
sioning, dynamic starting of instances [20], and variant performance of virtual
machines (VMs) during a time period [22].

Instead of executing in a real Cloud environment to determine the behavior of
an application, many researchers resort to simulators for their analysis [3], which
allows them to reduce costs for purchasing and maintaining expensive hardware
resources, and time for executing time-consuming algorithms [21] and later on to
determine that its performance is over- or under estimated. Moreover, simulators
can be used to experiment new prototype solutions and identify the “optimal”
resource configurations before deployment of production platforms. Most com-
mon simulators allow users to create a virtual data center considering their latest
computing, networking, energy, or cost requirements. However, although they
can simulate an elastic Cloud data center, simulators usually neglect the Cloud
performance fluctuation and uncertainty [10], which can lead to wrong estima-
tion. This aspect is especially important for workflow executions, as they consist
of a high number of data and control flow dependencies [15] that further affect
their overall performance without any correlation [18]. A small disturbance in a
task execution can dramatically affect the scheduling of the following workflow
tasks, resulting in a completely inefficient schedule that increases the execution
cost or execution time (the makespan), or sometimes even both [1].

Although some simulators, such as DynamicCloudSim [4], allow users to con-
figure the simulation considering a certain heterogeneity and instability of Cloud,
still, there are several deficiencies for a proper configuration. The configuration
itself is a complex process, as users need to configure more than ten parameters,
for which they do not know the exact values of parameters in order to configure
a specific Cloud and application to be executed. For example, the default values
that are intended for Amazon’s EC2 are several years old, and cannot be used
for other public or private Clouds. Additionally, public Clouds can be seen as
a black-box whose internal parameters are unknown to regular users. Even by
using results of previous research, some parameters still cannot be generalized
as they are valid either for that specific Cloud, a specific application, or even a
combination of both.

We therefore propose a simpler model that reduces the configuration of
the noisiness to a single parameter the Cloud noisiness, instead of dozens.
The injected noise causes an instability in Task Execution Time (TET ), which
improves the accuracy, represented through the trueness (i.e. closeness of the
true mean value) and the precision (i.e. closeness of corresponding standard
deviation) of the simulation, as defined in ISO-5725 standard [12]. We conduct a
series of evaluation experiments in Amazon EC2 and the most common state-of-
the-art simulator - DynamicCloudSim. The evaluation proves that our simpler
model implemented in DynamicCloudSim shows up to 9.2% higher trueness and
up to 8.39 times higher precision for workflow execution simulations compared
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to DynamicCloudSim. Not only that our proposed model shows better accuracy
to the real execution, but its configuration is much simpler and easier.

The paper is structured in several sections as follows. Section 2 presents the
related works in modeling the workflow execution instability and the features of
cloud simulators in this domain. The models for workflow, Cloud, experiments
and test cases that are used for our noisiness model are presented in Sect. 3.
Our simplified, more accurate model of adding a noise in simulation is described
in Sect. 4. Sections 5 and 6 present the testing methodology and results of the
evaluation of our model and current state-of-the-art simulation model of Dynam-
icCloudSim. Finally, we conclude the paper and present plans for future work in
Sect. 7.

2 Related Work

Many Cloud features and parameters can cause the performance instability: het-
erogeneity of resources, instance types, number of instances, instance straggling,
instance failures, multi-tenancy, networking bottlenecks, resource time-sharing,
etc. As a consequence, an instance of the same type provides different perfor-
mance for the same task over some time period. Dejun et al. [7] reported high
performance deviations in Amazon EC2. Jackson et al. [13] determined that
different underlying hardware for similar instances caused performance pertur-
bation. Schad et al. [19] detected a long-term performance instability of Amazon
EC2, which was correlated also to the CPU model of the same instance type,
the hour of the day, and the day of the week. Iosup et al. [11] determined yearly
and daily patterns of performance variability, but also periods of constant per-
formance. All these behaviors depend also on the executed application.

CloudSim [5] simulates scheduling algorithms and resource provisioning in
elastic Cloud environment, but Cloud performance instability remains unad-
dressed. Chen and Deelman [6] extended the Cloudsim into WorkflowSim, by
introducing several parameters specific to workflows. Still, all these extensions do
not introduce the Cloud performance instability. Other works developed scalable
simulators covering up to hundreds of thousands of heterogeneous machines [8].
For example, GroudSim [16] is a scalable event-based simulator for Grid and
Cloud environments. GloudSim [9] is a simulator that introduces some dynamics
in execution by resizing the instances. Still, it does not offer a TET’s instability,
as the performance of specific VM is constant during a time period.

Bux and Leser [4] went further in this direction by developing the Dynamic-
CloudSim simulator as an extension of CloudSim that introduces several addi-
tional characteristics to simulate the Cloud heterogeneity, such as heterogeneous
underline hardware, VM stragglers, VM failures, long and short term fluctua-
tions, etc. However, configuring dozens of parameters for heterogeneity is not an
easy task, as users are usually not aware of the internal Cloud architecture. We
therefore went a step further by treating the Cloud as a black-box and intro-
duced much simpler approach that needs a configuration of the noise into one
parameter only. It includes two instabilities in itself: workflow noisiness (e.g.



322 R. Mathá et al.

dependencies, structure, TET deviation) and Cloud noisiness (e.g. heterogene-
ity). Nevertheless, although it is a simple method, the results of the evaluation
show that our model improves the accuracy compared to the related Dynamic-
CloudSim’s instability model. Schad et al. [19] reported that several performance
parameters are unstable with a normal distribution. We also use the normal dis-
tribution to add a noise in TET, but instead of naively generating the variables
distributed with a normal distribution, we inject the noisiness parameter by
shifting the TET’s mean value by the Cloud noisiness parameter.

3 Modeling the Workflow and Cloud

This section formally models the workflow and Cloud environment, which are
used for our cloud noisiness model later on.

3.1 Workflow Application Model

We model a workflow application W as a precedence constraint graph (T,D)
consisting of a set T =

⋃n
i=1 {Ti} of n tasks Ti, which are interconnected through

a set of dependencies D = {(Ti, Tj ,Dij) | (Ti, Tj) ∈ T × T}, where (Ti, Tj ,Dij)
implies that Ti needs to be executed before Tj , and the file size to be transferred
from Ti to Tj is Dij bytes. The tasks are assumed to be non-preemptive, so it is
not allowed to suspend one and resume it later on.

The function pred : T → P(T ), where P denotes the power set, returns the
set of immediate predecessors of each task Ti ∈ T (i.e. Tj ∈ pred (Ti) ⇐⇒
(Tj , Ti,Dji) ∈ D), while the function succ : T → P(T ) returns the set of imme-
diate successors of the task Ti (i.e. Tj ∈ succ (Ti) ⇐⇒ (Ti, Tj ,Dij) ∈ D).
Each workflow has an entry task Tentry with no predecessors (i.e. Tentry ∈ T :
pred (Tentry) = ∅) and an exit task Texit with no successors (i.e. Texit ∈ T :
succ (Texit) = ∅).

Each task Ti has a requirement vector Ri, which defines its hardware or
software requirements such as the minimum value of memory or storage needed
for execution. We express the computational complexity wi (i.e. work) of each
task Ti in million of instructions (MI).

Note that this is a simplified view of a workflow. Still, workflows with multiple
entry/exit tasks are covered by adding a single “dummy” entry task with the
computational complexity w = 0 (i.e. without any complexity) before all entry
tasks or a single “dummy” exit task, also with the computational complexity
w = 0, after all exit tasks, respectively.

3.2 Cloud Infrastructure Model

A Cloud offers a set of r VM types IT =
⋃r

k=1 {ITk}. Each instance type ITk is
characterized by two parameters: computational speed sk in million instructions
per second (MIPS) and number of CPUs ck. We denote the set of available VM
instances as: I =

⋃m
j=1 {Ij}, whose number m is constant during the workflow
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execution. Each instance Ij has an associated instance type ITk defined as a
function: type : I → IT .

We model the expected TET tji of a task Ti as the ratio between its com-
putational complexity and the speed of the instance Ij on which it is executed
(tji = wi/sk, Ij ∈ I ∧ ITk = type (Ij)).

The completion time of a task Ti executed on an instance Ij is the latest
completion time of all its predecessors plus its expected TET:

end (Ti, k) =

⎧
⎨

⎩

tji , Ti = Tentry , ITk = type(Ij);
max

Tp∈pred(Ti)

{
end (Tp, k) + tji

}
, Ti �= Tentry , ITk = type(Ij).

In a single experiment, we are using a constant number of the same type
VMs, which keep running. Thus, for an experiment that uses VM instances of
type k, we define the workflow makespan M = end(Texit, k).

3.3 Experiment and Test Case Model

In order to model the environment-independent model, we define a set of exper-
iments EXP =

⋃q
x=1 {EXPx}. Each element EXPx is modeled as a triple

EXPx(W, ITk, v), which means that a workflow W is executed on a specific
number of VMs v, all of the same type ITk.

As we want to simulate Cloud’s behavior, we repeat each experiment N times
and we refer to each execution as a test case. Therefore, a test case xTCc repre-
sents the c-th repetition of an experiment EXPx. This means that an experiment
can be considered as a matrix of N columns (workflow execution repetitions) and
n rows (tasks within a workflow).

Let xtci denotes the measured TET of a task Ti in a test case xTCc of an
experiment EXPx. Analogue, the makespan of test case xTCc will be denoted
as xM c. As we want to analyze the distribution of makespans per experiment,
we define the TET’s mean value xti = 1

N · ∑N
c=1

xtci of a task Ti and the mean
makespan xM = 1

N ·∑N
c=1

xM c. Both mean values are defined for an experiment
EXPx.

4 Noise Simulation Model

In this section we present our new model of simulating a workflow execution in
Cloud, which improves the accuracy through a much simpler approach that uses
only one parameter for noising for all the tasks of a workflow - Cloud noisiness,
instead of DynamicCloudSim’s 13 parameters for heterogeneity and instability.

4.1 Workflow Noisiness

In order to define a model for the noisiness provided by the workflow, first we
model the noisiness of a task Ti ∈ T itself with the parameter TET’s deviation
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xρcd
i , which is defined in (1) as a relative TET difference of task Ti in two test

cases xTCc and xTCd of an experiment EXPx with c, d ∈ [1, N ] ∧ c �= d.

xρcd
i =

|xtci − xtdi |
max(xtci ,

x tdi )
(1)

The TET’s deviation xρcd
i is used to introduce the workflow noisiness xΔ

cd
,

which describes the total noisiness of all TETs within a workflow in two test
cases xTCc and xTCd of an experiment EXPx, as defined in (2). Formally, it
represents a normalized mean TET’s difference of all corresponding tasks Ti of
the same workflow, in two test cases xTCc and xTCd of an experiment EXPx.

xΔ
cd

=
1
n

·
n∑

i=1

xρcd
i (2)

The workflow noisiness xΔ
cd

can be used to extract noisiness of Cloud envi-
ronment and includes vertical average of TETs of all tasks within a workflow
W . xΔ

cd
is an intermediate metric and serves as input for the Cloud noisiness,

which is explained in the following subsection.

4.2 Cloud Noisiness

The workflow noisiness shows the instability of a workflow in two executions
only. As Cloud environment is unstable, we want to take some average of a set
of test cases for a single experiment EXPx. Therefore, we introduce the Cloud
noisiness xΔ of an experiment EXPx. As defined in (3), xΔ represents the
average experiments’ makespan instability of all N repetitions (test cases) of an
experiment EXPx.

xΔ =
1

N ·(N−1)
2

·
∑

∀c,d|1≤c<d≤N

xΔ
cd

(3)

We measure the workflow noisiness xΔ
cd

of each unique pair of test cases
xTCc and xTCd for all N executions (test cases) of the same experiment EXPx.
Accordingly, the total number of unique pairs that can be generated from a set
of N elements is

(
N
2

)
= N ·(N−1)

2 . The Cloud noisiness xΔ includes horizontal
average of all workflow executions (test cases) within a single experiment EXPx.

4.3 Modeling the Noising

Now, after formally definition of cloud noisiness, we define how to model and
add a noise in a simulation. The noised TET xτ̃i of a task Ti is defined in (4),
where Gaussian(Mean, STDEV ) represents a random function with Gaussian
(normal) distribution.

xτ̃i = (1 +x Δ + Gaussian(0, σxΔ)) ·x ti (4)
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Accordingly, the noise in (4) is modeled as a Gaussian distribution, where
the mean value is the TET’s mean value xti of a task Ti, shifted with the Cloud
noisiness xΔ in order to cover uncertain overheads, measured in the experiments.
For noisiness, we use the standard deviation σxΔ of all workflow noisiness of a
single cloud noisiness, which is determined by each pair of test cases TCc and
TCd (∀c, d | 1 ≤ c < d ≤ N) of a single experiment.

5 Testing Methodology

In this section we present the testing methodology in order to evaluate our
noising model in Sect. 6.

5.1 Synthetic Workflow

The synthetic workflow that is used in our experiments consists of two paral-
lel sections (Second and Fourth) of same size, with three synchronisation tasks
(First, Third and Fifth) in between, as depicted in Fig. 1. The chosen work-
flow structure is the result of workflow characteristics analysis of several well
known workflows, such as EPIGENOMICS and SIPHT [14]. The workflow size
is related to the number of tasks in the parallel sections. In the experiments we
use a parallel section size of 13 (SYNWF/13) and 44 (SYNWF/44). We use two
different workflow sizes in order to cover balanced and unbalanced executions,
such that one is a prime number and the other is dividable by the numbers 2
and 4, corresponding to the number of instances. Additionally, we used instance
number of 3, which is not a divisor of neither workflow sizes. With this work-
flow structure and selected parameters, we also want to investigate if there is
a correlation between the workflow parameters and the execution environment
(chosen resources and the inefficient workflow execution).

As workflow makespan consists of computations and file transfers (including
both the network and I/O), we have chosen different file transfer to computation

Fig. 1. The structure of the synthetic work-
flow with the file transfer to computation
time ratios

Table 1. File transfer (FT) to computa-
tion time (CT) ratio in % for SYNWF/13
and SYNWF/44

Task type SYNWF/13 SYNWF/44

FT[%] CT[%] FT[%] CT[%]

First 30 70 30 70

Second 15 85 15 85

Third 90 10 95 5

Fourth 75 25 75 25

Fifth 90 10 95 5
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time ratios for all five task types, as depicted in Fig. 1 and presented in Table 1.
A file transfer describes the copying process of a set of files from one task to
another and combines network bandwidth with I/O. The ratios of the First,
Second and Fourth task types are assumed to be constant for different workflow
sizes because the number and size of file inputs is not changing. This is different
for the Third and Fifth task types, which are synchronization tasks and collect
all the output files produced by the Second and Fourth tasks (parallel sections),
correspondingly. Thus, in order to compensate this, we slightly increase the file
transfer time for the workflow size 44. Moreover, the ratios of both parallel
sections are inverse to each other.

5.2 Cloud Testing Environment

All Cloud experiments were executed in Amazon EC2 with the VM image Ama-
zon Linux AMI (ami-1ecae776) in the availability zone US East (N. Virginia).
For the workflow execution and measurements of the TETs and makespan,
we used the workflow execution engine Askalon [17]. We use two Amazon
instance types IT = {t2.small, t2.medium} as well as the number of instances
m = {2, 3, 4}.

According the definition of experiments in Sect. 3.3, EXP1 is defined as
EXP1(SY NWF/13, t2.small, 2), which means that it executes the synthetic
workflow with parallel section size 13, by using two small VMs. As we used two
different workflows that are specified in the previous subsection, we define q = 12
experiments, and since we execute 20 repetitions (test cases) of each experiment,
we execute a total of 240 test cases in Cloud. In order to cover different behavior
of Amazon’s EC2, we run all test cases of each experiments in the period of two
weeks.

5.3 Simulation Testing Environment

In all our simulations, we used DynamicCloudSim, which extends CloudSim by
adding features that allow a user to simulate the heterogeneity in Cloud described
as the performance deviation of a resource, including VM heterogeneity, host het-
erogeneity, File I/O heterogeneity, and Cloud instability, VM Stragglers and VM
Failures. DynamicCloudSim introduces 13 parameters that cover Cloud hetero-
geneity and instability, which are described in Table 2.

The same two workflows, two VM types and two, three, and four number of
VMs are used to reproduce the same 12 experiments as in real Cloud. We execute
N = 20 test cases per experiment in order to have equal number of experiments
in real and simulated executions. Note that we consider the instance startup as
warm up period and thus it is discarded in the experiments.

In order to evaluate our model, we compare it with the DynamicCloudSim’s
model (denoted as SsDCS) with default values for Amazon EC2 (Table 2), which
are based on other performance-based researches, experience, and assumptions.
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Table 2. DynamicCloudSim heterogeneity parameter setup for SsDCS and Snoise

Heterogeneity parameter Description SsDCS Snoise

cpuHeterogeneityCV Randomize the power of
the host

0.4 0

ioHeterogeneityCV (CPU, I/O and
bandwidth)

0.15 0

bwHeterogeneityCV 0.2 0

cpuNoiseCV Randomize the
performance
characteristics

0.028 0

ioNoiseCV of a VM (CPU, I/O and
bandwidth)

0.007 0

bwNoiseCV 0.010 0

cpu/io/bw BaselineChangesPerHour Randomize the dynamic
changes of Cloud’s
performance

0 0

likelihoodOfStraggler Probability of a VM being
a straggler

0 0

stragglerPerformanceCoefficient Diminished performance
of a straggler

1 1

likelihoodOfFailure Average rate of failure 0 0

runtimeFactorInCaseOfFailure TET factor of a failed task 1 1

Our noisining model Snoise, adds noise to one parameter (TET) only. Thus,
all other heterogeneity and noise related parameters are set to 0 in Dynamic-
CloudSim. Note that also the cpuNoiseCV parameter is also set to 0, because
we insert our noise through the Cloud noisiness parameter. Table 3 shows the
measured Cloud noisiness xΔ and the corresponding standard deviations for
Snoise in each experiment executed on Amazon EC2. It shows that EC2 pro-
vides computation instabilities from 8.9% up to 17.6% for various workflows and
using different number of various instance types. The deviation of all test cases
per a single experiment is in the range of 2.8% up to 11.2%.

Table 3. xΔ and σxΔ values for Snoise

W 2*S 3*S 4*S 2*M 3*M 4*M W 2*S 3*S 4*S 2*M 3*M 4*M

xΔ 13 0.110 0.089 0.120 0.144 0.162 0.165 44 0.093 0.112 0.166 0.129 0.176 0.158

σxΔ 0.077 0.029 0.062 0.028 0.041 0.048 0.039 0.058 0.112 0.039 0.042 0.031

For a fair comparison, both simulations have equal base network, storage
and computation speed. Moreover during the experiments in real Cloud, we did



328 R. Mathá et al.

not detect any VM failures, and therefore the straggler, failure and cpu/io/bw
BaselineChangesPerHour parameters are set to 0 for both simulations.

6 Evaluation

In this section we present the results of a series of experiments to evaluate our
noising model. The summary of the evaluation shows not only that our model
is simpler, but it is more accurate than DynamicCloudSim.

Figure 2 shows the mean makespans of both workflows SYNWF/13 and
SYNWF/44. The experiments are denoted as the product of number of instances
(m) and the abbreviation of VM type (M for t2.medium and S for t2.small VM
type). For example, 2 ∗ S denotes the experiment that uses two small instances,
while 4 ∗ M is used for the experiment with four medium instances.
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(b) SYNWF/44

Fig. 2. Mean makespans with variations ±σ(mean makespan) of SYNWF/13 and
SYNWF/44 using two, three or four instances of type t2.small (S) or t2.medium (M)

The mean values of makespans of all experiments with SYNWF/13 are
depicted in Fig. 2a, along with the standard deviation. We observe that our
Snoise model shows higher accuracy, that is, both higher trueness and preci-
sion, than SsDCS . Increasing the number of small instances, Snoise improves its
precision with 20.16% up to 71.61%, while SsDCS has minimum 51.21% of pre-
cision offset compared to C. For all experiments, our noise model shows higher
makespan trueness for real Cloud C, compared to SsDCS . In detail, the trueness’
offset of Snoise is between 6.0% and 10.7% for small instances, while SsDCS ’s
is between 11.8% and 13.0%. Thus, Snoise is up to 7.0% better than SsDCS

for small instances. We observe a similar behavior with increasing number of
medium instances, where the makespan trueness offset of Snoise is between 0.5%
and 14.7%, while SsDCS ’s is between 2.3% and 16.3%. In the experiments with
two medium instances, both simulations show higher makespan than C, but
Snoise has still higher trueness with 0.5% offset.
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Figure 2b shows the average makespan results for all experiments with the
SYNWF/44 workflow. Similar to the experiments with the SYNWF/13 work-
flow, our model Snoise shows again higher accuracy than SsDCS . The trueness
of our model Snoise is better than SsDCS for all experiments, while the precision
is comparable, but slightly worse, only for experiments with 4 instances, and
for all others our model Snoise is still better. In detail, Snoise shows between
15.29% and 20.59% higher standard deviation than C for 2 and 3 instances,
while SsDCS has up to 5 times higher offset. On experiments with 4 instances,
Snoise shows between 76.94% and 86.21% precision offset, while SsDCS has only
up to 21.93%. Regarding the simulated makespans’ trueness (closeness to the
mean value), Snoise shows a better trueness than SsDCS in all experiments. In
detail, comparing the trueness offset of the simulated results and the real Cloud
results, Snoise is still better with trueness offset between 9.4% and 26.6%, while
SsDCS has between 16.0% and 28.8%.

Comparing all experiments conducted with both workflows, Snoise shows
higher and more closer precision than SsDCS for all experiments with
SYNWF/13. We observe similar behavior with SYNWF/44, except for exper-
iments with 4 small and medium instances. Additionally, Snoise shows up to
9.2% higher makespans’ trueness compared to SsDCS for all experiments. We
also observe that the precision of both models does not depend if the number
of instances is a divisor or not of the workflow parallel section size, which can
significantly reduce the number of experiments to determine the cloud noisiness.

7 Conclusion and Future Work

This paper presents a new simplified Cloud noisiness model for noising the work-
flow execution while it is simulated in order to behave as the real Cloud unsta-
ble environment. Instead of configuring dozens parameters in order to achieve a
noised simulation, as it is required in DynamicCloudSim, our model configures
only one - the Cloud noisiness. A series of experiments in Amazon EC2 that were
reproduced in simulated environment show that our Cloud noisiness model sim-
plifies the simulation configuration and improves the simulation trueness, and
especially precision.

The main novelty in our model is the calculation of noisiness. Instead of using
the normal distribution naively for the tasks’ runtime, we shift the mean TET
by the Cloud noisiness and then add a noise (deviation of the Cloud noisiness) of
each task. The workflow noisiness smooths the impact of the workflow structure
by calculating the average instability of all tasks in a workflow, while the Cloud
noisiness estimates the environmental noise by calculating the horizontal average
instability of the same task. With these two parameters, we inject not only the
noise of a task itself, when being executed in Cloud, but we inject the impact
of common tasks’ noises within the workflow and environmental noise provided
when a whole workflow is being repeatedly executed in that environment.

Although our Cloud noisiness approach requires several executions of a work-
flow in order to calculate the Cloud noisiness parameter, the results show that
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the instability is not correlated to the parallel section size, that is, if we exe-
cute a workflow efficiently or inefficiently. However, the experiments show that
the instability is highly correlated with the instance type and the number of
instances. We will try to extend our model with other parameters in order
to reduce this dependency and therefore the cost of learning the Cloud noisi-
ness. However, our analysis shows that the performance instability of up to 17%
between two experiments is comparable with the standard deviation of up to
11% between test cases within a single experiment.

Our noisiness model improved the simulator’s trueness for all and the preci-
sion for most instance types and number of instances. As the results show that
the instability is instance type dependent, we will extend our model towards
modeling network, as well as I/O, and including them in order to improve the
trueness and precision even more.
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