
Efficient Dynamic Pinning of Parallelized
Applications by Reinforcement Learning

with Applications

Georgios C. Chasparis1(B), Michael Rossbory1, and Vladimir Janjic2

1 Software Competence Center Hagenberg GmbH,
Softwarepark 21, 4232 Hagenberg, Austria

{georgios.chasparis,michael.rossbory}@scch.at
2 School of Computer Science, University of St Andrews, Scotland, UK

vj32@st-andrews.ac.uk

Abstract. This paper describes a dynamic framework for mapping the
threads of parallel applications to the computation cores of parallel sys-
tems. We propose a feedback-based mechanism where the performance
of each thread is collected and used to drive the reinforcement-learning
policy of assigning affinities of threads to CPU cores. The proposed
framework is flexible enough to address different optimization criteria,
such as maximum processing speed and minimum speed variance among
threads. We evaluate the framework on the Ant Colony optimization par-
allel benchmark from the heuristic optimization application domain, and
demonstrate that we can achieve an improvement of 12% in the execu-
tion time compared to the default operating system scheduling/mapping
of threads under varying availability of resources (e.g. when multiple
applications are running on the same system).

1 Introduction

Resource allocation is an indispensable part of the design of any engineering
system that consumes resources, such as electricity power in home energy man-
agement [1], access bandwidth and battery life in wireless communications [10],
computing bandwidth under certain QoS requirements [2] and computing band-
width and memory in parallelized applications [4]. In this paper, we are focusing
on the problem of allocating CPU cores to the tasks/threads of a parallel applica-
tion (sometimes referred to as mapping). When resource allocation is performed
online and the number, arrival and departure times of the tasks are not known
a priori, the role of a resource manager is to guarantee the efficient operation
(according to some criteria) of all tasks by appropriately allocating resources
to them. This requires formulation of a centralized optimization problem (e.g.,
mixed-integer linear programming formulations [2]). However, it is usually diffi-
cult to formulate the problem precisely, and the methods to solve the resulting
optimization problem are typically computationally very expensive. Addition-
ally, most of the currently used allocation strategies [5,11,15] encounter issues

c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 164–176, 2017.
DOI: 10.1007/978-3-319-64203-1 12

Efficient Dynamic Pinning of Parallelized Applications 165

when dealing with dynamic environments (e.g., varying availability of resources),
such as information complexity involved in retrieving the exact affinity relations
during runtime and slow response to irregular application behaviour (e.g. degra-
dation of performance due to presence of other applications). Such environ-
ments are suitable for learning-based optimization techniques, where the map-
ping/scheduling policy is updated based on performance measurements from the
running threads. Through such learning-based scheme, we can (i) reduce infor-
mation complexity when dealing with a large number of possible thread/memory
bindings, since only performance measurements need to be collected during run-
time; and, (ii) adapt to uncertain/irregular application behavior.

In our previous work [8], we have proposed a novel dynamic, reinforcement-
learning based scheme for optimal allocation of parallel applications’ threads to
a set of available CPU cores. In this scheme, each thread responds to its cur-
rent performance independently of other threads, requiring minimal information
exchange. Furthermore, it exhibits robustness and is able to adapt to possible
irregularities in the behavior of a thread (such as sudden drop of performance)
or to possible changes in the availability of resources. In this paper, we extend
the work presented there in two main directions:

– we introduce a new type of reinforcement-learning dynamics that allows faster
adjustment towards better allocations;

– we evaluate the reinforcement-learning scheme on a real-world application
(Ant Colony Optimization), demonstrating the reduction in application com-
pletion time of 12% compared to the default Linux Operating System sched-
uler.

These results are very encouraging, taking into account that our mechanisms
does not require any input from the user.

The paper is organized as follows. Section 2 describes the overall framework
and objective. Section 3 presents a reinforcement-learning algorithm for dynamic
placement of threads. Section 4 presents experiments of the proposed algorithm
in a Linux platform and comparison tests with the operating system’s perfor-
mance. Finally, Sect. 5 presents concluding remarks.

2 Problem Formulation and Objective

A substantial body of work has demonstrated the importance of the appropriate
thread-to-core bindings in achieving a good performance of parallel applications.
For example, Klug et al. [11] describe a tool that checks the performance of each
of the available thread-to-core bindings and searches for an optimal placement.
Unfortunately, this employs exhaustive search, which is usually prohibitively
expensive. Broquedis et al. [5] combine the problem of thread scheduling with
scheduling hints related to thread-memory affinity issues. These hints are able to
accommodate load distribution given information for the application structure
and the hardware topology. Scheduling itself is hierarchical, with work steal-
ing [3] being used within neighboring cores to maintain data locality, while at

166 G.C. Chasparis et al.

α∗ = (α∗
1, α

∗
2, ..., α

∗
n)

.
= arg maxα∈A f(α, w)

T1 T2 Tn· · ·

1 2 3 · · · m

α∗
1 α∗

2 α∗
n

w1 w2 w3 wm

α∗
1 α∗

2 α∗
n

Fig. 1. Schematic of static resource allocation framework.

the memory-node level, the thread scheduler deals with larger groups of threads.
A similar scheduling policy is also implemented by [14].

In this paper, we are interested in the problem of dynamic pinning of a set
of threads I = {1, 2, . . . , n} that comprise a parallel application to the set of
(not necessarily homogeneous) CPU cores J = {1, 2, . . . ,m}. We denote the
assignment of a thread i to an available CPU by αi ∈ Ai

.= J , i.e., αi denotes
the id of the CPU to which this thread has been assigned. Let also α = {αi|i ∈ I}
denote the assignment profile, which takes values on the Cartesian product A .=
A1 × . . .×An. The resource manager (RM) periodically checks the performance
of each thread and makes decisions about their pinning to CPUs so that a (user-
specified) objective is maximized. Throughout the paper, we will assume that:

(i) The internal properties and details of the threads are not known to the
resource manager. Instead, the resource manager may only have access to
measurements related to their performance (e.g., their processing speed).

(ii) Threads may not be suspended and their execution cannot be postponed.
Instead, the goal of the resource manager is to assign the currently available
resources to the currently running threads.

(iii) Each thread may only be assigned to a single CPU core.

2.1 Static Optimization and Issues

Let vi = vi(α,w) denote the processing speed of thread i, which depends on
both the overall assignment α, as well as external parameters aggregated within

Efficient Dynamic Pinning of Parallelized Applications 167

w. The parameters w summarize, for example, the impact of other applications
running on the same platform or other irregularities of the applications. The
centralized objective for optimization is of the form

max
α∈A

f(α,w). (1)

In this paper, we will consider two different objectives, in order to show the
flexibility of the proposed resource allocation scheme to address different opti-
mization criteria. The considered objectives are the following:

(O1) f(α,w) .=
∑n

i=1 vi/n, corresponds to the average processing speed of all
threads;

(O2) f(α,w) .=
∑n

i=1[vi − γ(vi − ∑n
�=1 v�/n)2]/n, for some γ > 0, corresponds

to the average processing speed minus a penalty that is proportional to the
speed variance among threads.

In the objective (O1), the goal is to minimize the average processing speed
over all threads, and in the objective (O2) the goal is to achieve an optimal
combination of processing speed and speed variance among threads.

Any solution to (1) corresponds to an efficient assignment. Figure 1 presents
a schematic of a static resource allocation framework, where the centralized
objective (1) is solved by the RM upfront, and then the optimal assignment (or
mapping) is communicated to threads.

However, there are two significant issues when posing an optimization prob-
lem in the form of (1). In particular,

1. the function vi(α,w) is unknown and it may only be approximated through
measurements of the processing speed, denoted ṽi;

2. the external influence w is unknown and may vary with time, thus the optimal
assignment may not be fixed with time.

2.2 Measurement- or Learning-Based Optimization

We wish to target the objective (1) through a measurement-based (or learning-
based) optimization approach. In such approach, the RM reacts to the approx-
imation of the function f(α,w) that is obtained by measuring the processing
speed of threads. Measurements are taken at time instances k = 1, 2, . . . , and
the approximation of function f at the time instance k is denoted by f̃(k). For
example, in the case of objective (O1), f̃(k) .=

∑n
i=1 ṽi(k)/n. Given the approxi-

mation f̃(k) and the current assignment of threads to cores, α(k), the RM selects
the next assignment α(k+1) so that the measured objective approaches the true
optimum of the unknown function f(α,w). In other words, the RM employs an
update rule of the form:

{(ṽi(1), αi(1)), . . . , (ṽi(k), αi(k))}i �→ {αi(k + 1)}i (2)

according to which prior pairs of measurements and assignments for each thread
i are mapped into a new assignment αi(k + 1) that will be employed during the
next evaluation interval.

168 G.C. Chasparis et al.

{(ṽi(1), αi(1)), ..., (ṽi(k), αi(k))}i {→� αi(k + 1)}i

T1 T2 Tn· · ·

1 2 3 · · · m

ṽ1(k)

α1(k + 1)

ṽ2(k)

α2(k + 1)

ṽn(k)

αn(k + 1)

α1(k) α2(k) αn(k)

w1 w2 w3 wm

Fig. 2. Schematic of dynamic resource allocation framework.

The overall framework is illustrated in Fig. 2, describing the flow of information
and steps executed. In particular, at any given time instance k = 1, 2, . . ., each
thread i communicates to the RM its current processing speed ṽi(k). Then the
RM updates the assignment, αi(k + 1), and communicates it to i.

2.3 Objective

The goal of our work is to utilize a distributed learning framework for dynamic
(adaptive) pinning of threads to cores. Each thread constitutes an independent
decision maker. It selects the CPU core to which it is pinned independently
of others, using its own preference criterion. The job of the RM is to collect
performance information and send it to the threads so that they can make the
placement decisions. Our goal is to design a preference criterion and a selec-
tion rule for each thread so that maximizing the thread’s own criterion ensures
certain overall performance for the parallel application. Furthermore, the selec-
tion criterion of each thread should be adaptive and robust to possible resource
variations. In the next section, we present such a (distributed) learning scheme.

3 Reinforcement Learning (RL)

The question that naturally emerges is how should threads choose CPU cores
based only on their available measurements, so that eventually an efficient assign-
ment is established for all threads. We achieve this by using a learning frame-
work, perturbed learning automata, that is based on the reinforcement learning

Efficient Dynamic Pinning of Parallelized Applications 169

algorithm introduced by the authors in [6,7]. It belongs to the general class of
learning automata [13]. The basic idea behind reinforcement learning is rather
simple. Each agent i (in this case, a thread), keeps track of a strategy vector
that holds its estimates over the best choice (in this case, the CPU core). We
denote this strategy by σi = [σij]j∈Ai

∈ Δ (|Ai|), where Δ (m) denotes the prob-
ability simplex of size m, i.e., the set of probability vectors in R

m. To provide
an example, consider the case of 3 available CPU cores, i.e., Ai ≡ J = {1, 2, 3}.
In this case, the strategy σi ∈ Δ (3) of thread i may take the following form:

σi =

⎛

⎝
0.2
0.5
0.3

⎞

⎠ ,

which denotes that there is 20% probability of assigning the thread i to the CPU
core 1, 50% probability of assigning the thread i to the CPU core 2 and 30%
probability of assigning the thread i to the core 3. We will denote the assignment
selection by αi = randσi

[Ai] .
Note that if σi is a unit vector ej , with 0 in all places except for the j-th,

and 1 in the j-th place, then the thread i will be mapped to the core j with
probability one. Such a strategy is usually called pure strategy.

3.1 Strategy Update

According to the perturbed reinforcement learning [6,7], the probability that a
thread i selects action j at time k = 1, 2, . . . is:

σij(k) = (1 − λ)xij(k) − λ

|Ai| (3)

where λ > 0 corresponds to a perturbation term (or mutation) and xi = [xij]j
corresponds to the nominal strategy of thread i. The nominal strategy is updated
according to the following recursion formula:

xi(k + 1) =

{
xi(k) + ε · ui(α(k)) · [eαi(k) − xi(k)], ui(α(k)) > ūi(k)
xi(k), ui(α(k)) ≤ ūi(k),

(4)

for some constant step size ε > 0, where ūi(k) denotes the running-average
performance at time k and ui(α(k)) is the utility of thread i at time k, defined
as ui(α(k)) = f̃(k). In other words, each thread is assigned a performance index
that coincides with the overall objective function (identical interest). In words,
according to (4), if the performance of thread i at time k, when placed on
core αi(k), is higher than the average performance, i.e., ui(α(k)) > ūi(k), then
at time k + 1 we increase the probability of that thread being placed on the
same core and proportionally to the thread utilisation. So the better the thread
performs, the more likely it is to be assigned to the same core. Otherwise, if
the performance of the thread is the same or worse than the average, we do not
change preference for its placement (the second case in (4)). In comparison to

170 G.C. Chasparis et al.

our previous work [6,7], here we use the constant step size ε > 0 (instead of a
decreasing step-size sequence). This increases the adaptivity and robustness of
the algorithm to possible changes in the environment. This is because a constant
step size provides a fast transition of the nominal strategy from one pure strategy
to another. Compared to [8], here we use a different reinforcement direction. In
the Eq. (4), the strategy vector is only adjusted when a performance is higher
than the running-average performance ūi, which provides a faster adjustment
towards better assignments. The perturbation term λ provides the possibility
for the nominal strategy to escape (suboptimal) pure strategy profiles. Setting
λ > 0 is essential for providing an adaptive response of the algorithm to changes
in the environment.

The convergence properties of this class of dynamics can be derived following
the exact same reasoning used for the learning dynamics presented in [8]. In fact,
it can be shown that the dynamics approach asymptotically a set of allocations
that includes the solutions of the centralized optimization (1). Such a set may in
fact include sub-optimal allocations; however, as we shall see in the forthcoming
evaluation section, they are still notably better that the allocations provided by
the default operating system scheduler.

As a final notice, the algorithm is augmented with a reset strategy when a
thread becomes inactive (e.g., due to termination), in which case the assignment
profile is reset based on a round-robin initialization strategy.

3.2 Discussion

The reinforcement-learning algorithm of Eq. (4) provides a performance-based
optimization. No a-priori knowledge of the type of the application or the under-
lying hardware is necessary. Furthermore, its memory complexity is minimal,
since at any update instance of the resource manager, only the strategy vectors
of each one of the threads needs to be kept in memory, whose size is linear to the
number of the CPU cores. Furthermore, for each thread, the dynamics exhibit
linear complexity to the number of CPU cores.

4 Experiments

In this section, we present an experimental study of the proposed reinforcement
learning scheme for dynamic pinning of threads of parallel applications. The
experiments were conducted on 20×Intel c©Xeon c©CPU E5-2650 v3 2.30 GHz
running Linux Kernel 64bit 3.13.0-43-generic. The machine divides the physical
cores into two NUMA nodes (Node 1: CPUs 0–9, Node 2: CPUs 10–19). As an
example application, we consider a parallel implementation of the Ant Colony
Optimization heuristic for solving NP-complete optimization problems. The pro-
posed reinforcement learning dynamics is implemented in scenarios under which
the availability of resources may vary with time. We compare the overall perfor-
mance of the algorithm, with respect to the completion time of the application.

Efficient Dynamic Pinning of Parallelized Applications 171

4.1 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [9] is an optimization algorithm used for solv-
ing NP-hard combinatorial optimization problems. The metaheuristics, given in
Algorithm 1, consist of a number of iterations. In each iteration, each individual
agent (ant) independently finds a solution to a given problem. The solution is
biased by a pheromone trail (t), which is stronger along previously successful
routes. After all ants have computed their solution, the best solution is chosen
and, if needed, the pheromone trail is updated according to the quality of the
new best solution. After that, the next iteration starts. The metaheuristics are
applied to a specific problem by providing the objective function, evaluate the
solution and update the pheromone trail.

Data: Ants - a set of ants
p - a set of problem parameters
t - pheromone trail
Result: best result
initialization;
for i = 0 to i < num iter do

foreach a ∈ Ants do
a = find one solution(p,t);

end
best=choose best solution(Ants);
t = update pheromone trail(best, t);

end

Algorithm 1. Pseudocode of metaheuristics in ACO.

In this paper, we apply ACO to the Single Machine Total Weighted Tardiness
Problem (SMTWTP). We are given n jobs. Each job, i, is characterised by its
processing time, pi (p in the code below), deadline, di (d in the code below),
and weight, wi (w in the code below). The goal is to find the schedule of jobs
that minimizes the total weighted tardiness, defined as

∑
wi · max{0, Ci − di}

where Ci is the completion time of the job, i. The pheromone trail is defined
as a matrix τ , where τ [i, j] is a real number between 0 and 1 that represents
preference of putting job i at the j-th place in the schedule. The pseudocode for
a function to find one solution is given in Algorithm2. It iterates over the posi-
tions in the schedule. For each position, first an auxiliary function ε is applied
for each job to compute the probability of that job being assigned to that posi-
tion. This probability is then further tuned to take into account the pheromone
trail τ . Then, according to some probability, one of the two actions are taken -
either the job with the highest probability or a random job (according to the
calculated probabilities). The latter is done to add a degree of randomisation to
the solutions, in order to escape possible local maxima.

172 G.C. Chasparis et al.

Data: p - a set of problem parameters
τ - initial pheromone trail
Result: schedule
for k = 0 to num jobs do

foreach unscheduled job i do
// probability of selecting job i as the k-th in the schedule
prob[i] = ε(i, p)β · τ [k, i];

end
q = rand();
if q < Q then

job = select the job with the highest probability, according to prob;
else

job = select a random job, according to probabilities in prob;
end
schedule[k] = job;

end

Algorithm 2. Pseudocode for find one solution function for SMTWTP
instance of ACO.

4.2 Parallelization and Experimental Setup

The ACO metaheuristics can be parallelized by dividing ants into groups and
computing the find one solution function in Algorithm1 for groups of ants in
parallel. We consider a uniform division of ants to threads (task farm parallel
pattern). Parallelization is performed using the pthreads parallel library.

Throughout the execution, and with a fixed period of 0.2 s, the RM col-
lects measurements of the total instructions per sec (using the PAPI profiling
library [12]) for each of the threads separately. Taking into account these mea-
surements, the update rule of Eq. (4) under (O2) is executed by the RM. Pinning
of the threads to the available CPUs is achieved with the sched.h library (in
particular, the pthread setaffinity np function). In the following, we evalu-
ate the completion time of the test application under the reinforcement-learning
scheme, compared to the time achieved under the Linux Operating System (OS)
default scheduling mechanism. We compare them for different values of γ ≥ 0 in
order to investigate the influence of more balanced speeds to the overall running
time.

In all the forthcoming experiments, the RM is executed by the master thread
which is always running on CPU 0. Furthermore, in all experiments, only the
first one of the two NUMA nodes are utilized, since our intention is to investigate
the benefit of efficient placement of thread to cores without taking into account
effects of non-uniform memory layout on the execution speed.

4.3 Experiment 1: ACO Under Uniform CPU Availability

In the first experiment, we consider the ACO application consisting of 20 threads
and utilizing 7 CPU cores. Table 1 shows the completion times under the OS

Efficient Dynamic Pinning of Parallelized Applications 173

and reinforcement-learning (RL) for different values of γ > 0, with ε = 0.01 and
λ = 0.03 in formulas (3) and (4). We select a step size and perturbation that are
not so small in order to allow a rather fast adaptation (via ε > 0) and a rather
often experimentation (via λ > 0).

Table 1. Statistical results regarding the completion time (in sec) of OS and RL under
Experiment 1.

ε = 0, λ = 0 ε = 0.01, λ = 0.03

Run # OS RL (γ = 0) RL (γ = 0) RL (γ = 0.02) RL (γ = 0.04)

1 138.39 139.41 142.08 142.69 141.69

2 138.57 137.60 143.28 141.69 141.27

3 138.80 138.39 142.87 142.10 140.92

4 138.38 137.97 144.08 143.47 142.71

5 138.78 138.40 143.28 142.65 141.28

Aver. 138.58 138.35 143.12 142.52 141.57

s.d. 0.20 0.67 0.73 0.68 0.69

We observe that the RL scheduler can almost match the completion time
by the OS scheduler. The RL scheduler with γ = 0.04 gives just about 2.12%
worse completion time, compared to the OS scheduler. This difference can be
attributed to the necessary adaptation and experimentation incorporated into
the scheduler. To see this, note that when the scheduler sticks with the initial
round-robin static initialization of the assignments, i.e., when ε = λ = 0, then the
completion time matches very accurately the time achieved by the OS scheduler
(Table 1). Such experimentation is absolutely necessary for the dynamic sched-
uler to be able to react to variations in the availability of resources, as it will
become obvious in the following experiments.

Another interesting observation comes from the fact that as γ increases, the
overall completion time of the application decreases. In other words, when penal-
izing high speed variance among threads, the overall completion time decreases.
Such conclusion may not necessarily be generalized beyond this experimental
setup of identical threads and uniform resource availability; however, it indi-
cates a potential benefit that needs to be further investigated.

4.4 Experiment 2: ACO Under Non-uniform CPU Availability

In the second experiment, the execution speed of the CPU cores is not uniform.
To achieve this variation, we have another (exogenous) application running on
some of the available CPU cores. In particular, this exogenous application places
equal work-load to the first three CPU cores. The exogenous application already
runs when the ACO starts running. Figure 3 shows the running average process-
ing speed under OS and RL, which is further supported by the statistical data of

174 G.C. Chasparis et al.

Table 2. The RL achieves a significant speed improvement that results in about
12% reduction in completion time.

0 50 100 150 200 250
6

8

10

12

14

Time (sec)

R
un

.
A

ve
r.

Sp
ee

d
(

1
0
8
·
#

in
st

ru
c
ti
o
n
s

/
se

c
/
th

re
a
d
)

RL

OS

Fig. 3. Running average execution speed for OS and RL (γ = 0.04) under
Experiment 2.

4.5 Experiment 3: ACO Under Time-Varying CPU Availability

This is an identical experiment to Experiment 2, except for the fact that the
exogenous application starts running 30 s after ACO starts running. This form
of test examines the ability of RL to respond after a significant variation in the
availability of some of the CPU cores. Figure 4 illustrates the evolution of the
running-average processing speed under OS and RL for this experiment.

0 50 100 150 200

10

15

Time (sec)

R
un

.
A

ve
r.

Sp
ee

d
(

1
0
8
·
#

in
st

ru
c
ti
o
n
s

/
se

c
/
th

re
a
d
)

RL

OS

Fig. 4. Running average execution speed for OS and RL (γ = 0.04) under
Experiment 3.

It is evident in Fig. 4 that the RL dynamic scheduler is able to better react
to variations in the availability of resources, and achieves a shorter completion
time by about 10%. This is also supported by the statistical data of Table 2.

Efficient Dynamic Pinning of Parallelized Applications 175

Table 2. Statistical results of the completion time (in sec) under OS and RL in Exper-
iments 2 and 3, respectively.

Experiment 2 Experiment 3

Run # OS RL (γ = 0.04) OS RL (γ = 0.04)

1 241.30 207.33 218.48 193.30

2 239.10 201.92 218.70 196.45

3 240.90 220.11 218.88 201.92

4 241.11 221.54 219.27 195.88

5 241.51 210.09 218.52 193.41

Aver. 241.06 212.20 218.77 196.19

s.d. 0.99 8.42 0.33 3.50

5 Conclusions and Future Work

We proposed a measurement-based reinforcement learning scheme for addressing
the problem of efficient dynamic pinning of threads of a parallel application to
the processing units. According to this scheme, a centralized objective is decom-
posed into thread-based objectives, where each thread is assigned its own utility
function. A resource manager updates a strategy for each of the threads corre-
sponding to its beliefs over the most beneficial CPU placement for this thread.
Updates are based on a reinforcement learning rule, where prior actions are rein-
forced proportionally to the resulting utility. Besides its reduced computational
complexity, the proposed scheme is adaptive and robust to possible changes in
the environment. We further demonstrated that in the ACO metaheuristics algo-
rithm, the proposed scheduler may reduce the completion time up to 12% under
varying resource availability. This is a significant result, as the reinforcement-
learning based scheduler does not require any input from the user, nor it requires
any information from the application itself, therefore it can be readily plugged
in instead of the default operating system scheduler. In future, we plan to inves-
tigate the effect of non-uniform memory layout to our scheduler and to adapt
the scheduling policies for these kind of systems.

Acknowledgments. This work has been partially supported by the European Union
grant EU H2020-ICT-2014-1 project RePhrase (No. 644235).

References

1. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal
home energy management under dynamic electrical and thermal constraints. IEEE
Trans. Ind. Inform. 9(3), 1518–1527 (2013). doi:10.1109/TII.2012.2230637. ISSN
1551-3203

2. Bini, E., Buttazzo, G.C., Eker, J., Schorr, S., Guerra, R., Fohler, G., Årzén,
K.E., Vanessa, R., Scordino, C.: Resource management on multicore systems: the
ACTORS approach. IEEE Micro 31(3), 72–81 (2011)

http://dx.doi.org/10.1109/TII.2012.2230637

176 G.C. Chasparis et al.

3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-
ing. In: Proceedings of SFCS 1994, pp. 356–368 (1994)

4. Brecht, T.: On the importance of parallel application placement in NUMA mul-
tiprocessors. In: Proceedings of the Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS IV), San Deigo, CA, pp. 1–18, July 1993

5. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Program. 38, 418–439 (2010)

6. Chasparis, G.C., Shamma, J.S., Rantzer, A.: Nonconvergence to saddle boundary
points under perturbed reinforcement learning. Int. J. Game Theory 44(3), 667–
699 (2015)

7. Chasparis, G., Shamma, J.: Distributed dynamic reinforcement of efficient out-
comes in multiagent coordination and network formation. Dyn. Games Appl. 2(1),
18–50 (2012)

8. Chasparis, G.C., Rossbory, M.: Efficient Dynamic Pinning of Parallelized Applica-
tions by Distributed Reinforcement Learning. arXiv:1606.08156 [cs], June 2016

9. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate
(2004)

10. Inaltekin, H., Wicker, S.: A one-shot random access game for wireless networks.
In: International Conference on Wireless Networks, Communications and Mobile
Computing (2005)

11. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin - automated optimization
of thread-to-core pinning on multicore systems. In: Stenstrom, P. (ed.) Transactions
on High-Performance Embedded Architectures and Compilers III. LNCS, vol. 6590,
pp. 219–235. Springer, Berlin Heidelberg (2011). doi:10.1007/978-3-642-19448-1 12

12. Mucci, P.J., Browne, S., Deane, C., Ho, G.: PAPI: A portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7–10 (1999)

13. Narendra, K., Thathachar, M.: Learning Automata: An introduction. Prentice-
Hall, Upper Saddle River (1989)

14. Olivier, S., Porterfield, A., Wheeler, K.: Scheduling task parallelism on multi-socket
multicore systems. In: ROSS 2011, Tuscon, Arizona, USA, pp. 49–56 (2011)

15. Thibault, S., Namyst, R., Wacrenier, P.-A.: Building portable thread schedulers
for hierarchical multiprocessors: the bubblesched framework. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 42–51. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74466-5 6

http://arxiv.org/abs/1606.08156
http://dx.doi.org/10.1007/978-3-642-19448-1_12
http://dx.doi.org/10.1007/978-3-540-74466-5_6

	Efficient Dynamic Pinning of Parallelized Applications by Reinforcement Learning with Applications
	1 Introduction
	2 Problem Formulation and Objective
	2.1 Static Optimization and Issues
	2.2 Measurement- or Learning-Based Optimization
	2.3 Objective

	3 Reinforcement Learning (RL)
	3.1 Strategy Update
	3.2 Discussion

	4 Experiments
	4.1 Ant Colony Optimization (ACO)
	4.2 Parallelization and Experimental Setup
	4.3 Experiment 1: ACO Under Uniform CPU Availability
	4.4 Experiment 2: ACO Under Non-uniform CPU Availability
	4.5 Experiment 3: ACO Under Time-Varying CPU Availability

	5 Conclusions and Future Work
	References

