
Functional Graph Revisited:
Updates on (Second) Preimage Attacks

on Hash Combiners

Zhenzhen Bao1,2, Lei Wang1,3,4(B), Jian Guo2, and Dawu Gu1

1 Shanghai Jiao Tong University, Shanghai, China
baozhenzhen10@gmail.com, {wanglei hb,dwgu}@sjtu.edu.cn

2 Nanyang Technological University, Singapore, Singapore
guojian@ntu.edu.sg

3 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy

of Sciences, Beijing, China
4 Westone Cryptologic Research Center, Beijing, China

Abstract. This paper studies functional-graph-based (second) preim-
age attacks against hash combiners. By exploiting more properties of
functional graph, we find an improved preimage attack against the XOR
combiner with a complexity of 25n/8, while the previous best-known
complexity is 22n/3. Moreover, we find the first generic second-preimage
attack on Zipper hash with an optimal complexity of 23n/5.

Keywords: Hash combiner · Functional graph · XOR combiner · Zipper
hash · (Second) preimage attack

1 Introduction

A cryptographic hash function H : {0, 1}∗ → {0, 1}n maps arbitrarily long
messages to n-bit digests. It is a fundamental primitive in modern cryptography
and has been widely utilized in various cryptosystems. There are three basic
security requirements on a hash function H:

• Collision Resistance. It must be computationally infeasible to find two
distinct messages M and M ′ such that H(M) = H(M ′);

• Second Preimage Resistance. Given a message M , it must be computa-
tionally infeasible to find a message M ′ such that M ′ �= M and H(M ′) =
H(M);

• Preimage Resistance. Given a target hash digest V , it must be computa-
tionally infeasible to find a message M such that H(M) = V .

As generic birthday attack and the brute-force attack require complexities of 2n/2

and 2n to find a collision and a (second) preimage, respectively. It is expected
that a secure hash function should provide the same security level of resistance.
c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part II, LNCS 10402, pp. 404–427, 2017.
DOI: 10.1007/978-3-319-63715-0 14

Functional Graph Revisited 405

Among various approaches of designing a hash function, one is to build a
hash combiner from two (or more) hash functions in order to achieve security
amplification, that is the hash combiner has higher bound of security resistance
than its underlying hash functions, or to achieve security robustness, that is
the hash combiner is secure as long as (at least) any one of its underlying hash
functions is secure. In particular, hash combiners were used in practice, e.g., in
SSL [14] and TLS [2].

Concatenation combiner and XOR combiner are the two most classical hash
combiners. Using two (independent) hash functions H1 and H2, the former con-
catenates their outputs: H1(M)‖H2(M), and the latter XORs their outputs:
H1(M) ⊕ H2(M). From a theoretical point of view, the concatenation combiner
is robust with respect to collision resistance, and the XOR combiner is robust
with respect to PRF and MAC in the black-box reduction model [22]. Advanced
security amplification combiners and robust multi-property combiners for hash
functions have been constructed [9–12]. More generally1, cryptographers have
also studied cascade constructions of two (or more) hash functions, that is to
compute H1 and H2 in a sequential order. Well-known examples are Hash Twice:
H2(H1(IV,M),M) and Zipper Hash [25]: H2(H1(IV,M),

←−
M), where

←−
M is the

reversed (block) order of original message M . We regard these cascade construc-
tions of hash functions as hash combiners in this paper.

This paper is mainly interested in combiners of iterative hash functions, in
particular following the Merkle-Damg̊ard construction [6,27]. An iterative hash
function splits a message M into blocks m1, . . ., m� of fixed length, and processes
these blocks by iterating a compression function h (or a series of compression
functions) over an internal state x with an initial constant denoted as IV . Finally,
the hash digest is computed by a finalization function with the bit length of M
denoted as |M | as input. The finalization function can be either the compression
function h or another independent function. For the simplicity of description,
we fix the finalization function as h in the rest of the paper, but we stress that
our attacks also work in a straight forward way for the case of an independent
finalization function. We mainly focus on narrow-pipe iterative hash functions,
i.e., every internal state xi (0 ≤ i ≤ �) have the same bit length with the output

IV hx0

n
/

m1

/ b

hx1

n
/

m2

/ b

· · ·· · ·
n
/

· · ·

hxl−1

n
/

ml

/ b

hxl

n
/

|M |

/ b

H(M)/

Fig. 1. Narrow-pipe Merkle-Damg̊ard hash function

1 Here we need to generalize the syntax of hash functions such that the initial value
is also regarded as an input parameter.

406 Z. Bao et al.

hash digest (Fig. 1).

x0 = IV xi+1 = h(xi,mi+1) H(M) = h(x�, |M |)

Combiners of iterative hash functions have received extensive analysis. Sev-
eral generic attacks have been devised on the above combiners, which can work
evenwith ideal compression functions, indicating the upper security bound of these
combiners. In a seminal paper [20], Joux presents a technique to find multi-collision
on an iterative hash function that has a complexity not much greater than that
of finding a single collision. Based on this technique, he finds collision and preim-
age attacks on the concatenation combiner with complexities much lower than
expected, and shows that it offers essentially the same security level with a single
n-bit hash function.2 In [24], Leurent and Wang propose an interchange structure
that can break the pairwise dependency between the internal states of two itera-
tive hash functions during computing a common message. Based on this structure,
they are able to compute the two hash functions independently, and then launch
a meet-in-the-middle preimage attack on the XOR combiner with a complexity
exponentially lower than 2n, more precisely Õ(25n/6).

For combiners of cascade constructions, towards the basic security require-
ments, a second preimage attack on Hash twice has been published by Andreeva
et al. in [3] with a complexity of O(2n/L), where L is the block length of the chal-
lenging message. On the other hand, there is no generic attack on Zipper hash
with respect to the basic security notions, which is highlighted as an open problem
in [24]. Besides, cryptographers have also analyzed the resistance of Hash twice
and Zipper hash with respect to other security notions such as multi-collision,
herding attack, etc. Examples include [3,17,19,28].

Very recently Dinur in [7] publishes new generic attacks on the concatena-
tion combiner and the XOR combiner. He finds a second preimage attack on the
concatenation combiner with a complexity of optimally 23n/4, and an improved
preimage attack on the XOR combiner with a complexity of optimally 22n/3. Dif-
ferently from previous attacks on combiners in [20,24] which are mainly based
on collision-finding techniques [20,21], one main technical contribution of Dinur’s
attacks is to exploit properties of functional graph of a random mapping. More
specifically, one can fix the message input as a constant, and then turn the com-
pression function h to an n-bit to n-bit random mapping. It has many interesting
properties, and has been extensively studied and utilized in cryptography. Exam-
ples include [8,15,16,23,29–32]. Besides using known functional graph properties,
Dinur finds an observation, which is essential for the complexity advantage of his
attacks on those combiners. The observation is (briefly) described as follows. For
two (independent) n-bit functional graphs defined by f1 and f2, let x̄ and ȳ be
two iterates of depth 2t in f1 and f2 respectively, that is x̄ and ȳ are images of 2t

iterations on f1 and f2 respectively. For a pair of random nodes xr and yr in the
functional graphs defined by f1 and f2 respectively, compute a chain by iteratively
applying f1 and f2 to update xr and yr until a maximum length of 2t. The prob-
ability of xr and yr being iteratively updated to x̄ and ȳ at a common distance is
2 In fact, Joux’s attacks require that only one hash function is iterative and narrow-pipe.

Functional Graph Revisited 407

23t−2n. By trying 22n−3t pairs of random xr and yr, one pair will be found that
reaches x̄ and ȳ, respectively, at a common distance.3

Lines of research of combining iterative hash functions also include the
study of hash combiners with weak compression functions, i.e., the attacker is
given additional interfaces to receive random preimages of the compression func-
tions [5,18,19,25], and analysis of combiners of dedicated hash functions [26].
In particular, the concatenation combiner, the XOR combiner and Zipper hash
with weak compression functions have been proven in [18,25] to be indiffer-
entiable from a random oracle with an n/2-bit security, indicating the lower
security bound regarding basic security notions for these combiners.

1.1 Our Contributions

This paper investigates functional graph of a random mapping, and based on its
properties evaluates the security of hash combiners.

We find an improved preimage attack on the XOR combiner, by exploiting
the cyclic nodes in a functional graph. One main step in previous preimage
attack on the XOR combiner is to search for a pair of nodes, x in functional
graph of a function f1 and y in functional graph of another function f2, which
reach to a pair of predefined nodes x̄ of f1 and ȳ of f2 at a common distance.
We find that the probability of a random pair xr and yr reaching to x̄ and ȳ
at a common distance can be greatly amplified, by exploiting some property of
cyclic nodes as follows. When applying a function f to update a cyclic node in
its functional graph iteratively, the cyclic node loops along the cycle and goes
back to itself after a number of multi-cycle-length function calls. This property
of cyclic nodes turns out to be very beneficial for finding a pair (x, y) that reach
to (x̄, ȳ) at a common distance. More specifically, x̄ and ȳ are predefined to be
cyclic nodes within the largest components in the functional graphs of f1 and f2
respectively. Suppose a random pair of xr and yr reach to x̄ and ȳ at distances
of d1 and d2 respectively. We can try correcting the distance bias d1 − d2 �= 0,
by letting x̄ and ȳ loop along their cycles. Note these two cycles have different
lengths with an overwhelming probability, and their length are denoted as L1

and L2 respectively. More precisely, we search for a pair of integers i and j such
that d1 + i · L1 = d2 + j · L2. Thus, the probability of a random pair (xr, yr)
being the expected (x, y) is amplified by #C times, where #C is the maximum
number of cycle loops that can be added. It contributes to improving preimage
attacks on the XOR combiner. The complexity of our attack is 25n/8, which is
2n/24 times lower than previous best-known complexity of 22n/3 in [7]. We point
out that the preimage message of our attack has a length of at least 2n/2 blocks,
since the cycle length of an n-bit functional graph is Θ(2n/2).

Moreover, we propose functional-graph-based second preimage attacks on
Zipper hash. Differently from the XOR combiner and the concatenation com-
biner, the two passes of Zipper hash are sequential. Moreover, the second pass

3 In fact, Dinur’s observation has been experimentally verified in [7], but the proof stays
incomplete. More details are referred to [7, Appendix B].

408 Z. Bao et al.

processes message blocks in a reversed order. These unique specifications bring
extra degrees of freedom for the attacker. In details, after being linked to an
internal state of the original message in the second pass, the first few blocks of
our second preimage message are fixed. Note these blocks do not include the
padding block of message length. As a result, we are always able to choose a
length for second preimage message that optimizes the complexity. Moreover,
when looking for a pair of nodes (x̌, y̌) reaching two predefined nodes of deep
iterates (x̄, ȳ) at a common distance, x̌ and y̌ are generated with different mes-
sage blocks, since the message blocks are hashed in different orders in two passes.
It enables us to launch a meet-in-the-middle procedure by using Joux’s multi-
collision when finding a pair of nodes (x̌, y̌), then the complexity of the attack
is further reduced. If message length longer than 2n/2 is allowed, the complex-
ity of our second preimage attack on Zipper hash is 23n/5 for L ≥ 22n/5, and
2n/L for 0 < L < 22n/5, where L is the block length of original message. Oth-
erwise, the complexity of our attack is 25n/8 for 23n/8 < L ≤ 2n/2, and 2n/L
for 0 ≤ L < 23n/8. We note these attacks are the first generic second-preimage
attacks on Zipper hash to our best knowledge,4 which solve an open problem
proposed in [24].

Roadmap. Section 2 describes preliminaries. In Sect. 3, we further investi-
gate properties of functional graph. Sections 4 and 5 present (second) preimage
attacks on the XOR combiner and Zipper hash, respectively. Finally, we conclude
the paper in Sect. 6.

2 Preliminaries

2.1 Functional Graph

The functional graph (FG) of a random function f is defined by the successive
iteration of this function. Explicitly, let f be an element of FN which is the set of
all mappings with a set N as both domain and range. The functional graph of f
is a directed graph whose nodes are the elements [0, . . . , N − 1] and whose edges
are the ordered pairs 〈x, f(x)〉, for all x ∈ [0, . . . , N − 1]. If starting from any x0

and iterating f , that is x1 = f(x0), x2 = f(x1), . . . , we are going to find, before
N iterations, a value xj equal to one of x0, x1, . . . , xj−1. In this case, we say xj

is a collision and the path x0 → x1 → · · · → xj−1 → xj connects to a cycle
which describes the iteration structure of f starting from x0. If we consider all
possible starting points x0, paths exhibit confluence and form into trees; trees
grafted on cycles form components; a collection of components forms a functional
graph [13].

Structure of FG has been studied for a long time, some parameters such as the
number of components (i.e., the number of connected components), the number

4 Assuming compression functions are weak, second-peimage attacks have been
published on Zipper hash [5,19].

Functional Graph Revisited 409

of cyclic nodes (a node is cyclic if it belongs to a cycle), the number of terminal
points (i.e., nodes without preimage: f−1(x) = ∅), the number of preimage points
(i.e., nodes with preimage), the expectation of tail length, the expectation of
cycle length and rho-length have got accurate asymptotic evaluation [13], which
are summarized below. A k-th iterate image point of f is an image point of the
k-th iterate fk of f .

Theorem 1 ([13]). The expectations of parameters, number of components,
number of cyclic points, number of terminal points, number of image points, and
number of k-th iterate image points in a random mapping of size N have the
asymptotic forms, as N → ∞,

1. # Components 1
2 log N = 0.5 · n

2. # Cyclic nodes
√

πN/2 ≈ 1.2 · 2n/2

3. # Terminal nodes e−1N ≈ 0.37 · 2n

4. # Image points (1 − e−1)N ≈ 0.62 · 2n

5. # k-th iterate image points (1 − τk)N

where the τk satisfies the recurrence τ0 = 0, τk+1 = e−1+τk .

Theorem 2 ([13]). Seen from a random point (any of the N nodes in the asso-
ciated functional graph is taken equally likely) in a random mapping of FN , the
expectations of parameters tail length, cycle length, rho-length, tree size, compo-
nent size, and predecessors size have the following asymptotic forms:

1. Tail length (λ)
√

πN/8 ≈ 0.62 · 2n/2

2. Cycle length (μ)
√

πN/8 ≈ 0.62 · 2n/2

3. Rho length (ρ = λ + μ)
√

πN/2 ≈ 1.2 · 2n/2

4. Tree size N/3 ≈ 0.34 · 2n

5. Component size 2N/3 ≈ 0.67 · 2n

6. Predecessors size
√

πN/8 ≈ 0.62 · 2n/2

Theorem 3 ([13]). Assuming the smoothness condition, the expected value of
the size of the largest tree and the size of the largest connected component in a
random mapping of FN , are asymptotically:

1. Largest tree: 0.48 · 2n.
2. Largest component: 0.75782 · 2n.

Results from these theorems indicate that, in a random mapping, most of the
points tend to be grouped together in a single giant component. This component
might therefore be expected to have very tall trees and a large cycle.

2.2 XOR Combiner

The XOR combiner xors the outputs of two independent hash functions H1 and
H2, i.e. H1(M) ⊕ H2(M), which is depicted in Figs. 2 and 3.

410 Z. Bao et al.

IV1

IV2

h1x0
h1x1

· · ·· · · h1xi−1
· · ·

xi
h1xL−1

h2y0

m1

h2y1

m2

· · ·· · ·

· · ·

h2yi−1

mi

· · ·
yi

· · ·

h2yL−1

mL ⊕
H1(M)

H2(M)

H(M)

Fig. 2. The XOR combiner

x0 = IV1

y0 = IV2

x1

m1

y1

m1

x2

m2

y2

m2

x3

m3

y3

m3

xL−3

yL−3

xL−2

mL−2

yL−2

mL−2

xL−1

mL−1

yL−1

mL−1

xL

mL

yL

mL

⊕
H1(M)

H2(M)

H(M)

First Pass

Second Pass

Fig. 3. Condensed graphical representation of the XOR combiner

2.3 Zipper Hash

Zipper hash is composed of two passes, denoted by H1 and H2 respectively,
operating on a single message. The two passes in Zipper hash are sequential,
and the second pass operates the sequence of message blocks in a reversed order.
The construction is depicted in Figs. 4 and 5.

IV h1x0
h1x1

· · ·· · · h1xi−1
· · ·

xi
h1xL−1

H(M) h2y0

m1

h2y1

m2

· · ·· · ·

· · ·

h2yi−1

mi

· · ·
yi

· · ·

h2yL−1

mL

y
L

=
x
L

Fig. 4. The Zipper hash

2.4 Joux’s Multi-collision [20]

In 2004, Joux [20] introduced multi-collisions on narrow-pipe Merkle-Damg̊ard
hash functions. Given a hash function H, a multi-collision refers to a set
of messages M = {M1,M2, . . .} whose hash digests are all the same, i.e.,
H(Mi) = H(Mj) for any pair Mi,Mj ∈ M. While the complexity is well-
known to be birthday bound to find such a set when the size |M| = 2, the

Functional Graph Revisited 411

x0 = IV

H(M) = y0

x1

m1

y1

m1

x2

m2

y2

m2

x3

m3

y3

m3

xL−3

yL−3

xL−2

mL−2

yL−2

mL−2

xL−1

mL−1

yL−1

mL−1

xL

mL

yL = xL

mL

First Pass

Second Pass

Fig. 5. Condensed graphical representation of the Zipper hash [19]

x0

m1

m′
1

m2

m′
2

xk

mk

m′
k

≡ x0 xk

k

Fig. 6. Joux’s multicollision structure and its condensed representation in R.H.S. [19]

computational complexity gradually approximates 2n when the target size |M|
increases. Utilizing the iterative nature of Merkle-Damg̊ard structure, Joux’s
algorithm is able to find multi-collision of size 2k with a complexity of k · 2n/2,
i.e., a complexity not much greater than that of finding a single collision. It
works as follows. Given an iterative hash function H with compression func-
tion h, and an initial value x0, one finds a pair of message (m1,m

′
1) such

that h(x0,m1) = h(x0,m
′
1) = x1 with a complexity of 2n/2. The process can

be repeated to find (mi,m
′
i) such that h(xi−1,mi) = h(xi−1,m

′
i) = xi for

i = 2, 3, . . . , k iteratively, as shown in Fig. 6. It is trivial to see the message
set M = {m1‖m2‖ · · · ‖mk | mi = mi or m′

i for i = 1, 2, . . . , k} form a multi-
collision of size 2k, and the overall complexity is O(k · 2n/2).

2.5 Expandable Message [21]

In 2005, Kelsey and Schneier [21] introduced the technique named expandable
message to find second-preimages of Merkle-Damg̊ard structure with a complex-
ity of 2n−l, instead of the long believed 2n, for a given challenging message of
about 2l blocks. As depicted in Fig. 7, given a chaining value x0 one finds a pair
of message (m1,m

′
1) in time 2n/2 such that h(x0,m1) = h(x0,m

′
1) = x1, and

x0

m1

|m′
1| = 20 + 1

m2

|m′
2| = 21 + 1

xk

mk

|m′
k| = 2k−1 + 1

≡ x0 xk

k

Fig. 7. The expandable message and its condensed representation in R.H.S. [19]

412 Z. Bao et al.

m1 and m′
1 are of 1, and 2 blocks, respectively. The process can be repeated

to find (mi,m
′
i) such that h(xi−1,mi) = h(xi−1,m

′
i) = xi for i = 2, 3, . . . , k

iteratively, where mi and m′
i are of 1, and 1 + 2i−1 blocks respectively. As

a result, for each t ∈ [k, k + 2k − 1], there is a message of t blocks from
the set M = {m1‖m2‖ · · · ‖mk | mi = mi or m′

i for i = 1, 2, . . . , k}. Note
h(x0,M) = xk for any M ∈ M and the overall complexity is O(k · 2n/2 + 2k).
It is a special multi-collision, from which one can choose message of any desired
block length in the range [k, k + 2k − 1].

Extension to Two Hash Functions [7]. Dinur extends Kelsey and Schneier’s
technique [21] to build simultaneous expandable message on two hash functions
H1 and H2. Prior to that, Jha and Nandi propose a similar construction of an
expandable message over two hash functions in the independent paper [19]. The
main idea is, when building an expandable message on H1, to find two sets of
M = {mi} and M′ = {m′

i} by Joux’s multi-collision such that h1(xi−1,mi) =
h1(xi−1,m

′
i) = xi for any mi ∈ M and any m′

i ∈ M′. Later, find a pair of
mi ∈ M and m′

i ∈ M′ colliding on H2 that is h2(yi−1,mi) = h2(yi−1,m
′
i) =

yi. Hence, we find a pair of mi and m′
i with carefully pre-determined lengths,

colliding on both H1 and H2, with a complexity not much greater than that of
finding a collision on a single hash function. The complexity is upper bounded
by L + n2 · 2n/2, where L is the maximum length that expandable message can
produce. For completed description of the procedure, we refer to [7] or to Sect. 5.3
(slightly adapted due to specification of Zipper hash).

2.6 Dinur’s Attack [7]

In [7], Dinur proposed second preimage attacks on the concatenation combiner
and preimage attack on the XOR combiner, which are built on two independent
Merkle-Damg̊ard hash functions. In this section, we briefly describe his attack
on the XOR combiner H1(M) ⊕ H2(M).

The attack is based on functional graph. Fix a message m, and define f1(x) =
h1(x,m) and f2(y) = h2(y,m), where h1 and h2 are the compression functions
of H1 and H2 respectively. In particular, it uses some special nodes, which are
located deep in functional graphs defined by f1 and f2 and hence referred to
as deep iterates. In other words, a deep iterate is a node that is reached after
iterating f1 (resp. f2) many times.

Given a target hash digest V , the attack is composed of three main steps:

1. Build a simultaneous expandable message M for H1 and H2. It starts from
the initial values (IV1, IV2) and ends at state (x̂, ŷ).

2. Generate a set of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . .} such that h1(x̄i, m̄i)⊕
h2(ȳi, m̄i) = V , where x̄i and ȳi are chosen with a special property (being
deep iterates).

3. Find a message Mlink = mr‖md, which links (h1(x̂,mr), h2(ŷ,mr)) to some
(x̄i, ȳi) after iterating f1 and f2 by d times.

Functional Graph Revisited 413

At the end, derive a message ML−2−d with a block length of L − 2 − d from
the expandable message M, and produce a preimage of V with a length L:
M = ML−2−d‖Mlink‖m̄i.

(IV1, IV2)
ML−2−d−−−−−→ (x̂, ŷ) Mlink−−−→ (x̄i, ȳi)

m̄i−−→ (H1(M),H2(M)),

where H1(M)⊕H2(M) = V holds. The overall time complexity of Dinur’s attack
is optimally 22n/3 obtained for L = 2n/2.

The complexity advantage is gained thanks to two properties of deep iterates,
which are listed below informally:

(i) it is easy to get a large set of deep iterates;
(ii) a deep iterate has a (relatively) high probability to be reached from an

arbitrary starting node.

Property (i) contributes to the efficiency of Step 2, since one can find large
sets of deep iterates in f1 and f2 independently, and then carry out a meet-in-the-
middle procedure to find a set of tuples {(x̄i, ȳi, m̄i)}. Property (ii) contributes to
the efficiency of Step 3. Thus, in order to estimate the complexity of the attack,
it is necessary and important to study these two properties quantitatively.

– For property (i), Θ(2t) iterates of depth 2n−t can be collected with a com-
plexity of 2t by using Algorithm 1 for t ≥ n/2;

– For property (ii), the author observes that the probability of a random pair
(xr, yr) encountering d-th iterates x̄ and ȳ at a common distance (no larger
than d) is d3/22n, and experimentally verifies that after 22n/d3 trials, such a
random pair (xr, yr) can be found [7, Sect. 3.3].

3 Functional Graph Revisited: Cyclic Node and
Multi-cycles

In this section, we study a property of cyclic nodes within functional graph of
a random mapping. Each cyclic node in a functional graph defined by f loops
along the cycle when computed by f iteratively, and goes back to itself after a
(multi-) cycle-length number of function calls. This property can be utilized to
provide extra degrees of freedom, when estimating the distance of other nodes
to a cyclic node in the functional graph, i.e., it can be expanded to a set of
discrete values by using multi-cycles. For example, let x and x′ be two nodes in
a component of the functional graph defined by f , x is a cyclic node, and the
cycle length of the component is denoted as L. Clearly there exists a path from
x′ to x as they are in the same component, and the path length is denoted as d.
Then we have

fd(x′) = x; fL(x) = x =⇒ f (d+i·L)(x′) = x for any positive integer i.

414 Z. Bao et al.

Algorithm 1. Collect Θ(2t) iterates of depth 2n−t with a complexity of 2t, for
t ≥ n/2
1: procedure Gen(t)
2: G ← ∅
3: while |G| < 2t do
4: Chain ← ∅
5: x ←$ {0, 1, . . . , 2n − 1} \ G
6: while true do
7: if x ∈ G or x ∈ Chain then
8: G ←merge Chain
9: go to line 3

10: else
11: Chain ←insert x
12: x ← f(x)
13: end if
14: end while
15: end while
16: output G
17: end procedure

Suppose it is limited to use at most t cycles. Then the distance from x′ to x is
expanded to a set of t + 1 values {d + i · L | i = 0, 1, 2, ..., t}.

Now let us consider a special case of reaching two deep iterates from two
random starting nodes: select two cyclic nodes within the largest components in
the functional graphs as the deep iterates. More specifically, let two functional
graphs be defined by f1 and f2. Let x̄ and xr be two nodes in a common largest
component of functional graph defined by f1, where x̄ is a cyclic node. Let L1

denote the cycle length of the component and d1 denote the path length from
xr to x̄. Similarly, we define notations ȳ, yr, L2 and d2 in functional graph of f2.
We are interested in the probability of linking xr to x̄ and yr to ȳ at a common
distance. Thanks to the usage of multiple cycles, the distance values from xr to
x̄ and from yr to ȳ can be selected from two sets {d1 + i · L1 | i = 0, 1, 2, . . . , t}
and {d2 + j · L2 | j = 0, 1, 2, . . . t}, respectively. Hence, as long as there exists a
pair of integers (i, j) such that 0 ≤ i, j ≤ t and d1 + i · L1 = d2 + j · L2, we get
a common distance d = d1 + i · L1 = d2 + j · L2 such that

fd
1 (xr) = x̄, fd

2 (yr) = ȳ.

Next, we evaluate the probability amplification of reaching (x̄, ȳ) from a
random pair (xr, yr) at the same distance. Without loss of generality, we assume
L1 ≤ L2. Let ΔL be ΔL = L2 mod L1. Then, it has that

d1 + i · L1 = d2 + j · L2 =⇒
d1 − d2 = j · L2 − i · L1 =⇒

(d1 − d2) mod L1 = j · ΔL mod L1

Functional Graph Revisited 415

Letting j range over all integer values in internal [0, t], we will collect a set
of t + 1 values S = {j · ΔL mod L1 | j = 0, 1, . . . , t}5. Since d1 = O(2n/2),
d2 = O(2n/2) and L1 = Θ(2n/2), it has |d1 − d2| = O(L1), and we assume
|d1−d2| < L1 by ignoring the constant factor. Therefore, for a randomly sampled
pair (xr, yr) that encounter (x̄, ȳ), we are able to derive a pair of (i, j) such that
d1 + i · L1 = d2 + j · L2, as long as their distance bias d1 − d2 is in the set S.
In other words, we are able to correct such a distance bias by using multi-cycles.
Thus, the probability of reaching (x̄, ȳ) from a random pair (xr, yr) at a common
distance is amplified by roughly t times, which is the maximum number of cycles
used.

This property of cyclic nodes in functional graph can be utilized to improve
preimage attacks on the XOR combiner, which is presented in next sections. The
set S is referred to as the set of correctable distance bias hereafter.

4 Improved Preimage Attack on XOR Combiner

4.1 Attack Overview

Firstly, we recall previous preimage attack on the XOR combiner [7] introduced
in Sect. 2.6. We name (x̄i, ȳi)’s as target node pairs. Clearly the larger the number
of target node pairs (generated at Step 2) is, the higher the probability of a
random node pair (xr = h1(x̂,mr), yr = h2(ŷ,mr)) reaching a target node pair
(x̄i, ȳi) (at Step 3) at a common distance becomes. Hence, a complexity tradeoff
exists between Steps 2 and 3. The optimal complexity is obtained by balancing
Step 2 and Step 3.

In this section, we use cyclic nodes and multi-cycles to improve preimage
attack on the XOR combiner. More specifically, if a target node pair (x̄, ȳ) are
both cyclic nodes within the largest components in two functional graphs respec-
tively, the probability of a random pair (xr = h1(x̂,mr), yr = h2(ŷ,mr)) reaching
(x̄, ȳ) at a common distance is amplified by #C times, the maximum number of
cycles that can be used, by using the set of correctable distance bias as stated in
Sect. 3. Moreover, such a probability amplification comes with almost no increase
of complexity at Step 2, which leads to a new complexity tradeoff between Steps
2 and 3. Thus, the usage of cyclic nodes and multi-cycles enables us to reduce
the computational complexity of preimage attacks on the XOR combiner.

Here we briefly list the main steps of our preimage attack on the XOR
combiner.

Step A. Build a simultaneous expandable message M for H1 and H2 ending
with (x̂, ŷ).

Step B. Collect cyclic nodes within the largest components in functional graphs
of f1 = h1(·,m) and f2 = h2(·,m) with a fixed m, and compute the set of
correctable distance bias

S = {i · ΔL mod L1 | i = 0, 1, . . . ,#C},

5 With very low probability L1 and L2 are not co-prime, and large t will result in
repeated values.

416 Z. Bao et al.

where L1 and L2 are cycle length of the largest components in the functional
graphs of f1 and f2 respectively and ΔL = L2 − L1 mod L1.

Step C. Find a set of tuples {(x̄1, ȳ1, m̄1), (x̄2, ȳ2, m̄2), . . .} such that x̄i’s and
ȳj ’s are cyclic nodes within the largest components in functional graphs of f1
and f2 respectively, and h1(x̄i, m̄i) ⊕ h2(ȳi, m̄i) = V , where V is the target
hash digest.

Step D. Find a message Mlink = mr‖md that links (x̂, ŷ) to some (x̄i, ȳi). For
each pair (xr = h1(x̂,mr), yr = h2(ŷ,mr)) that encounters (x̄i, ȳi), compute
the distance difference and examine whether it belongs to S.

Up to now, we are able to derive a message Me from expandable message with
an appropriate length, and produce a preimage message M :

(IV1, IV2)
Me−−→ (x̂, ŷ)

Mlink−−−−→ (x̄i, ȳi)
m̄i−−→ (H1(M),H2(M)) : H1(M) ⊕ H2(M) = V

By balancing the complexities of these steps, we obtain an optimal complexity
of 25n/8.

A completed description of attack procedure and complexity evaluation is
provided in next sections (Fig. 8). We point out the length of our preimage is at
least 2n/2 block long due to the usage of (multi-) cycles.

IV1

x̂

IV2

ŷ

L1

L2

ȳ1

ȳj

ȳ2s

x̄2s

x̄j

x̄1

xr

mr

yr

mr

x̄i

m[d1]

ȳi
m[d2]

⊕ = V
m̄i

m̄i

Me

Me

loop

loop

- Step 1

- Step 2

- Step 4

- Step 5

- Step 6 ∼ 7

Fig. 8. Preimage attack on the XOR hash combiner H1(M) ⊕ H2(M)

4.2 Attack Procedure

Denote by V the target hash digest. Suppose the attacker is going to produce a
preimage message with a length L. The value of L will be discussed later. The
attack procedure is described below.

1. Build a simultaneous expandable message structure M ending with a pair
of state (x̂, ŷ) such that for each positive integer i of an integer interval,

Functional Graph Revisited 417

there is a message Mi with a block length i in M that links (IV1, IV2) to
(x̂, ŷ):

hi
1(IV1,Mi) = x̂, hi

2(IV2,Mi) = ŷ.

Refer to Sect. 2.5 and [7] for more descriptions of the procedure.
2. Fix a single-block message m, and construct two n-bit to n-bit random

mappings as f1(x) = h1(x,m) and f2(y) = h2(y,m). Repeat the cycle search
several times, and find all the cyclic nodes within the largest components
in the functional graphs defined by f1 and f2. Denote their cycle lengths
as L1 and L2, and the two sets of cyclic nodes as {x1, x2, . . . , xL1} and
{y1, y2, . . . , yL2}, and store them in tables T1 and T2, respectively.

3. Without loss of generality, assume L1 ≤ L2. Compute #C = �L/L1� as the
maximum number of cycles that can be used to correct distance bias. Com-
pute ΔL = L2 mod L1, and then compute the set of correctable distance
bias: S = {i · ΔL mod L1 | i = 0, 1, 2, . . . ,#C}.

4. Find a set of 2s tuples (x̄, ȳ, m̄) such that h1(x̄, m̄) ⊕ h2(ȳ, m̄) = V . The
search procedure is described as follows.

(a) Initialize a table T3 as empty.
(b) Select a random single-block message m̄.
(c) Compute h1(xi, m̄) for all xi’s in T1, and store them in a table T4.
(d) For each yj in T2, compute h2(yj , m̄) ⊕ V , and match it to the elements

in T4. If it is matched to some h1(xi, m̄), that is

h2(yj , m̄) ⊕ V = h1(xi, m̄) =⇒ h1(xi, m̄) ⊕ h2(yj , m̄) = V,

store (xi, yj , m̄) in T3.
(e) If T3 contains less than 2s elements, goto step 4(b) and repeat the search

procedure.
Denote the stored tuples in T3 as {(x̄1, ȳ1, m̄1), . . . , (x̄2s , ȳ2s , m̄2s)}. More-
over, x̄i’s and ȳj ’s are called target nodes in functional graphs of f1 and f2
respectively.

5. Run Algorithm 1 with a parameter t to develop 2t nodes in the functional
graph of f1 (resp. f2), and store them in a table T4x (resp. T4y). Moreover,

(a) Store at each node its distance from a particular target node (say target
node x̄1 (resp. ȳ1), similar to phase 3 in Sect. 3.3 of [7]), together with
its distance from the cycle (i.e. its height, similar to phase 3 in Sect. 5 of
[32]).

(b) Store the distance of other target nodes x̄i (resp. ȳi) to this particular
target node x̄1 (resp. ȳ1) in a table T3x (resp. T3y) by iterating f1 (resp.
f2) along the cycle.

(c) Thus, when the distance of a node from the particular target node and
that from the cycle is known from T4x (resp. T4y), the distances of this
node from all the other target nodes can be immediately deduced from
T3x (resp. T3y). Specifically, suppose the distance of a node xr from x̄1 is
d1 and its height is e1, and suppose the distance of a target node x̄i from
x̄1 is di, then the distance of xr from x̄i is d1 − di if di ≤ (d1 − e1), and
L1 − di + d1 if di > (d1 − e1).

418 Z. Bao et al.

6. Find a message Mlink that links (x̂, ŷ) to a pair of target nodes (x̄i, ȳi) in
T3. We search for such a linking message among a set of special messages:
Mlink = mr‖m‖m‖ · · · ‖m, where mr is a random single-block message, and
m is the fixed message at Step 2. The search procedure is as follows.

(a) Select a random mr, and compute xr = h1(x̂,mr) and yr = h2(ŷ,mr);
(b) Compute a chain by iteratively applying f1 (resp. f2) to update xr (resp.

yr), until either of the following two cases occurs.
– The chain length reaches 2n−t. In this case, goto step 6(a);
– The chain encounters a node stored in T4x (resp. T4y). Compute the

distance of xr (resp. yr) to every target node x̄i (resp. ȳi) as described
in step 5(c), and denote it as dxi (resp. dyi).

(c) Examine whether dxi − dyi mod L1 is a correctable distance difference
in S. If it is, derive the corresponding j and k such that dxi + j · L1 =
dyi + k · L2 holds. Let p be p = dxi + j · L1 = dyj + k · L2, and then
Mlink = mr‖mp. Otherwise, goto step 6(a).

7. Derive a message ML−2−p with a block length of L−2−p from the expand-
able message M.

8. Produce a preimage M of the target hash digest V as

M = ML−2−p‖Mlink‖m̄i = ML−2−p‖mr‖mp‖m̄i.

4.3 Attack Complexity

This subsection evaluates the attack complexity. In particular, we note that we
ignore the constant and polynomial factors for the simplicity of description.

• Step 1: L + n2 · 2n/2 (refer to Sect. 2.5);
• Step 2: 2n/2;
• Step 3: L/L1 ≈ 2−n/2 · L;
• Step 4: 2s+n/2;

One execution of the search procedure takes a complexity of L1 + L2, and
contributes to L1 ·L2 pairs. As L1 ·L2 = Θ(2n), one tuple can be obtained by
a constant number of executions. Hence, the number of necessary executions
is Θ(2s), and the complexity of this step is Θ(2s+n/2).

• Step 5: 2t + 2n/2;
The complexity of developing 2t nodes and computing their distance to a
particular target node is 2t (refer to Algorithm 1 and step 5(a)). The com-
plexity to compute the distance of all the other target nodes to the particular
target node is upper bounded by 2n/2 (refer to the number of cyclic nodes in
Theorem 1). Hence, the complexity of this step is 2t + 2n/2.

• Step 6: 22n−t−s/L;
One execution of the search procedure needs a time complexity of 2n−t.
Clearly a constant factor of both of the two chains encounter nodes stored in
T4x and T4y which are of size 2t. We mainly need to evaluate the probability
of deriving a common distance for each chain. For every pair of target nodes
(x̄i, ȳi), the value of dxi−dyi is equal to a correctable distance bias in S with a

Functional Graph Revisited 419

probability of #C ·2−n/2 ≈ L·2−n. Since there are 2s pairs of target nodes, the
success probability of each chain is L ·2s−n. Hence, the total number of chains
is 2n−s/L, and the complexity of this step is 2n−t · 2n−s/L = 22n−t−s/L.

• Steps 7 and 8: O(L).

The overall complexity is computed as

L + 2s+n/2 + 2t + 2t + 2n/2 +
22n−t−s

L
,

where the complexities of steps 2, 7 and 8 are ignored.

Now we search for parameters L, t and s that give the lowest complexity.
Firstly, we balance the complexities between Step 1 and Step 6, that gives

L =
22n−t−s

L
=⇒ L = 2n−t/2−s/2

Hence, the total complexity becomes (ignoring constant factors)

2n−t/2−s/2 + 2s+n/2 + 2t + 2n/2.

By balancing the complexities, we have that setting parameters t = 25n/8 and
s = 2n/8 contributes to the lowest complexities: 25n/8. In the setting, we produce
a preimage message with a length of L = 2n−t/2−s/2 = 25n/8.

5 Second Preimage Attacks on Zipper Hash

In this section, we give a second preimage attack on Zipper hash, which is also
applicable for idealized compression functions.

5.1 Attack Overview

Given a message M = m1‖m2‖ · · · ‖mL, the second preimage attack on Zip-
per hash is to find another message M ′ such that H2(H1(IV,M),

←−
M) =

H2(H1(IV,M ′),
←−
M ′), where

←−
M is a message generated by reversing the order

of message blocks of M (we call
←−
M the reverse of M for simplicity), i.e.,

←−
M = mL‖mL−1‖ · · · ‖m2‖m1, and

←−
M ′ is the reverse of M ′.

In contrast to the attack against XOR combiner, here we make use of a
single pair of target α-nodes (x̄, ȳ), that are the roots of the largest trees within
the largest components in functional graphs defined by h1 and h2 and a fixed
single-block message value m, and then proceed as follows.

Step A. Compute a multi-collision M1 (resp. M2) from x̄ (resp. ȳ) as the
starting value to an ending value denoted as x̂ (resp. ŷ).

Step B. Build a simultaneous expandable message Me across the two passes,
starting from x̂ to an ending value denoted as ỹ.

420 Z. Bao et al.

x0 = IV

H(M) = y0

x1

m1

y1

m1

xq−1

yq−1

xq

mq

yq

mq

xL−2

yL−2

xL−1

mL−1

yL−1

mL−1

xL

mL

yL = xL

mL

x̃
m̄

ŷ

m̄

x̌

M2

M2

ȳ

|G2| = 2t

M2

r

|G1| = 2t

x̄

m[d]

y̌m[d]

x̂M1

r

ỹM1

M1

ẍMe

Me

Me

Me

ÿ
=

h
2
(h

1
(ẍ
,m

′ L
′)
,m

′ L
′)

- Step 1
- Step 2
- Step 3
- Step 4
- Step 5
- Step 6

- Step 7 ∼ 9

Fig. 9. Second preimage attack on Zipper hash

Step C. Find m̄ linking ŷ to one of the chaining values yq of the second pass of
the original message, and then compute from xq with m̄ to an internal value
denoted as x̃ in the first pass.

Step D. Exploit the messages of M2 and M1 to link x̃ and ỹ to x̄ and ȳ,
respectively, at a common distance.

Finally, we just need to derive a message with a suitable length from Me to
contribute to a second preimage message. There are two main differences between
the attack on Zipper hash and the attack on the XOR combiner in Sect. 4. One
is that linking x̃ to x̄ and linking ỹ to ȳ can be carried out independently,
resulting in a meet-in-the-middle like effect. The other is that the message length
is embedded inside the expandable message Me, which enables us to choose the
length of second preimage message to optimize the complexity. Details of the
attack are presented in the next sections (Fig. 9).

5.2 Attack Procedure

In the attack procedure below, we omit the description of using multi-cycles to
correct distance bias for the simplicity of description. We note that multi-cycles
should be used at Steps 6 and 7, which provides extra degrees of freedom, in the
case that the message length is allowed beyond the birthday bound.

1. Fix an arbitrary single-block message value m, and construct f1(·) = h1(·,m)
and f2(·) = h2(·,m). Repeat the cycle search several times to locate the
largest tree and corresponding α-node in functional graph of f1 (resp. f2)
and denote it by x̄ (resp. ȳ).

Functional Graph Revisited 421

2. Run Algorithm 1 with a parameter t to develop 2t nodes, compute and store
their distance from x̄ (resp. ȳ) in functional graph of f1 (resp. f2). Store
these nodes of f1 (resp. f2) in the data structure G1 (resp. G2). The role of
G1 (resp. G2) is to reduce the number of evaluations of f1 (resp. f2) to find
the distance of a random starting node from the target node x̄ (resp. ȳ) at
Step 6 and Step 7. This is similar to the lookahead procedure of phase 3 in
Sect. 3.3 of [7].

3. Build a Joux’s multi-collision of size 2r for h1 (resp. h2) starting from x̄ (resp.
ȳ) and ending at a node x̂ (resp. ŷ). Denote the multi-collision message set
by M1 (resp. M2).

4. Construct a simultaneous expandable message Me across the two hash func-
tions, which starts from the node x̂ in the first pass and ends at a node ỹ in
the second pass. The details of constructing such an expandable message is
provided in Sect. 5.3.

5. Find a single-block m̄ that links ŷ to some internal state yq of the second
pass on computing the original message M . The search procedure is trivial
and hence omitted. Compute x̃ = h1(xq, m̄).

6. For each message M2 in M2,
(a) Compute x̌ = hr

1(x̃,M2);
(b) Compute a chain x by applying f1 to update x̌ iteratively until up to a

maximum length 2n−t or until it hits G1. In the latter case, compute the
distance d1 of x̌ to x̄, and store (d1,M2) in a table T1.

7. For each message M1 in M1,
(a) Compute y̌ = hr

2(ỹ,M1);
(b) Compute a chain y by applying f2 to update y̌ up to a maximum length

2n−t or until it hits G2. In the latter case, compute the distance d2 of y̌
to ȳ, and store (d2,M1) in a table T2.

8. Find (d1,M2) in T1 and (d2,M1) in T2 with d1 = d2. The search is a meet-
in-the-middle procedure to match elements between T1 and T2.

9. Derive a message Me with a block length L′ − q − 1 − r − d2 − r from Me,
where L′ is the length of the constructed second preimage. Construct a mes-
sage M ′ = m1‖m2‖ · · · ‖mq‖m̄‖M2‖m[d2]‖M1‖Me and output M ′ as a second
preimage.

5.3 Step 4: Constructing an Expandable Message

The constructing method is similar with that proposed in [7] with slight modi-
fications. Detailed steps are as follows and the constructing process is depicted
in Fig. 10, where C is set as a constant such that C ≈ n/2 + log(n):

1. x′
0 ← x̂

2. For i ← 1, 2, · · · , C − 1 + k:
(a) Build a 2C−1 standard Joux’s multi-collision in h1 starting from x′

i−1,
denote its final endpoint by spi.

422 Z. Bao et al.

(b) Compute xpi = h1(spi,0), where 0 is an all zero message of size s blocks,
where s = i if i ≤ C − 1 and s = C2i−(C−1)−1 if C − 1 < i ≤ C − 1 + k.

(c) Find a collision h1(spi,mi) = h1(xpi,m
′
i) with single block messages

mi, m′
i. Denote the collision by x′

i.
(d) We get a multi-collision in h1 with 2C messages that map x′

i−1 to x′
i.

i. Out of these messages, 2C−1 are of length b (obtained by combine one
of the 2C−1 Joux’s multi-collisions with mi) and we denote this set
of messages by SSi, where b = C.

ii. Out of these messages, 2C−1 are of length b (obtained by combine
one of the 2C−1 Joux’s multi-collisions with 0‖m′

i) and we denote
this set of messages by SLi, where b = C + i if i ≤ C − 1 and
b = C(2i−(C−1)−1 + 1) if C − 1 < i ≤ C − 1 + k.

3. Denote the last collision state x′
C−1+k by ẍ, and compute ÿ =

h2(h1(ẍ,m′
L′),m′

L′), where m′
L′ is a message block padded with the length

L′ of the second preimage.
4. y′

C−1+k ← ÿ, MS ← ∅, ML ← ∅.
5. For i ← C − 1 + k, C − 1 + k − 1, . . . , 2, 1:

(a) For each msi ∈ SSi, compute ui = h2(y′
i,

←−msi) where
msi = msi,1‖msi,2‖ . . . ‖msi,C−1‖msi,C and
←−msi = msi,C‖msi,C−1‖ . . . ‖msi,1. Store each pair (ui, msi) in a table
Ui indexed by ui. The final size of Ui is 2C−1.

(b) For each ml i ∈ SLi, compute vi = h2(y′
i,

←−
ml i) where

ml i = mli,1‖mli,2‖ . . . ‖mli,s−1‖mli,s and
←−
ml i = mli,s‖mli,s−1‖ . . . ‖mli,1. Where s = C(2i−(C−1)−1 + 1) if C − 1 <
i ≤ C − 1 + k and s = C + i if 1 ≤ i ≤ C − 1. Store each pair (vi, ml i)
in a table Vi indexed by vi. The final size of Vi is 2C−1.

(c) Find a match ui = vi between Ui and Vi, denote the matched state by
y′

i−1 = ui. Combine the corresponding message fragment msi indexed by
y′

i with MS and ml i indexed by y′
i with ML, i.e. MS = msi‖MS and

ML = ml i‖ML.

Then, for any length κ lying in the appropriate range of [C(C−1)+kC, C2−
1 + C(2k + k − 1)], one can construct a message Me mapping x̂ to ỹ = y′

0

through h1 and h2 by picking messages fragment either from MS or from ML as
described in [7]:

1. Select the length κ′ ∈ [C(C −1), C2−1] such that κ′ = κ mod C, defining the
first C − 1 message fragment choices: Selecting the message fragment msi in
MS for 1 ≤ i ≤ C − 1 and i �= κ′ − C; Selecting the message fragment ml i
in ML for i = κ′ − C.

2. Compute kp ← (κ − κ′)/C which is an integer in the range of [k, 2k + k − 1]
and select the final k message fragment choices as in a standard expandable
message using the binary representation of kp − k.

Functional Graph Revisited 423

x′
0 = x̂

ỹ = y′
0

sp1

C − 1 1

C − 1 1 + 1

x′
1

m1

xp1

0
m′

1

y′
1

m1

m′
1

0

sp2

C − 1 1

C − 1 2 + 1

x′
2

m2

xp2

0
m′

2

y′
2

m2

m′
2

0

C − 1

[C(C − 1), C2 − 1]

spC−1+k

C − 1 1

C − 1 C2k−1 + 1

x′
C−1+k

mC−1+k

xpC−1+k0 m′
C−1+k

y′
C−1+k

mC−1+k

m′
C−1+k

0

k

C[k, 2k + k − 1]

[C(C − 1) + kC,C2 − 1 + (2k + k − 1)C]-expandable message

Fig. 10. Flowchart of constructing a simultaneous expandable message

5.4 Complexity of Second Preimage Attack on Zipper Hash

The computational complexity of this second preimage attack on Zipper hash are
summarized as follows, where the constant and polynomial factors are ignored.

• Step 1: 2
n
2

• Step 2: 2 · 2t

• Step 3: r · 2
n
2

• Step 4: n · 2k + n2 · 2
n
2 +log2(n) = 2l′ + 2

n
2 +2 log2(n)+1

• Step 5: 2n−l

• Step 6: 2r · 2n−t

• Step 7: 2r · 2n−t

• Step 8: 2r

• Step 9: O(2l′)

It is required to sample 22n−3w different starting point pairs until they simul-
taneously hit two α-nodes (x̄, ȳ) using up to 2w iterates in two independent func-
tional graphs of f1 and f2, where w is the allowed maximum distance to reach
x̄ and ȳ, which is determined by the allowed length L′ of the second preimage,
and is set to be L′ − q − 2r − C(C − 1) − kC. Thus, the number of messages
in M1 which is set to be 2r and that in M2 which is also set to be 2r should
satisfy 2r × 2r = 22n−3w ≈ 22n−3l′ , then 2r ≈ 2n− 3

2 l′ .
The computational complexity is dominated by Step 2, 4, 5, 6, 7. In Step

2, we develop 2t nodes for each functional graph of f1 and f2. So it requires
2 · 2t function calls. In Step 4, we build a simultaneous expandable message
by a slightly modified constructing method proposed in [7]. The complexity is
almost the same as that in [7]. We refer to [7] for the detailed discussion on the

424 Z. Bao et al.

complexity of this step. Complexity of Step 5 depends on the probability of a
collision h2(ȳ, m̄) = yq where yq has L = 2l choices. According to the birthday
paradox, it requires 2n/L = 2n−l trails for a collision. Complexity of Step 6 (resp.
Step 7) depends on the number of starting point x̌ (resp. y̌) and the expected
number of iterates before the chain x (resp. y) hits G1 (resp. G2). Considering
that the size of G1 (resp. G2) is 2t, it is expected to require 2n−t iterates before a
chain hits a point in G1 starting from a random point. Thus, the computational
complexity of Step 6 (resp. Step 7) is r ·2r +2r ·2n−t = Θ(2r ·2n−t). Complexity
of Step 8 depends on numbers of entries in T1 and T2 which are upper bounded
by the size of M1 and M2.

– When the allowed length L′ of the second preimage is limited by 2
n
2 , then

2w ≈ 2l′ and 2r = 2n− 3
2w ≈ 2n− 3

2 l′ . To achieve optimal complexity, we
balance Step 2 and Step 6, 7 by setting t = r + n − t ⇒ t = n − 3

4 l′. We set l′

to be the allowed maximum value, that is we set 2l′ = 2
n
2 ⇒ 2t = 2

5
8n. This

attack is valid and faster than 2n as long as l < n.
– When the allowed length L′ of the second preimage is not limited and can be

greater than 2
n
2 , we utilize multi-cycles to reach x̄ and ȳ simultaneously as

the technique used to improve preimage attack on XOR combiner in Sect. 4.
In this case, we set r =

n
2 −(l′−n

2)

2 . That is because, the number of pairs
(x̌, y̌) is 22r, and the required number of pairs to find one pair simultaneously
reaching (x̄, ȳ) is 22n− 3n

2 /2l′−n
2 when multi-cycles are used to amplify the

probability of linking each pair to (x̄, ȳ) at a common distance. Thus, we set
2r = 2n − 3n

2 − (l′ − n
2) ⇒ r =

n
2 −(l′−n

2)

2 .
• For 3

8n < l ≤ 2
5n, we can set l′ = n − l. And balance Step 2 and Step 6,

7 by setting t = r + n − t =
n
2 −(l′−n

2)

2 + n − t = l
2 + n − t ⇒ t = l

4 + n
2 .

Since l ≤ 2
5n, one have t = l

4 + n
2 ≤ n − l. Thus, complexity of Step 5,

i.e. 2n−l, is the dominating part.
• For 2

5n < l, we set l′ = 3
5n and limit q < l′ = 3

5n where q is the merged
point of the second message to the state chain of the original message.
And balance Step 2 and Step 6, 7 by setting t =

n
2 −(l′−n

2)

2 + n − t =
⇒ t = 3

5n. Thus, keep a stable complexity 2
3
5n for attack on messages of

length l > 2
5n.

A trade-off curve for these cases is shown in Fig. 11. In these attacks, length
of the constructed second message L′ is 2n/2 when limit on length of message is
2n/2, or l′ = n − l for 3

8n < l ≤ 2
5n and l′ = 3

5n for 2
5n < l when no limit on

length of message.

Remark 1. We notice that, when l < 2
5n, the complexity of this second preimage

attack on Zipper hash is dominated by Step 5. Thus, in this case the strength
of Zipper Hash (with each pass using Merkle-Damg̊ard-structure compression
functions) against second preimage attack is no more than that of a single pass
Merkle-Damg̊ard-structure Hash function.

Functional Graph Revisited 425

2
1
8n 2

1
4n 2

3
8n 2

1
2n 2

5
8n 2

2
3n 2

7
8n 2n

2
1
2n

2
5
8n

2
2
3n

2
7
8n

2n

(2
2
5n, 2

3
5n)

Length of the original messages

C
o
m

p
le

x
it
y

Second preimage attack on Zipper hash

Limit on length of message: 2
1
2n

No limit on length of message

Fig. 11. Trade-offs between the message length and the complexity

5.5 Experimental Results

We have simulated the entire process of this second preimage attack on Zipper
hash (simulated h1 with chopped AES-128 and h2 with chopped SM4-128) for
n = 24 and n = 32 with t = 5

8n, r = 1
4n + 1. In our simulations we preformed

1000 times attack for n = 24 and 100 times for n = 32. The success probability
is 0.684 for n = 24 and is 0.8 for n = 32. The number of function calls for each
step in those attacks are all as expected.

6 Conclusion

In this paper, we proposed the first second-preimage attack on Zipper hash
and improved preimage attack on the XOR combiner with two narrow-pipe
Merkle-Damg̊ard hash functions. These attacks are based on functional graph
of a random mapping. A future work might be to further investigate properties
of functional graph in order to improve generic attacks on hash combiners, e.g.,
reducing the complexity of generic attacks to match the lower security bounds,
or shortening the length of (second) preimage messages.

Acknowledgments. Lei Wang and Dawu Gu are sponsored by National Natural
Science Foundation of China (61602302, 61472250, 61672347), Natural Science Foun-
dation of Shanghai (16ZR1416400), Shanghai Excellent Academic Leader Funds
(16XD1401300). The authors would like to thank the anonymous reviewers of CRYPTO
2017 for their comments and suggestions.

426 Z. Bao et al.

References

1. Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.): ICALP 2008. LNCS, vol. 5126. Springer, Heidelberg (2008)

2. Allen, C., Dierks, T.: The TLS Protocol Version 1.0. RFC 2246, January 1999.
https://rfc-editor.org/rfc/rfc2246.txt

3. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preim-
age and trojan message attacks beyond Merkle-Damg̊ard. In: Jacobson, M.J., Rij-
men, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-05445-7 25

4. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, New York (1990)
5. Chen, S., Jin, C.: A second preimage attack on Zipper hash. Secur. Commun. Netw.

8(16), 2860–2866 (2015)
6. Damg̊ard, I.: A design principle for hash functions. In: Brassard [4], pp. 416–427
7. Dinur, I.: New attacks on the concatenation and XOR hash combiners. In: Fischlin,

M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 484–508.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 19

8. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and
HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 149–168. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 9

9. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 13

10. Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78524-8 21

11. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions revisited. In: Aceto et al., [1], pp. 655–666

12. Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash
functions. J. Cryptol. 27(3), 397–428 (2014)

13. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer,
Heidelberg (1990). doi:10.1007/3-540-46885-4 34

14. Freier, A.O., Karlton, P., Kocher, P.C.: The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101, August 2011. https://rfc-editor.org/rfc/rfc6101.txt

15. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against HMAC

and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol.
8616, pp. 131–148. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 8

16. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

17. Hoch, J.J., Shamir, A.: Breaking the ICE – finding multicollisions in iterated
concatenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006). doi:10.1007/
11799313 12

18. Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when
all the hash functions are weak. In: Aceto et al. [1], pp. 616–630

19. Jha, A., Nandi, M.: Some Cryptanalytic Results on Zipper Hash and Concatenated
Hash. Cryptology ePrint Archive, Report 2015/973 (2015). http://eprint.iacr.org/
2015/973

https://rfc-editor.org/rfc/rfc2246.txt
http://dx.doi.org/10.1007/978-3-642-05445-7_25
http://dx.doi.org/10.1007/978-3-662-49890-3_19
http://dx.doi.org/10.1007/978-3-662-44371-2_9
http://dx.doi.org/10.1007/978-3-540-74143-5_13
http://dx.doi.org/10.1007/978-3-540-78524-8_21
http://dx.doi.org/10.1007/3-540-46885-4_34
https://rfc-editor.org/rfc/rfc6101.txt
http://dx.doi.org/10.1007/978-3-662-44371-2_8
http://dx.doi.org/10.1007/11799313_12
http://dx.doi.org/10.1007/11799313_12
http://eprint.iacr.org/2015/973
http://eprint.iacr.org/2015/973

Functional Graph Revisited 427

20. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 19

21. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005). doi:10.1007/11426639 28

22. Lehmann, A.: On the security of hash function combiners. Ph.D. thesis, Darmstadt
University of Technology (2010)

23. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
1–20. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42045-0 1

24. Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 345–367.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 14

25. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74462-7 25

26. Mendel, F., Rechberger, C., Schläffer, M.: MD5 is weaker than weak: attacks on
concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 144–161. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 9

27. Merkle, R.C.: One way hash functions and DES. In: Brassard [4], pp. 428–446
28. Nandi, M., Stinson, D.R.: Multicollision attacks on some generalized sequential

hash functions. IEEE Trans. Inf. Theory 53(2), 759–767 (2007)
29. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-

cations. J. Cryptol. 12(1), 1–28 (1999)
30. Perrin, L., Khovratovich, D.: Collision spectrum, entropy loss, T-sponges,

and cryptanalysis of GLUON-64. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 82–103. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46706-0 5

31. Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34961-4 35

32. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 147–164. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 9

http://dx.doi.org/10.1007/978-3-540-28628-8_19
http://dx.doi.org/10.1007/11426639_28
http://dx.doi.org/10.1007/978-3-642-42045-0_1
http://dx.doi.org/10.1007/978-3-662-46800-5_14
http://dx.doi.org/10.1007/978-3-540-74462-7_25
http://dx.doi.org/10.1007/978-3-642-10366-7_9
http://dx.doi.org/10.1007/978-3-662-46706-0_5
http://dx.doi.org/10.1007/978-3-662-46706-0_5
http://dx.doi.org/10.1007/978-3-642-34961-4_35
http://dx.doi.org/10.1007/978-3-642-55220-5_9

	Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Functional Graph
	2.2 XOR Combiner
	2.3 Zipper Hash
	2.4 Joux's Multi-collision
	2.5 Expandable Message
	2.6 Dinur's Attack

	3 Functional Graph Revisited: Cyclic Node and Multi-cycles
	4 Improved Preimage Attack on XOR Combiner
	4.1 Attack Overview
	4.2 Attack Procedure
	4.3 Attack Complexity

	5 Second Preimage Attacks on Zipper Hash
	5.1 Attack Overview
	5.2 Attack Procedure
	5.3 Step 4: Constructing an Expandable Message
	5.4 Complexity of Second Preimage Attack on Zipper Hash
	5.5 Experimental Results

	6 Conclusion
	References

