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Abstract. We propose new algorithms with small memory consump-
tion for the Learning Parity with Noise (LPN) problem, both classically
and quantumly. Our goal is to predict the hardness of LPN depending
on both parameters, its dimension k and its noise rate τ , as accurately
as possible both in theory and practice. Therefore, we analyze our algo-
rithms asymptotically, run experiments on medium size parameters and
provide bit complexity predictions for large parameters.

Our new algorithms are modifications and extensions of the sim-
ple Gaussian elimination algorithm with recent advanced techniques for
decoding random linear codes. Moreover, we enhance our algorithms by
the dimension reduction technique from Blum, Kalai, Wasserman. This
results in a hybrid algorithm that is capable for achieving the best cur-
rently known run time for any fixed amount of memory.

On the asymptotic side, we achieve significant improvements for the
run time exponents, both classically and quantumly. To the best of our
knowledge, we provide the first quantum algorithms for LPN.

Due to the small memory consumption of our algorithms, we are
able to solve for the first time LPN instances of medium size, e.g. with
k = 243, τ = 1

8
in only 15 days on 64 threads.

Our algorithms result in bit complexity prediction that require rel-
atively large k for small τ . For instance for small noise LPN with
τ = 1√

k
, we predict 80-bit classical and only 64-bit quantum security

for k ≥ 2048. For the common cryptographic choice k = 512, τ = 1
8
, we

achieve with limited memory classically 102-bit and quantumly 69-bit
security.
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1 Introduction

With the upcoming NIST initiative for recommending quantum-secure public
key cryptosystems [1], it becomes even more urgent and mandatory to prop-
erly select cryptographic key sizes with a well-defined security level, both clas-
sically and of course also quantumly. Therefore, the cryptographic community
has to establish for the most prominent hardness problems, e.g. in the areas of
codes, lattices, multivariate and isogenies, predictions for solving cryptographic
instances with security levels of 128 bit and above.
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The choice of key sizes has naturally been a tradeoff between efficiency and
security. On the one hand, one would like to choose small parameters that allow
for efficient implementations. On the other hand, one is usually quite conservative
in estimating which parameters can be broken within say 2128 steps. While giving
conservative security estimates is in general good, we believe that this practice
is often disproportionate in cryptographic research.

For instance, when selecting the best algorithm, cryptographers usually com-
pletely ignore memory consumption. And quite often, the best time complexity T
is only achieved with memory consumption as large as T . An example with such
huge memory requirement is the Blum-Kalai-Wasserman (BKW) algorithm [7]
for solving LPN. But when implementing an algorithm in practice, memory
consumption is the main limiting factor. While performing 260 steps is even
doable on smallish computing clusters in a reasonable amount of time, getting
an amount of 260 of RAM is clearly out of reach. If one has to rely on additional
hard disk space, the running time will increase drastically.

An Internet investigation shows that nowadays the largest supercomputers1

have a RAM of at most 1.6 PB < 254 bits. Putting some safety margin, it seems
to be fair to say that any algorithm with memory consumption larger than 260

bits cannot be instantiated in practice. In the course of the paper we will also
consider a higher safety margin of 280 bits.

Hence, there is a need for finding algorithms for post-quantum problems
that can be instantiated with small memory, in order to run them on medium
size instances for an accurate extrapolation to cryptographic key sizes. For the
selection of key sizes, one might safely restrict to algorithms that do not exceed a
certain amount of memory, like e.g. 260 bits. Beläıd et al. [5] considered a related
model in which an attacker has limited LPN samples and memory. However, we
do not want to limit the number of LPN samples.

Ideally, we would design algorithms whose running time benefit from any
fixed amount of memory. Let us assume that we have M bits of RAM on our
computing facility. The main research question is then which optimal running
time can be achieved when (fully) using this amount.

Our goal is to answer this question for Learning Parity with Noise (LPN).
LPN is the basis for many code-based constructions and can be seen as a special
instance of Learning with Errors (LWE) [29]. In the LPN problem, one has to
learn a secret s ∈ F

k
2 using access to an oracle that provides samples of the form

(ai, bi), where ai is uniformly at random from F
k
2 , and bi = 〈ai, s〉 + ei for some

error ei ∈ {0, 1} with Pr[ei = 1] = τ . Hence, LPN is a two-parameter problem
with dimension k and error rate τ ∈ [0, 1

2 ).
Naturally, the problem becomes harder with increasing k and τ . For τ = 0

we can easily draw k samples with linearly independent ai and solve for s via
Gaussian elimination. This algorithm can simply be generalized to any τ ∈ [0, 1

2 ),
by drawing k samples in each iteration, computing a candidate s′, and test
whether s = s′. Notice that s = s′ iff in this iteration all samples are error-free.

1 E.g. the IBM 20-Petaflops cluster installed in Sequoia, Lawrence Livermore National
Laboratory, California [2].
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This algorithm, that we call Gauss, seems to be somewhat folklore. To the
best of our knowledge it was first used in 2008 by Carrijo et al. [11], and has
been e.g. analyzed in Bogos et al. [8]. The benefits of Gauss are that it con-
sumes only small memory and performs well for small noise τ , e.g. for the
currently required choice of τ = 1√

k
in the public key encryption schemes of

Alekhnovich [3], Damg̊ard, Park [12], Döttling, Müller-Quade, Anderson [13]
and Duc, Vaudenay [14].

For constant noise τ , as used e.g. in the HB family of protocols [16,20,21]
and their extensions [19,23], currently the best known algorithm is BKW, due
to Blum, Kalai and Wasserman [7] with running time, memory consumption
and sample complexity 2O(k/ log k). BKW has been widely studied in the crypto-
graphic literature and there are several improvements in practice due to Fossorier
et al. [15], Levieil, Fouque [24], Lyubashevsky [25], Guo, Johansson, Löndahl [18]
and Zhang, Jiao, Mingsheng [30]. While BKW offers for large τ the best running
time, it cannot be implemented even for medium size LPN parameters due to its
huge memory consumption. But without having any experimental results, it is
an error-prone process to predict security levels. This also led to some discussion
about the accuracy of predictions [9].

Gauss and BKW are the starting point of our paper. We revisit both in Sect. 2,
where we analyze them asymptotically and show that BKW has a very bad depen-
dency on τ with a running time of 2O(k/ log( k

τ )). So even for τ as small as τ = 1
k ,

the running time remains 2O(k/ log k).
Another drawback of Gauss and BKW is their large sample complexity, i.e. the

number of calls to an LPN oracle, which is for both algorithms as large as their
running time. Since the LPN oracle is by definition classical, this prevents any
possible speed-ups by quantum search techniques, e.g. by Grover search [17].

Therefore, we will first reduce the number of samples to a pool of only n =
poly(k) samples. Out of these n samples, we look for a set of k error-free samples
similar to Gauss. The resulting algorithm Pooled Gauss (Sect. 4) has the same
time and memory complexity as Gauss, while consuming far fewer samples. This
immediately gives rise to a quantum version, for which we save a square root in
the run time via Grover search.

Another benefit of having small sample complexity is that we can add a
preprocessing step that reduces the dimension of our LPN instances via intensive
use of the LPN oracle. The resulting algorithm that we call Well-Pooled Gauss
(Sect. 5.1) offers a significantly reduced time complexity.

In a nutshell, Well-Pooled Gauss has a simple preprocessing step that
decreases the LPN dimension, and then a decoding step via Gaussian elimination.
The preprocessing step can be improved by more sophisticated dimension reduc-
tion methods such as BKW. This comes at the cost of using some memory, but we
can control the required memory by adjusting the amount of dimension reduc-
tion. Altogether, this results in Algorithm Hybrid (Sect. 5.3) that for any given
memory M first reduces the dimension with full memory use, and second runs
Gaussian elimination on the dimension-reduced, and thus easier, LPN instance.
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Another nice feature of Hybrid is that its preprocessing step allows to easily
include many of the recent BKW optimizations [18,24,30].

Moreover, we are also able to improve on the decoding step by replacing
Gaussian elimination with more sophisticated information set decoding algo-
rithms, like Ball-Collision Decoding of Bernstein, Lange, Peters [6], MMT of
May, Meurer, Thomae [26], BJMM of Becker et al. [4] or May-Ozerov [27]. For
our purpose of decoding LPN instances, it turns out that the MMT algorithm
tuned to the LPN setting performs best. The resulting algorithm that we call
Well-Pooled MMT is studied in Sect. 5.4.

Table 1 provides a more detailed overview of our algorithms and results. For
ease of exposition, in Table 1 we omit all small error terms in run times, like
(1 + o(1))-factors or Õ-notation.

Table 1. Overview of our results, f(τ) := log
(

1
1−τ

)

Algorithm Time Samples Memory Quantum

BKW (Theorem 1) 2

k

log( k
τ ) =Time =Time Inapplicable

Gauss (Theorem 2) 2f(τ)k =Time k2 Inapplicable

Pooled Gauss

(Theorems 3 & 4)
2f(τ)k k2 k3 2

f(τ)k
2

Pooled Gauss,
τ(k) → 0
(Corollary 1)

eτk k2 k3 e
τk
2

Well-Pooled Gauss

(Theorems 5 & 6)
2

f(τ)
1+f(τ) k

=Time k3 2
f(τ)

2+f(τ) k

Hybrid (Theorem 7) 2f(τ)k to 2

k

log( k
τ ) =Time k3 to 2

k

log( k
τ ) Applicable

Well-Pooled MMT

(Sect. 5.4)
≈ 2

f( 7
6 τ)

log( 12
5 )+f( 7

6 τ) =Time <
√

Time Applicable [22]

2 Preliminaries and the LPN Problem

2.1 Preliminaries

Let us first fix some notation. With log we denote the binary logarithm. For a
positive integer n ∈ N we define [n] := {1, 2, . . . , n}. Let M be a set and k ∈ N.
Then

(
M
k

)
is the set of all subsets of M of size k. In particular,

(
[n]
k

)
is the set of

size-k subsets of {1, . . . , n}.
Let A ∈ F

n×k
2 , b ∈ F

k
2 and I = {i1, . . . , i�} ⊆ [k]. Then AI consists of the

rows indexed by I and bI consists of the entries indexed by I, e.g.

AI :=

⎛

⎜
⎝

— ai1 —
...

— ai�
—

⎞

⎟
⎠ and bI := (bi1 , . . . , bi�

)t.
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Let v = (v1, . . . , vn) ∈ F
n
2 . Then we call wt(v) := ‖v‖1 = |{i ∈ [n] | vi �= 0}|

the Hamming weight (or just weight) of v. A linear code C is a subspace of Fn
2 .

If dim(C) = k and d := min
0 �=c∈C

{wt(c)}, then we call C an [n, k, d] code.

This implies C = im(G) for some matrices G ∈ F
n×k
2 with rank k. We call G

a generator matrix of C. For a random matrix G we call C = im(G) a random
linear code.

For a finite set M we write the uniform distribution on M by U(M). More-
over, we denote by Berτ the Bernoulli distribution with parameter τ , i.e.,
e ∼ Berτ means that we draw a 0–1 valued random variable e with Pr[e = 1] = τ .

The binomial distribution is denoted as Binn,p and can be seen as the sum
of n independently identically distributed Berp variables. If X ∼ Binn,p, we
have Pr [X = i] =

(
n
i

)
pi(1 − p)n−i. In the course of the paper we will deal with

the question: Given p = p(k) and N = N(k), how large does the number of
Bernoulli trials n = n(k) have to be, such that Pr [X ≥ N ] ≥ 1 − negl(k)? Here
k is a security parameter and negl(k) = o( 1

poly(k) ) = k−ω(1). We call probabilities
of the form 1 − negl(k) overwhelming.

For example, setting n = N
p only yields Pr [X ≥ N ] ≥ 1

2 , so n has to be larger
than that. How much larger it has to be is answered by

Lemma 1. Let X ∼ Binn,p>0 and 0 ≤ N ≤ np. If n = Θ
(

N+log2 k
p

)
, then we

have Pr [X ≥ N ] ≥ 1 − k−ω(1).

Proof. The Chernoff bounds give us Pr [X ≥ N ] ≥ 1 − e− (np−N)2

2np . If we set

n ≥ N+log2 k+
√

N ·log2 k+log4 k

p , for example n = 2N+log2 k
p , we get

1 − e− (np−N)2

2np = 1 − e
− (N+log2 k)2

4N+2 log2 k ≥ 1 − e− N+log2 k
4 ≥ 1 − e

log2 k
4 = 1 − k−ω(1).

�

For N = 1, Lemma 1 gives us the amount of Bernoulli trials we need, until we

get a success with overwhelming probability, i.e. log2 k
p suffices. One can see, that

this is only slightly more than 1
p , the expectation value of a geometric distributed

random variable with parameter p.

2.2 The LPN Problem

Let us now formally define the LPN problem.

Definition 1. In the LPNk,τ problem, for some secret s ∈ F
k
2 and error para-

meter τ ∈ [0, 1
2 ) we are given access to an oracle that provides samples of the

form
(ai, bi) := (ai, 〈ai, s〉 + ei), for i = 1, 2, . . . ,

where ai ∼ U(Fk
2) and ei ∼ Berτ , independently. Our goal is to recover s.

We call bi the corresponding label of ai.
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Notation: Upon asking m queries, we write (A,b) ← LPNm
k,τ meaning that

As = b+ e, where the ith row of A ∈ F
m×k
2 and b ∈ F

m
2 present the ith sample.

Remark 1. We say that an algorithm A with overwhelming probability solves
LPNk,τ in running time T , if it both terminates within time T and outputs the
correct s with probability 1 − negl(k). This means that A might not terminate
in time T or that A might output an incorrect s′, but we bound both events
by some negligible function in k. Notice that our notion is stronger than just
expected running time Te, where the real running time might significantly deviate
from Te with even constant probability.

The error-free case LPNk,0 can be easily solved by obtaining k sample (ai, bi)
with linearly independent ai, and computing via Gaussian elimination

s = A−1b. (1)

However, in case of errors we obtain s = A−1b + A−1e, with an accumu-
lated error of A−1e, where wt(A−1e) is usually large. In other words, Gaussian
elimination lets the error grow too fast by adding together too many samples.

The error growth can be made precise in terms of the number n of additions
via the following lemma, usually called Piling-up Lemma in the cryptographic
literature.

Lemma 2 (Piling-up Lemma). Let ei ∼ Berτ , i = 1, . . . , n be identically,
independently distributed. Then we have

∑n
i=1 ei ∼ Ber 1

2− 1
2 (1−2τ)n .

Proof. n = 1 is immediate. Induction over n yields

Pr

[
n∑

i=1

ei = 1

]

= Pr

[
n−1∑

i=1

ei = 0

]

· Pr[en = 1] + Pr

[
n−1∑

i=1

ei = 1

]

· Pr[en = 0]

=
(

1
2

+
1
2
(1 − 2τ)n−1

)
τ +

(
1
2

− 1
2
(1 − 2τ)n−1

)
(1 − τ)

=
1
2

− 1
2
(1 − 2τ)n. �


3 Revisiting Previous Work

3.1 The BKW Algorithm

Blum, Kalai and Wasserman [7] proposed a variant of Gaussian elimination,
called BKW algorithm, that performs elimination of whole blocks instead of
single coordinates. This results in way less additions of samples, thus controlling
the error, at the cost of requiring way more initial LPN samples to perform
eliminations.
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The following high-level description of BKW eliminates blocks of size d in
each of its c − 1 iterations, resulting in vectors that are sums of 2c−1 original
samples. We describe only how to compute the first bit of s, the other bits are
analogous.

Input: LPNk,τ oracle, τ > 0
Output: First bit s1 of the secret s = (s1, . . . , sk)
Choose ε > 0;
c := (1 − ε) log

(
k
τ

)
;

d := k
c ;

N :=
(
c − 1 + log2 k

(1−2τ)2c + log2 k
)
2d;

(A,b) ← LPNN
k,τ ;

for i = 1, . . . , c − 1 do
foreach j ∈ F

d
2 do

Pick a row ak of A with suffix j|0(i−1)d (if any); add ak to all the
other rows of A with suffix j|0(i−1)d, also add corresponding labels;
Remove the kth row from A and b;

end
end
I := {i ∈ [N ] | ai = u1 = (1, 0, . . . , 0)};
return s1 = the bit which is the majority of all bits in bI .

Algorithm 1. BKW

Blum, Kalai and Wasserman show that, for constant τ , instantiating their
algorithm with blocks of size roughly d = k

log k and c = log k iterations while
using N = 2O(k/ log k) samples results in running time and memory complexity
also 2O(k/ log k).

Since for concrete cryptographic instantiations, we are also interested in the
dependence on τ and the constant hidden in the O-notion, we give a slightly
more detailed analysis in the following.

Theorem 1. BKW solves LPNk,τ for τ > 0 with overwhelming success probability

in time, memory and sample complexity 2
k

log( k
τ )

(1+o(1))

.

Proof. By our choice in BKW we initially start with N :=
(
c − 1 + log2 k

(1−2τ)2c +

log2 k
)
2d samples. Every foreach loop reduces the number of samples by at most

2d, resulting in at least
(

log2 k
(1−2τ)2c + log2 k

)
2d samples after loop termination.

Let u1 = (1, 0, 0, . . . , 0) be the first unit vector. Among the remaining samples
there will be at least r = log2 k

(1−2τ)2c samples of the form (u1, s1 + e) for some error
e ∈ {0, 1} with overwhelming probability according to Lemma1. Since our r
remaining samples are generated as a sum of 2c−1 initial samples, the Piling-up
lemma (Lemma 2) yields e ∼ Ber 1

2− 1
2 (1−2τ)2c−1 .

Hence, e has a bias of b̄ = 1
2 (1 − 2τ)2

c−1
. An easy Chernoff bound argument

shows that having b̄−2 samples is sufficient to obtain s1 with constant success
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probability by majority vote. Since our number r is larger than b̄−2 by a factor
of log2 k

4 , we even obtain s1 with overwhelming success probability. By repeating
this process for all bits s1, . . . , sk a union bound shows that we lose a factor
of at most k in the success probability, meaning that we can recover s with
overwhelming success probability.

The algorithm’s run time and memory consumption is (up to polynomial
factors) dominated by its sample complexity, which by our choice of c, d is

N =
(
c − 1 +

log2 k

(1 − 2τ)2c + log2 k
)
2d = 2

O(k1−ε)+ 1
1−ε · k

log( k
τ

) = 2
k

log( k
τ

)
(1+o(1))

.

�

We would like to point out that in Theorem 1 the running time

2k/ log( k
τ )(1+o(1)) only very slowly decreases with τ . Notice that even for τ as

small as Θ( 1
k ) we still obtain a running time of 2

1
2k/ log k(1+o(1)), while LPNk,O( 1

k )

clearly can be solved in polynomial time via correcting O(1) errors and running
Gaussian elimination.

3.2 Gauss

The following simple Algorithm 2, that we call Gauss, is the most natural exten-
sion of Gaussian elimination from Sect. 2.2, where one repeats sampling k linearly
independent ai until they are all error-free.

In each iteration of Gauss we simply assume error-freeness and compute a
candidate secret key s′ = A−1b as in Eq. (1). We take fresh samples to test our
hypothesis, whether we were indeed in the error-free case and hence s′ = s.

Notice that we are in the error-free case with probability (1 − τ)k. Hence,
Algorithm 2 has up to polynomial factors expected running time ( 1

1−τ )k, pro-
vided that Test can be carried out in polynomial time. Thus in comparison to
BKW in Sect. 3.1, we obtain a much better dependence on τ . For instance for
τ = O( 1

k ), we obtain polynomial running time, as one would expect.

Input: LPNk,τ oracle, τ
Output: secret s
repeat

repeat
(A,b) ← LPNk

k,τ ;
until A ∈ GLk(F2);
s′ := A−1b;

until Test(s′, τ, 1
2k , ( 1−τ

2 )k ) = Accept;
return s′;

Algorithm 2. Gauss

Basically our algorithm Test computes for sufficiently many fresh LPN sam-
ple (A,b) ← LPNm

k,τ whether As′ + b is closer to Berm,τ or to Berm, 12
via

checking whether its weight is close to τm or m
2 , respectively.
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We have designed Test in a flexible way that allows us to control the two-
sided error probabilities Pr[Test rejects | s′ = s] for rejecting the right candidate
and Pr[Test accepts | s′ �= s] for accepting an incorrect s′ via two parameters
α, β. Throughout this paper, we will tune these parameters α, β to guarantee
that all subsequent algorithms have overwhelming success probability 1−negl(k).

Input: s′, τ , error levels α, β ∈ (0, 1]
Output: Accept or Reject

m :=

(√
3
2 ln( 1

α )+
√

ln( 1
β )

1
2−τ

)2

;

(A,b) ← LPNm
k,τ ;

c := τm +
√

3( 1
2 − τ) ln( 1

α )m ;

if wt(As′ + b) ≤ c then
return Accept;

end
else

return Reject;
end

Algorithm 3. Test

Notice that by our definition of m in Test even an exponentially small choice
of α = β = 1

2k leads to only m = Θ
(

k
( 1
2−τ)2

)
samples, which is linear in k and

quadratic in
(

1
2 − τ

)−1. Thus, our hypothesis test can be carried out efficiently
even for exponentially small error probabilities.

Lemma 3 (Hypothesis Testing). For any α, β ∈ (0, 1], Test accepts the
correct LPN secret s with probability at least 1 − α, and rejects incorrect s′ with
probability at least 1 − β, using m samples in time and space Θ(mk).

Proof. Inputting the correct s to Test implies, that wt(As′ + b) ∼ Binm,τ . In
this case we have

Pr [wt(As′ + b) ≥ c]
Chernoff≤ exp

(
− 1

3 · min
(

c
τm − 1,

(
c

τm − 1
)2

)
· τm

)

≤ exp
(
− 1

3 · τ
1
2−τ

(
c

τm − 1
)2 · τm

)
!= α.

We need that the last term is equal to α, which leads to the threshold weight of

c := τm +

√

3(
1
2

− τ) ln
(

1
α

)
m,

as defined in Test. If s′ �= s, then wt(As′ + b) ∼ Binm, 12
. We want to upper

bound the acceptance probability in this case.

Pr [wt(As′ + b) ≤ c]
Chernoff≤ exp

(

−1
2

·
(

1 − 2c

m

)2

· m

2

)
!= β
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Using the c from above, the last equation holds, if

m :=

⎛

⎜
⎜
⎝

√
3
2 ln

(
1
α

)
+

√
ln

(
1
β

)

1
2 − τ

⎞

⎟
⎟
⎠

2

. �


Remark 2. As defined, Test takes m fresh samples on every invocation for
achieving independence. However, for efficiency reasons we will in practice use
the same m samples for Test on every invocation. Our experiments confirm
that the introduced dependencies do not noticeably affect the algorithms’ per-
formance and success probability.

Now that we are equipped with an efficient hypothesis test, we can carry
out the analysis of Gauss. For ease of notation, we use for the running time
soft-Theta notion Θ̃ to suppress factors that are polynomial in k.

Theorem 2. Gauss solves LPNk,τ with overwhelming success probability in time

and sample complexity Θ̃
(

1
(1−τ)k

)
using Θ(k2) memory.

Proof. We already noted that the outer repeat loop of Gauss takes an expected
number of 1

(1−τ)k to produce a batch of k error-free LPN samples. In particular,

Lemma 1 tells us that we will find an error-free batch after at most log2 k
(1−τ)k trials

with overwhelming probability.
The inner loop is executed an expected number of O(1) times until A ∈

GLk(F2). Here again, after at most O (
log2 k

)
iterations it is ensured that we

get an invertible A with overwhelming probability. This already proves the upper
bound on the running time.

Since, we only have to store k samples for A of length Θ(k) each, our memory
consumption is Θ(k2). In Test we do not necessarily have to store our m =
Θ(k) samples, since we can process them on the fly. However, in practice (see
Remark 2) it is useful to reserve for them another Θ(k2) memory cells.

Considering the success probability, Gauss solves LPNk,τ when it rejects all
false candidates s′, and accepts the secret key s (if it appears). The first event
happens by Lemma 3 with probability at least 1−β = (1−τ

2 )k for each incorrect
candidate by our choice in Gauss. The second event happens by Lemma 3 with
probability at least 1 − α = 1 − 2−k.

Let X be a random variable for the number of iterations of the outer loop
until we are for the first time in the error-free case. Then

Pr[Success] =
∞∑

i=1

Pr[Success | X = i] · Pr[X = i]

≥
∞∑

i=1

(1 − β)i−1 (1 − α) · (
1 − (1 − τ)k

)i−1
(1 − τ)k
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=
(1 − α) (1 − τ)k

1 − (1 − β) (1 − (1 − τ)k)

≥ (1 − α)(1 − τ)k

β + (1 − τ)k
= 1 − negl(k). �


Notice that Gauss’ sample complexity is as large as its running time by
Theorem 2. We will show in the following section that the sample complexity
can be decreased to poly(k) without affecting the run time. This will be the
starting point for further improvements.

4 LPN and Its Relation to Decoding

Let us slightly modify the Gauss algorithm from Sect. 3.2. Instead of taking in
each iteration a fresh batch of k LPN samples, we initially fix a large enough
pool of n samples. Then in each iteration we take k out of our pool of n samples,
with linearly independent ai. This results in the following Algorithm 4 that we
call Pooled Gauss.

Input: LPNk,τ oracle, τ
Output: secret s
n := k2 log2 k;
(A,b) ← LPNn

k,τ ;
repeat

repeat
I ← U(

(
[n]
k

)
);

until AI ∈ GLk(F2);
s′ := A−1

I bI ;
until Test(s′, τ, 1

2k , ( 1−τ
2 )k ) = Accept;

return s′;
Algorithm 4. Pooled Gauss

Before we analyze Pooled Gauss, we want to clarify its connection to the
decoding of random linear codes. Notice that we fix a sample matrix A ∈ F

n×k
2

with uniformly random entries. A can be considered a generator matrix of some
random linear [n, k] code C, which is the column span of C. The secret s ∈ F

k
2 is

a message and the label vector b ∈ F
n
2 is an erroneous encoding of s with some

error vector e ∈ F
n
2 having components ei ∼ Berτ . Thus, decoding the codeword

b to the original message s solves LPNk,τ .
Decoding such a codeword b can be done by finding an error-free index

set as in Pooled Gauss. In coding theory language, such an error-free index
set is called an information set. Thus, our Pooled Gauss algorithm is in this
language an information set decoding algorithm, namely it resembles the well-
known algorithm of Prange [28] from 1962. One should notice however that as
opposed to the decoding scenario, we can fix the length n of C ourselves.
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Theorem 3. Pooled Gauss solves LPNk,τ with overwhelming success probabil-

ity in time Θ̃
(

1
(1−τ)k

)
using Θ̃(k2) samples and Θ̃(k3) memory.

Proof. Pooled Gauss’ run time follows with the same reasoning as for Gauss’
running time. The outer loop will with overwhelming probability be executed
at most log2 k

(1−τ)k times, and all other parts can be performed in time O(k3). The
sample complexity follows by our choice of n in Pooled Gauss. Storing n samples
requires Θ̃(k3) memory.

For the success probability, we would first like to notice that the probability
for drawing k linearly independent vectors out of a pool even as small as n′ = 2k
without replacement can easily be lower-bounded by 1

4 . We will see, that the
pool in our algorithm will be even bigger than that in the following. Therefore,
by our choice of n and similar to the reasoning in the proof of Theorem 2, the
inner loop of Pooled Gauss will always find an invertible AI with overwhelming
probability. So we condition our further analysis on this event.

Let Y be the number of error-free samples in the pool of n vectors. On
expectation, we have E[Y ] = (1 − τ)n. By using a Chernoff bound, we can show
that we deviate by a factor of 1 − 1

k from the expectation with probability at
most

Pr[Y ≥ (1 − 1
k

)(1 − τ)n] ≥ 1 − e− (1−τ)n

2k2 .

By our choice of n = ω
(
k2 log k

)
the right hand side is 1 − k−ω(1), which is

overwhelming.
We call any pool with at least (1 − 1

k )(1 − τ)n error-free samples good. Con-
ditioned on the event G that our pool is good, we draw a batch of k error-free
samples with probability

p ≥
k−1∏

i=0

(1 − 1
k )(1 − τ)n − i

n
≥

(
(1 − 1

k )(1 − τ)n − k

n

)k

= (1 − 1
k

)k(1 − τ)k

(
1 − k

n(1 − 1
k )(1 − τ)

)k

= Ω
(
(1 − τ)k

)
.

Now, following the same arguments with p instead of (1 − τ)k as in Theorem 2
gives us an overwhelming probability of success. �


4.1 Low-Noise LPN

Some interesting cryptographic applications require that the LPN error
ei ∼ Berτ has an error term τ = τ(k) depending on k. E.g. public key encryption
seems to require some τ(k) as small as 1√

k
.

As a corollary from Theorem 3, we obtain that for any τ(k) that approaches 0
for k → ∞, our Pooled Gauss algorithm runs – up to polynomial factors – in
time eτ(k)k(1+o(1)). This implies that for τ(k) = o( 1

log k ) the run time of Pooled
Gauss asymptotically outperforms the run time of BKW from Theorem 1.
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Corollary 1 (Low Noise). Let τ(k) k→∞−→ 0. Pooled Gauss solves LPNk,τ(k)

with overwhelming success probability in time Θ̃
(
eτk(1+o(1))

)
using Θ̃(k2)

samples and Θ̃(k3) memory.

Proof. The run time statement follows by observing that
(

1
1 − τ

)k

=
(

1
(1 − τ)

1
τ

)τk

=
(

1
1
e − o(1)

)τk

= (e + o(1))τk = eτk(1+o(1)). �


For small noise τ(k) = Ω( 1√
k
), i.e. a case that covers the mentioned encryp-

tion application above, we can also remove the error term (1 + o(1)) in the
exponent, meaning that Pooled Gauss achieves – up to polynomial factors –
run time eτ(k)k.

Corollary 2 (Really Low Noise). Let τ(k) = 1
kc for c ≥ 1

2 . Pooled Gauss

solves LPNk,τ with overwhelming success probability in time Θ̃
(
ek1−c

)
, using

Θ̃(k2) samples and Θ̃(k3) memory.

Proof. Since ln( 1
1−x ) = x + x2

2 + O (
x3

)
for x ∈ [−1, 1) we get

(
1

1 − 1
kc

)k

= e
ln

(
1

1− 1
kc

)
k

= ek1−c+ k1−2c

2 +O(k1−3c).

We see, that for c ≥ 1
2 , the last term is in O

(
ek1−c

)
and for c < 1

2 it is not. �


4.2 Quantum Pooled Gauss

In a nutshell, Pooled Gauss runs until it finds an error-free batch of k LPN
samples from a pool of n samples. The expected number of error-free samples
in such a pool is (1 − τ)n. Hence, we search for an index set I in a total search
space of size

(
n
k

)
, in which we expect

(
(1−τ)n

k

)
good index sets. Therefore, we

expect

T =

(
n
k

)

(
(1−τ)n

k

)

iterations of Pooled Gauss until we hit an error-free batch. It is not hard to
show that T equals up to a polynomial the run time from Theorem 3.

The event of hitting an error-free batch can be modeled by the function
f :

(
[n]
k

) → {0, 1} that takes value f(I) = 1 iff I is an index set of k error-free
LPN samples. More formally, we can define

f :
(

[n]
k

)
→ {0, 1}, I �→

{
1A−1

I bI=s, AI ∈ GL(Fk
2)

0, AI /∈ GL(Fk
2)

. (2)

Here, the characteristic function 1A−1
I bI=s takes value 1 iff we compute the cor-

rect secret key s, which is equivalent to I being an index set of k error-free LPN
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samples. In our algorithm Pooled Gauss the evaluation of 1A−1
I bI=s is done by

Test, which may err with negligible probability. But assume for a moment that
we have a perfect instantiation of f .

Using f , the task of Pooled Gauss is to find an index set I∗ among all index
sets from

(
[n]
k

)
such that f(I∗) = 1, which can be done classically in expected

time

T =

(
n
k

)

|f−1(1)| .

We can now speed up Pooled Gauss quantumly by applying Boyer et al.’s [10]
version of Grover search [17], which results in run time

√
T . It is worth to point

out that Boyer et al.’s algorithm works even in our case, where we do not know
the number |f−1(1)| of error-free index sets. All that the algorithm requires is
oracle access to the function f , for which we show that this oracle access can be
perfectly simulated by Test. This results in Algorithm 5 that we call Quantum
Pooled Gauss.

Input: LPNk,τ oracle, τ
Output: secret s
n := k2 log2 k;
(A,b) ← LPNn

k,τ ;
Define

f̃ :
(
[n]
k

) → {0, 1}, I �→
{
Test(A−1

I bI , τ,
(
n
k

)−2
,
(
n
k

)−2), AI ∈ GL(Fk
2)

0, AI /∈ GL(Fk
2)

;

I∗ ← Grover(f̃);
return s = A−1

I∗ bI∗ ;
Algorithm 5. Quantum Pooled Gauss

Theorem 4. Quantum Pooled Gauss quantumly solves LPNk,τ with overwhel-

ming probability in time Θ̃

((
1

1−τ

) k
2
)
, using Θ̃(k2) queries and Θ̃(k3) memory.

Proof. According to [10], Grover succeeds with overwhelming success proba-
bility. Hence, the proof of Theorem3 essentially carries over to the quantum
setting.

However, it remains to show that we can safely replace oracle access to the
function f as defined in Eq. (2) by Test, which in turn defines some function

f̃ :
(

[n]
k

)
→ {0, 1}, I �→

{
Test(A−1

I bI , τ,
(
n
k

)−2
,
(
n
k

)−2), AI ∈ GL(Fk
2)

0, AI /∈ GL(Fk
2)

.

We will show that by our choice of α = β =
(
n
k

)−2 with overwhelming proba-
bility f(I) = ˜f(I) for all I, i.e. we perfectly simulate f . Let us define a random
variable X that counts the number of inputs in which f and f̃ disagree, i.e.
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X :=
∣
∣
∣
∣{I ∈

(
[n]
k

)
| f̃(I) �= f(I)}

∣
∣
∣
∣ .

Notice that X ∼ Bin(n
k),≤α, since by Lemma 3 Test errs with probability (at

most) α = β for all of the
(
n
k

)
sets I. We obtain

Pr[f̃ = f ] = Pr[X = 0] ≥
(

1 − 1
(
n
k

)2

)(n
k)

≥ 1 − 1
(
n
k

) ,

where we use Bernoulli’s inequality for the last step. Since we chose n = ω(k2),
we have

(
n
k

) ≥ (
n
k

)k = ω(kk). This implies Pr[f̃ = f ] = 1 − negl(k), as
required. �

Remark 3. Notice that our slight modification from Gauss to Pooled Gauss
enables the use of quantum techniques. While both algorithms Gauss and Pooled
Gauss achieve the same running time T , Gauss also requires (roughly) T samples.
But any algorithm with sample complexity T has automatically run time lower
bound Ω(T ), since our LPN oracle is by Definition 1 classical and each oracle
access costs Ω(1).

So while there is good motivation to reduce the number of samples, it is
somewhat unsatisfactory from a cryptanalysts’ point of view to make only limited
use of an LPN oracle by restricting to a polynomial number of samples. In the
next section, we will show how more extensive queries give rise to a better suited
pool of vectors that will further speed up Pooled Gauss.

5 Decoding LPN with Preprocessing

Our idea is to add some preprocessing to Pooled Gauss that produces LPN
samples with ai of smaller dimension k′ by zeroing some columns in the A-
matrix. This may come at the cost of slightly increasing the noise parameter τ .
This idea gives rise to the following meta algorithm Dim-Decode.

Input: LPNk,τ oracle, τ
Output: secret s
(1) Modify : Use a large number of samples to produce a small number of
dimension-reduced samples, resulting in a new LPNk′,τ ′ instance with
k′ < k and τ ′ ≥ τ ;
(2) Decode: Use a decoding algorithm to solve LPNk′,τ ′ , e.g. use Pooled
Gauss;
(3) Complete: Recover the remaining coordinates of s, e.g. via
enumeration or by iterating (1) and (2) accordingly;

Algorithm 6. Dim-Decode

In the following, we give different instantiations of Dim-Decode. We start by
looking at techniques for the Modify step for dimension reduction.
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5.1 Improvements Using only Polynomial Memory

Our first simple technique is to keep only those LPN samples (a, b) that have
zeros in the last k − k′ coordinates of a. We will balance the running time for
steps Modify and Decode by choosing k′ accordingly. This results in Algorithm 7
that we call Well-Pooled Gauss.

Notice that by our choice of k′, Well-Pooled Gauss reduces the dimension
to a 1

1+log( 1
1−τ )

-fraction of k. Since τ ∈ [0, 1
2 ) we have

1
1 + log( 1

1−τ )
∈ (

1
2
, 1],

meaning that k′ ≥ k
2 or in other words that Pooled Gauss in its first run recovers

at least the first half of the bits of s, and in its second run the remaining half.

Input: LPNk,τ oracle, τ
Output: secret s
k′ := 1

1+log( 1
1−τ

)
k;

Set parameters n, m as in Pooled Gauss for an LPNk′,τ instance;
(1) Modify
repeat

(a, b) ← LPNk,τ ;

if a{k′+1,...,k} = 0k−k′
then

Add (a{1,...,k′}, b) to sample pool;
end

until pool contains more than n + m elements;
(2) Decode
(s1, . . . , sk′) ←Run Pooled Gauss on the pool containing the first n LPNk′,τ
samples, while taking the remaining m samples for Test;
(3) Complete
(A,b) ← LPNn+m

k,τ . Reduce A’s dimension to k − k′ using (s1, . . . , sk′);
(sk′+1, . . . , sk) ← Run Pooled Gauss on the pool containing the first n
LPNk−k′,τ samples, while taking the remaining m samples for Test;
return s;

Algorithm 7. Well-Pooled Gauss

Hence the run time of Pooled Gauss’ first application dominates the run
time of its second application. Since Pooled Gauss’ run time depends exponen-
tially on k, we can gain up to a square root in the running time when we reduce
the dimension up to k

2 .

Theorem 5 (Well-Pooled Gauss). Well-Pooled Gauss solves LPNk,τ with
overwhelming probability in time and query complexity

Θ̃

((
1

(1 − τ)k

) 1

1+log( 1
1−τ )

)

using Θ̃(k3) memory.
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Proof. Pooled Gauss’s first application runs in time T := Θ̃
(

1
(1−τ)k′

)
, which is

the claimed total running time. Furthermore, by Lemma 1 with overwhelming
probability the run time of the Modify step for finding n + m samples with last
k − k′ 0-coordinates is bounded by

2k−k′ (
n + m + log2 k

)
= Θ̃

(
2k−k′)

= Θ̃

(

2

(
1− 1

1+log( 1
1−τ

)

)
k
)

= Θ̃

⎛

⎝2

log( 1
1−τ )

1+log( 1
1−τ )

k

⎞

⎠ = T. �


5.2 Quantum Improvements with Polynomial Memory

In the quantum version of Well-Pooled Gauss, called Quantum Well-Pooled
Gauss, we simply replace in Algorithm 7 the Pooled Gauss procedure by its
quantum version. Notice that by Remark 3 we cannot provide a quantum version
of our Modify step. So we cannot expect to gain another full square root by going
to the quantum version of Well-Pooled Gauss.

The following theorem shows that in Quantum Well-Pooled Gauss one
should take the parameter choice k′ := 2

2+log( 1
1−τ )k > 2

3k. The Quantum Pooled

Gauss routine then runs in time

T := Θ̃

⎛

⎝
(

1
1 − τ

) k′
2

⎞

⎠ .

Hence in comparison with Well-Pooled Gauss (Theorem 5) we gain at most an
additional factor of 2

3 in the exponent.

Theorem 6 (Quantum Well-Pooled Gauss). Quantum Well-Pooled Gauss

quantumly solves LPNk,τ with overwhelming probability in time and query com-
plexity

Θ̃

((
1

(1 − τ)k

) 1

2+log( 1
1−τ )

)

,

using Θ̃(k3) space.

Proof. Analogous to the proof of Well-Pooled Gauss’ run time (Theorem 5),
in its quantum version the run time of the first Quantum Pooled Gauss routine
is T = Θ̃(( 1

1−τ )
k′
2 ), which is the claimed total run time. T dominates the run

time of the second call for Quantum Pooled Gauss, since k′ > 2
3k. T also upper

bounds the run time of the Modify step, since by Lemma 1 with overwhelming
probability for obtaining n + m of the desired form it takes at most time
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2k−k′ (
n + m + log2 k

)
= Θ̃(2k−k′

) = Θ̃

⎛

⎝2

log( 1
1−τ )

2+log( 1
1−τ )

k

⎞

⎠ = T. �


5.3 Using Memory – Building a Bridge Towards BKW

Up to now, for instantiating Algorithm6 in Well Pooled Gauss we made only
somewhat naive use of our LPN oracle by storing only those vectors in the stream
of all oracle answers that were already dimension-reduced. The reason for this
was our restriction to polynomial memory consumption in order to achieve highly
efficient algorithms in practice.

Optimally, we could tune our LPN algorithm by the memory that is available
on our machine. Let us say, we have memory M and we are looking for the fastest
algorithm that uses at most M memory cells. In this scenario, we are free to store
more LPN samples and to add them until they provide us dimension-reduced
samples, at the cost of a growing error τ ′ > τ determined by the Piling-up
Lemma (Lemma 2).

Notice that this is exactly the strategy of BKW. But as opposed to the BKW
algorithm, which basically reduces the dimension k all the way down to 1, we
allow – due to our constraint memory M – only limited dimension reduction
down to some k′. Since afterwards, we will in Algorithm 6 resort again to a
Decoding step, the optimal choice of k′ is not determined by the size of M alone,
but also by the growth of the error τ ′ that our decoding procedure can handle.

More precisely, the following Algorithm8, called Hybrid, in a first step uses
the naive strategy of Well-Pooled Gauss to decrease the dimension by k1, while
leaving τ unchanged. Then in a second step it uses c BKW-iterations on blocks
of size d to further reduce the dimension by k2, thereby increasing to error τ ′

which grows double-exponentially in c.

Hybrid instantiated with only polynomial memory leaves out all BKW-
iterations and boils down to Well-Pooled Gauss. Hybrid instantiated with suf-
ficiently memory achieves BKW’s time complexity 2k/ log( k

τ )(1+o(1)). Thus, Hybrid
provides a perfect interpolation between both algorithms.

Theorem 7 (Hybrid). Using Õ(M) space, Hybrid solves LPNk,τ with over-
whelming probability in time and query complexity Õ(M · 2k1), where k1 is as
defined in Hybrid.

For M = poly(k) we get the same time, memory and sample complexity as
in Well-Pooled Gauss (Theorem5).

Choosing M = 2k/ log( k
τ )(1+o(1)) gives us the complexities of BKW (Theorem1).

Proof. For the Decoding step, we need m = Θ̃
(

1
( 1
2−τ ′)2

)
= Θ̃

(
1

(1−2τ)2c+1

)

samples for the hypothesis test and n = poly(k) samples for the pool at the
end. That’s why we initially need to feed the BKW step N = m + n + c2d =

Θ̃

(
2max

(
k2
c ,2c log( 1

(1−2τ)2
)
))

samples. As in Well-Pooled Gauss we can create
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Input: LPNk,τ oracle, τ , memory M
Output: secret s
Choose ε > 0;

c := max
(
0, log

(
1

τ1−εkε log(M) log( k
τ
)
))

;

Choose k2 ≤ c k−1

log( k
τ )

s.t. max
(

k2
c

, 2c log( 1
(1−2τ)2

)
)

≤ log (M);

d := k2
c

;

τ ′ = 1
2

− 1
2
(1 − 2τ)2

c

;

k1 :=
log
(

1
1−τ′

)
(k−k2)+2c log

(
1

(1−2τ)2

)
−log M

1+log
(

1
1−τ′

) ;

k′ := k − k1 − k2;
Set parameters n, m as in Pooled Gauss for an LPNk′,τ ′ instance;
(1) Modify
repeat

(a, �) ← LPNk,τ ;

if a{k−k1+1,...,k} = 0k1 then
Add (a1,...,k−k1 , b) to sample pool;

end

until pool contains more than n + m + c2d samples;
for i = 1, . . . , c do

foreach j ∈ F
d
2 do

Pick a row ak of A with suffix j|0(i−1)d (if any); add ak to all the other
rows of A with suffix j|0(i−1)d, also add corresponding labels;

Remove the kth row from A and b;

end

end
(2) Decode
(s1, . . . , sk′) ←Run Pooled Gauss on the pool containing the first n LPNk′,τ ′

samples, while taking the remaining m samples for Test;
(3) Complete
While there are still unknown bits of s go to (1), using the known bits of s to
create smaller dimension samples;
return s;

Algorithm 8. Hybrid

these samples in time Θ̃(N · 2k1). Therefore with overwhelming probability the

Modify and Decoding steps in Hybrid take time Θ̃

(
N · 2k1 + N +

(
1

1−τ ′

)k′

m

)

= Θ̃

(
2k1+max

(
k2
c ,2c log( 1

(1−2τ)2
)
)

+ 2log
(

1
1−τ′

)
(k−k1−k2)+2c log

(
1

(1−2τ)2

))
,

using Θ̃
(
N · 2k1

)
samples and Θ̃ (N) memory. Our choice of k1 in Hybrid bal-

ances both run time summands. Our choice of k2 then gives us the stated time,
sample and memory complexity. Notice that the Complete step takes less time,
queries and memory, since here we solve smaller LPN instances.
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It remains to show that Hybrid contains as special cases Well-Pooled Gauss
and BKW. For some ε > 0, let us define similar to Hybrid

c(k, τ,M) := max
(

0, log
(

1
τ1−εkε

log (M) log
(

k

τ

)))
.

For the choice M = poly(k) we get c = o(1) and k2 = o(1), which means that we do
not perform any BKW steps. Thus, Hybrid is identical to Well-Pooled Gauss. For
the choice M = 2(1+o(1))k/ log( k

τ ) we obtain c = (1−ε) log(k
τ )+o(1), k2 = k−o(1)

and k1 = o(1), giving us the complexities of BKW from Theorem 1. �


5.4 Using Memory – Advanced Decoding Algorithms

In the previous Sect. 5.3 we provided a time-memory tradeoff for Algorithm 6
Dim-Decode by looking at the Modify step only. In this section, we will focus
on the Decode step. So far, we only used the quite naive Gauss decoding proce-
dure, which resembles Prange’s information set decoding algorithm [28]. How-
ever, within the last years there has been significant progress in information set
decoding, starting with Ball-Collision Decoding [6], then followed by a series
of papers, MMT [26], BJMM [4] and May-Ozerov [27], using the so-called represen-
tation technique.

In principle, one can freely choose the preferred decoding procedure in
Decode. Our starting point was a simplified version of BJMM, but then on opti-
mizing the BJMM parameters we found out that for the LPN instances under
consideration (see Sect. 6), MMT performs actually best. Since BJMM offers asymp-
totically a better run time than MMT, the situation should however change for
(very) large LPN dimension k. We also did not consider the Nearest Neigh-
bor algorithm May-Ozerov, since its large polynomial run time factor currently
prevents speedups in the parameter ranges that we consider.

Instantiating Dim-Decode with MMT decoding results in Algorithm9, called
Well-Pooled MMT.

Input: LPNk,τ oracle, τ
Output: secret s
Set parameters n,m as in Pooled Gauss for a LPNk′,τ instance;
(1) Modify
Use the same procedure as in Well-Pooled Gauss (Algorithm 7).
(2) Decode
(s1, . . . , sk′) ←Run MMT on the pool containing the first n LPNk′,τ
samples, while taking the remaining m samples for Test;
(3) Complete
(A,b) ← LPNn+m

k,τ . Reduce A’s dimension to k − k′ using (s1, . . . , sk′);
(sk′+1, . . . , sk) ← Run MMT on the pool containing the first n LPNk−k′,τ
samples, while taking the remaining m samples for Test;
return s;

Algorithm 9. Well-Pooled MMT
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Unfortunately, [26] does not provide a closed run time formula for MMT. There-
fore, we cannot give a theorem for Well-Pooled MMT that provides a precise
bound for the time complexity as a function of k, τ as in the previous sections.
However, we are able to optimize the run time of Well-Pooled MMT for every
fixed τ as a function of k.

Let us conjecture that Well-Pooled MMT’s time complexity is 2c(τ)k. Recall
from Theorem 5 that Well-Pooled Gauss’s time complexity is

Θ̃

(
2

log( 1
(1−τ) )

1+log( 1
1−τ )

k
)

= Θ̃
(
2c′(t)k

)
.

We can plot both functions c(τ) and c′(τ) as a function of τ . The following
graph in Fig. 1 visualizes that the run time exponent c(τ) of Well-Pooled MMT
is smaller than the run time exponent c′(τ) of Well-Pooled Gauss for every
τ ∈ [0, 1

2 ), as one would expect. The largest gap appears at τ = 1
4 , where

Well-Pooled MMT achieves time 20.282k, whereas Well-Pooled Gauss requires
time 20.293k.

0 0.5
0

0.5

τ

lo
g
2
k
(T

im
e)

Well-Pooled Gauss
Well-Pooled MMT

Fig. 1. Well-Pooled Gauss and Well-Pooled MMT

Remark 4. Since we do not know how to express the running time of MMT as a
closed formula, a function that approximates c(τ) reasonably well is

log
(

1
1− 7

6 τ

)

log
(

12
5

)
+ log

(
1

1− 7
6 τ

) .
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It is worth noticing that MMT, as opposed to Prange, consumes exponential
memory. However, the memory consumption is still quite moderate. For the LPN
instances that we considered the memory never exceeded 2

c(τ)k
2 .

Quantumly we can also speed up our Decode step. Naively, i.e. just using
Grover search, MMT collapses to Quantum Gauss. But using quantum random
walks, one obtains a Quantum Well-Pooled MMT algorithm, as recently proposed
by Kachigar and Tillich [22], that slightly outperforms Quantum Gauss.

6 Classical and Quantum Bit Security Estimates

In LPN cryptanalysis, it is currently practice to give estimated bit complexities,
that is the binary logarithm of the running time, for newly developed algorithms
in table form. In order to allow some comparison with existing work and to
give an impression how our algorithms might perform for LPN parameters of
cryptographic interest, we also give tables in the following. However, at the
same time we want to express a clear warning that all LPN tables should be
taken with care, since the given bit security levels might over- or underestimate
the real performance in practice.

Therefore, we also provide experimental results in Sect. 7 on medium-size
LPN parameter, which we extrapolate to cryptographic size by our asymptotic
formulas. In our opinion, this is the only reliable way of predicting key sizes with
good accuracy. Nevertheless, experimental results might not be possible even for
medium-size parameters in some cases, e.g. when an algorithm consumes large
memory or when we predict quantum running-times. Hence, performance tables
are in these cases unavoidable.

Since we care about practical memory consumption in this work, we enforce
upper limits on the available memory for the considered algorithms. We first
consider 260 bits, since that is more memory than the biggest RAM we are
aware of. Second, we consider a bound of 280 bits for an extra safety margin.

For these upper bounds on the memory M , we compute the bit complexities
of our algorithms and compare them to the Coded-BKW [18] table from Bogos
et al. [8].

The formulas we used for computing the bit complexities are available at
https://github.com/Memphisd/LPN-decoded. In these formulas, we tried to
take any polynomial factors into account. As in [8], the cost of the Complete
step is not taken into account in the tables, but the cost of Complete would not
significantly change the data.

One can see in Table 2 that for the chosen LPN parameters only 7 parameter
sets can be solved with Coded-BKW within the memory limit of 260. Using instead
280 bits of memory as in Table 3, Coded-BKW can be used or a larger range of
instances, as one would expect.

Let us compare this to Tables 4 and 5, where we used either Hybrid,
marked as bold face entries, or Well-Pooled MMT (WP MMT). Interestingly, most
instances are optimally solved with Well-Pooled MMT using always less than 230

bits of memory. For small memory, Hybrid collapses to Well-Pooled Gauss.

https://github.com/Memphisd/LPN-decoded
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Table 2. Coded-BKW [8], M = 260

τ k

256 384 448 512 576 640 768 1280

1√
k

44 55 59 - - - - -

0.05 42 54 59 - - - - -

0.125 52 - - - - - - -

0.25 - - - - - - - -

0.4 - - - - - - - -

Table 3. Coded-BKW [8], M = 280

τ k

256 384 448 512 576 640 768 1280

1√
k

44 55 59 64 70 73 - -

0.05 42 54 59 65 72 78 - -

0.125 52 67 74 - - - - -

0.25 70 - - - - - - -

0.4 - - - - - - - -

Table 4. WP MMT or Hybrid, M = 260

τ k

256 384 448 512 576 640 768 1280

1√
k

43 49 51 52 54 56 59 70

0.05 39 48 52 56 60 64 72 108

0.125 58 81 91 102 113 123 144 230

0.25 65 124 153 172 192 211 250 406

0.4 85 153 186 219 251 286 357 584

Table 5. WP MMT or Hybrid, M = 280

τ k

256 384 448 512 576 640 768 1280

1√
k

43 49 51 52 54 56 59 70

0.05 39 48 52 56 60 64 72 108

0.125 58 77 91 102 113 123 144 230

0.25 65 88 119 151 184 211 250 406

0.4 76 122 154 186 219 251 318 576

Table 6. Quantum Hybrid, M = 260

τ k

256 384 448 512 576 640 768 1280

1√
k

33 37 39 40 42 43 46 54

0.05 30 37 40 42 45 48 53 73

0.125 56 57 63 69 75 81 93 140

0.25 63 89 101 112 123 135 158 248

0.4 76 121 144 163 181 198 234 373

Table 7. Quantum Hybrid, M = 280

τ k

256 384 448 512 576 640 768 1280

1√
k

33 37 39 40 42 43 46 54

0.05 30 37 40 42 45 48 53 73

0.125 56 57 63 69 75 81 93 140

0.25 63 83 96 112 123 135 158 248

0.4 73 100 122 144 165 187 232 373

However, Well-Pooled MMT outperforms Well-Pooled Gauss for the given
instances. Interestingly, most instances – especially those of cryptographic inter-
est – are solved via Well-Pooled MMT, that is with pure decoding and without
using the given memory.

Note that according to our predictions, 80-bit security on classical computers
for LPN 1√

k
,k can only be achieved for k ≥ 2048. This makes current applications

of LPN for encryption quite inefficient.
Coded-BKW shows its strength for errors around 1

8 . However, the same tech-
niques could be used in the Modify step of our Hybrid algorithm, which would
result in a similar running time.

Tables 6 and 7 finally state the quantum bit security levels when tak-
ing Quantum Well-Pooled Gauss inside Hybrid. Here again, the bold marked
entries are those where the optimization suggests to use BKW steps. In com-
parison to the classical case, these are even less instances. We see that the
prominent cryptographic choice LPN512, 18

offers only 69-bit security on quantum
computers.
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Table 8. τ = 1√
k

k Classic Quantum

6100 128 91

15000 192 127

26500 256 158

2200 86 64

4300 113 80

15400 199 128

Table 9. τ = 1
8

k Classic Quantum

670 128 84

1060 192 120

1410 256 152

460 93 64

630 121 80

1150 208 128

Table 10. τ = 1
4

k Classic Quantum

470 128 105

610 192 128

790 256 162

260 66 64

370 86 80

610 192 128

Choice of k for security levels 128, 192, 256 (classic) and 64, 80, 128 (quantum)

NIST’s Post-Quantum Call. NIST [1] asks for classical security levels of
128, 192, 256 bit and quantum security levels of 64, 80, 128 bit. Tables 8, 9 and
10 define the minimal k that fulfill these levels for τ taking values 1√

k
, 1

8 , 1
4 ,

respectively. The memory is constrained to M = 280 bits.

7 Experiments

All our implementations are available via
https://github.com/Memphisd/LPN-decoded.

Our experiments were done on a server with four 16-core-processors, allowing
a parallelization of 64 threads, using 256 GB < 241 bit RAM.

We executed Well-Pooled Gauss and Well-Pooled MMT for τ = 1
8 , 1

4 and
various k. In order to get reliable run times for τ = 1

8 and k < 170, respectively
τ = 1

4 and k < 100, we averaged the run time over 30 instances. For larger k, we
solved only a single instance.

The results for τ = 1
8 and τ = 1

4 are shown in Figs. 2 and 3, respectively.
Here we plot the logarithm of the running time in msec as a function of k. Hence
negative values mean that it takes only a fraction of a msec to solve the instance.
For Well-Pooled Gauss we plotted as a comparison the asymptotic line with
slope

log2(
1

1−τ )

1 + log2(
1

1−τ )
,

which follows from Theorem 5. For Well-Pooled MMT we numerically computed
the slopes 0.177 and 0.381 for τ = 1

8 and τ = 1
4 , respectively, similar to the

computation in Fig. 1.
As can be seen in Figs. 2 and 3, as expected the experiments take slightly

longer than the asymptotic prediction, since the asymptotic hides polynomial
factors. But especially for Well-Pooled MMT large values of k are close to the
asymptotic line, which means that the asymptotic quite accurately predicts the
running time.

Since Well-Pooled MMT’s run time includes quite large polynomials factors,
due to MMT, we expected that it outperforms Well-Pooled Gauss only for large

https://github.com/Memphisd/LPN-decoded
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Fig. 2. Experimental results for τ = 1
8
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Fig. 3. Experimental results for τ = 1
4

values of k. To our surprise, the break even point for both algorithms was only
k = 78 for τ = 1

8 , and k = 9 for τ = 1
4 . Hence, for these error rates τ one

should always prefer Well-Pooled MMT over Well-Pooled Gauss even for rela-
tively small sizes of k.

Largest instances. The largest instances that we solved with Well-Pooled
MMT were k = 243, τ = 1

8 and k = 135, τ = 1
4 . Let us provide more details for

these computations.
For k = 243, τ = 1

8 , we first computed in almost 7 days a pool of samples
(ai, bi) where the ai had their last 35 coordinates equal to zero. The resulting
LPN208, 18

was solved with MMT in 8 days, resulting in a total of 15 days. This
recovers already 208 coordinates of s. The Complete step in Well-Pooled MMT
that recovers the remaining 35 coordinates took less than a second.
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For k = 135, τ = 1
4 , the preprocessing step on again 35 coordinates took

almost 6 days, the decoding step 8 days and Complete less than a second, result-
ing in a total of 14 days. We summarize the results in Table 11.

Table 11. Solved instances

Algorithm k τ Pool gen. BKW Decoding Total

Well-Pooled MMT 243 0.125 6.73 d - 8.34 d 15.07 d

Well-Pooled MMT 135 0.25 5.65 d - 8.19 d 13.84 d

Hybrid 135 0.25 2.21 d 1.72 h 3.41 d 5.69 d

Well-Pooled Gauss 113 0.25 0.77 d - 1.21 d 1.98 d

Well-Pooled MMT 113 0.25 1.64 h - 2.18 h 3.82 h

Hybrid 113 0.25 0.13 h 0.98 h 0.57 h 1.68 h

Extrapolation to k = 512. Let T (k, τ) be the time to solve an LPNk,τ instance
via Well-Pooled MMT as computed numerically in Fig. 1. Then it would take us a
factor of T (512, 18 )

T (243, 18 )
≈ 241 longer to break an LPN512, 18

than an LPN243, 18
instance.

For τ = 1
4 we would even need an additional factor of T (512, 14 )

T (135, 14 )
≈ 2113.

To make these kind of statements more trustworthy, we should check, if the
numerically computed running times resemble the experimental data. Therefore
consider the following: It took about 26.4 times as long to solve LPN135, 14

than
solving LPN113, 14

in the experiments. Using formulas, there is a gap of 26 between
these instances, which is close to what we actually measured.

Hence, both instances seem to provide sufficient classical security, but also
recall from Sect. 6 that LPN512, 18

only offers 69-bit quantum security.

Hybrid implementation. We solved LPN113, 14
in less than 2 h, which in com-

parison took for Well-Pooled Gauss around 2 days and for Well-Pooled MMT
still almost 4 h. We were also able to solve LPN135, 14

using Hybrid in 5.69 days.
In comparison, solving this instance with Well-Pooled MMT took 13.84 days.

Let us provide some more details of both computations, starting with
LPN113, 14

. We first computed a pool of 233 samples with k1 = 3 bits fixed in
8 min. BKW then eliminated k2 = 93 bit in c = 3 iterations with block-size d = 31
in 56 min. This gave an LPN17, 255512

instance, which Gauss solved in 9 min.
Thus, we recovered the first 17 bits of s, which we then eliminated from our

pool, resulting in an LPN93, 14
instance. In a second iteration, BKW eliminated

k2 = 78 bit in c = 3 iterations with block-size d = 26 in 3 min. The resulting
LPN15, 255512

instance was solved by Gauss in 6 min.
After eliminating these further 15 bits from our pool, we are left with an

LPN78, 14
instance, which was directly solved by MMT in another 19 min. The

remaining k1 = 3 bits were brute-forced in 125 msec.
Thus, in total it took us only 101 min to solve LPN113, 14

with Hybrid.
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For solving LPN135, 14
, we computed again a pool of 233 samples with k1 =

10 coordinates fixed in 1.47 days. BKW then eliminated k2 = 99 bits in c = 3
iterations taking 36 min, which resulted in 221.4 samples with k1 + k2 = 109
coordinates fixed.

This amount of samples is not yet sufficient to achieve a good success prob-
ability for solving the remaining LPN26, 255512

by Gauss. In order to increase the
input samples to Gauss we computed a new pool of 232 samples with k1 = 10
coordinates fixed in 0.74 days, and exchanged half of the samples of the bigger
pool that we compute in the beginning. This altered pool of size 233 was then
used as input to BKW to eliminate again k2 = 99 bits in c = 3 iterations in
another 35 min. This allowed us to double the size of the input pool for Gauss
while increasing the runtime only by a factor of ≈ 1.5.

After acquiring enough input samples, solving LPN26, 255512
by Gauss took

3.12 days. The remaining LPN109, 14
instance could be solved by another iteration

and subsequent execution of MMT in less then 7 h. In total, solving LPN135, 14
took

us 5.69 days with Hybrid.
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