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Abstract. In this paper, we focus on the constructions of adaptively
secure identity-based encryption (IBE) from lattices and verifiable ran-
dom function (VRF) with large input spaces. Existing constructions of
these primitives suffer from low efficiency, whereas their counterparts
with weaker guarantees (IBEs with selective security and VRFs with
small input spaces) are reasonably efficient. We try to fill these gaps
by developing new partitioning techniques that can be performed with
compact parameters and proposing new schemes based on the idea.

– We propose new lattice IBEs with poly-logarithmic master public
key sizes, where we count the number of the basic matrices to mea-
sure the size. Our constructions are proven secure under the LWE
assumption with polynomial approximation factors. They achieve
the best asymptotic space efficiency among existing schemes that
depend on the same assumption and achieve the same level of
security.

– We also propose several new VRFs on bilinear groups. In our first
scheme, the size of the proofs is poly-logarithmic in the security
parameter, which is the smallest among all the existing schemes
with similar properties. On the other hand, the verification keys are
long. In our second scheme, the size of the verification keys is poly-
logarithmic, which is the smallest among all the existing schemes.
The size of the proofs is sub-linear, which is larger than our first
scheme, but still smaller than all the previous schemes.

1 Introduction

1.1 Background

In cryptography, we define appropriate security notions for cryptographic prim-
itives, in order to capture real world attacks. For a cryptographic scheme to
be useful, it is desirable that the scheme achieves security notions as realistic as
possible. However, since natural and realistic security notions are hard to achieve
in general, we sometimes are only able to prove ad-hoc and unrealistic security
notions. Even when proving the former is possible, it sometimes comes with the
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cost of longer parameters or stronger assumptions. In this paper, we focus on two
such primitives: identity-based encryption (IBE) and verifiable random function
(VRF).

Identity-Based Encryption. IBE [Sha85] is a generalization of public key
encryption where the public key of a user can be any arbitrary string such as
an e-mail address. The first realizations of IBE are given by [SOK00,BF01] on
groups equipped with bilinear maps. Since then, realizations from bilinear maps
[BB04a,BB04b,Wat05,Gen06,Wat09], from quadratic residues modulo compos-
ite [Coc01,BGH07], and from lattices [GPV08,CHKP10,ABB10a,Boy10] have
been proposed.

Among the existing lattice IBE schemes in the standard model, the most
efficient one is in [ABB10a]. However, the scheme only satisfies selective security,
where an adversary must declare at the start of the game which identity it intends
to target. Although schemes with a much more realistic adaptive security (or
equivalently, full security) are known [CHKP10,ABB10a,Boy10], they are not as
efficient as the aforementioned selectively secure scheme. In particular, all these
schemes require master public keys longer by a factor O(λ) than the selectively
secure one, where λ is the security parameter. This stands in sharp contrast to
pairing-based settings, in which we have adaptively secure IBE schemes [Wat09,
CLL+12,JR13] that are as efficient as selectively secure ones [BB04a], up to a
small constant factor.

There have been several studies that aim at reducing the sizes of the para-
meters in adaptively secure lattice IBEs [Yam16,AFL16,ZCZ16,KY16]. How-
ever, current state of affairs are not satisfactory. These schemes are either based
on stronger assumptions [Yam16,KY16], or require still long public parameters
[Yam16,KY16,AFL16], or only achieves weaker security guarantee [ZCZ16].

Verifiable Random Function. The notion of VRF was introduced by Micali,
Rabin, and Vadhan [MRV99]. A VRF Vsk(·) is a pseudorandom function with
the additional property that it is possible to create a non-interactive and pub-
licly verifiable proof π that a given function value Y was computed correctly as
Y = Vsk(X). Since the introduction of this notion, several realizations have
been proposed [MRV99,Lys02,Dod03,DY05,ACF09]. All these constructions
only allow a polynomially bounded input space, or do not achieve full adaptive
security without complexity leveraging, or are based on an interactive complex-
ity assumption. Following [HJ16], in the sequel, we will say that a VRF has all
the desired properties, if it has an exponential-sized input space and a proof of
full adaptive security under a non-interactive complexity assumption.

The first VRF scheme with all the desired properties was proposed by Hohen-
berger and Waters [HW10]. Later, constructions from weaker assumptions have
been studied [BMR10,ACF14,Jag15,HJ16]. Notably, the scheme in [HJ16] is
secure under the standard decisional linear assumption. On the other hand,
there has not been improvement on the efficiency since [HW10]. Namely, all
existing VRF schemes with all the desired properties require O(λ) group ele-
ments both in the verification keys and proofs. This is much more inefficient
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than the scheme with a polynomial-size input space [DY05], which only requires
O(1) group elements for both.

The Gaps in Efficiency. As we have seen, there is a distinct gap in effi-
ciency between the state of the art schemes and the desired schemes. Namely,
both in lattice IBEs and VRFs, we loose efficiency when we want to achieve
stronger security notions. This loss in efficiency is an artifact of the security
proofs. Most of the schemes use the partitioning technique based on (an ana-
logue of) Waters’ hash [Wat05] or admissible hash functions [BB04b] to achieve
adaptive security. However, these techniques typically require long parameters.
The powerful framework of dual system encryption methodology, which was
introduced by Waters [Wat09], does not seem to be applicable for these settings.
In particular, we do not have lattice analogue of the dual system approach yet.
Furthermore, the uniqueness property required for VRF seems to contradict the
algebraic structure required to apply the dual system approach, as pointed out
in [Jag15,HJ16].

1.2 Our Contributions

In this paper, we try to fill the above gaps by generalizing the partition-
ing technique and proposing new schemes with improved (asymptotic) effi-
ciency. To do so, we first introduce the notion of partitioning functions, which
can be thought of as a generalization of the standard admissible hash func-
tions [BB04b,CHKP10,FHPS13,Jag15]. The notion of partitioning functions
abstracts out the information theoretic properties that are required to perform
the partitioning technique in the security proofs for IBE and VRF. Then, we
propose two new partitioning functions that can be constructed by much more
compact parameters than prior admissible hash functions. Our first construc-
tion is obtained by compressing the expression of the existing admissible hash
functions by introducing a novel encoding technique, whereas the second con-
struction is based on affine functions over a random modulus. We call the first
partitioning function FMAH and the second FAFF, where MAH and AFF stand for
modified admissible hash function and affine function respectively. These func-
tions provide us a framework to perform the security proofs in a more space
efficient manner than previous ones.

One thing to note is that in order to use them to construct IBE and VRF
schemes, we need a certain level of homomorphic capability on the underlying
algebraic structures. In the lattice setting, we can implement the idea by carefully
applying the powerful fully key homomorphic techniques of [BGG+14,GV15].
On the other hand, in the bilinear group setting, this technique may be inap-
plicable since we only have very limited amount of homomorphic capabilities.
Namely, given group elements, which can be seen as encodings of the corre-
sponding discrete logarithms, we can only compute encodings corresponding to
quadratic multi-variate polynomials on them. However, in the special case of
VRF, since the evaluator has full access to the secret key, it can evaluate any
homomorphism on them to compute the function value. Based on this observa-
tion, we can implement the idea in this setting as well.
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Table 1. Comparison of adaptively secure lattice IBE schemes

Schemes |mpk| # of

Z
n×m
q mat.

|ct|, |sk| #

of Z
m
q vec.

LWE param

1/α

Reduction cost Remarks

[CHKP10] O(λ) O(λ) Õ(n1.5) O(εν+1/Qν)b

[ABB10a]+[Boy10] O(λ) O(1) Õ(n5.5) O(ε2/qQ)

[Yam16] O(λ1/μ)a O(1) nω(1) O(εμ+1/kQμ)a

[ZCZ16] O(log Q) O(1) Õ(Q2 · n6.5) O(ε/kQ2) Q-bounded

[AFL16]c O(λ/ log2 λ) O(1) Õ(n6) O(ε2/qQ)

[BL16] O(λ) O(1) superpoly(n) O(λ)

[KY16]d O(λ1/μ)a,d O(1) O(n2.5+2μ)a O((λμ−1εμ/Qμ)μ+1)a Ring-based

Sect. 5.2 + FMAH O(log3 λ) O(1) Õ(n11) O(εν+1/Qν)b

Sect. 5.2 + FAFF
e O(log2 λ) O(1) poly(n) O(ε2/k2Q) Need [BCH86,Bar89]

We compare with adaptively secure IBE schemes under the LWE assumption in the standard model. |mpk|,
|ct|, and |skID| show the size of the master public keys, ciphertexts, and private keys, respectively. For both our

schemes, we set η = log2 λ. To measure the space efficiency, we count the number of basic components. Q and

ε denote the number of key extraction queries and the advantage, respectively. poly(n) (resp. superpoly(n))

represents fixed but large polynomial (super-polynomial) that does not depend Q and ε. To measure the

reduction cost, we show the advantage of the LWE algorithm constructed from the adversary against the

corresponding IBE scheme. To be fair, we calculate the reduction cost by employing the technique of Bellare

and Ristenpart [BR09] for all schemes.
a μ ∈ N is a constant number that can be chosen arbitrary. Since the reduction cost degrades exponentially

as μ grows, we would typically set μ very small (e.g., μ = 2 or 3).
b ν > 1 is the constant satisfying c = 1 − 2−1/ν , where c is the relative distance of the underlying error

correcting code C : {0, 1}k → {0, 1}�. We can take ν as close to 1 as one wants, by choosing c < 1/2

appropriately and make � large enough (See AppendixE.1 of [Gol08]).
c They also propose a variant of the scheme with constant-size master public key assuming the exponentially

secure collision resistant hash function. Since the use of the exponential assumption can be considered as a

certain kind of the complexity leveraging, we do not include the variant in the table.
d The scheme can only be instantiated over the rings Rq = Zq [X]/(Xn + 1). To measure the size of mpk we

count the number of the basic vectors, instead of the basic matrices.
e The key generation and encryption algorithm of the scheme involves the heavy step of computing the

description of the division circuit in NC1 using the result of [BCH86] and converting it into a branching

program by invoking the Barrington’s theorem [Bar89].

New Lattice IBE Schemes. Based on the new partitioning functions, we
propose two new adaptively secure lattice IBE schemes. For the overview and
comparison, we refer to Table 1. Both our schemes achieve the best asymptotic
space efficiency among existing schemes with the same assumption and security
notion. In particular, the number of basic matrices in the master public keys are
only polylogarithmic. Furthermore, the sizes of the ciphertexts and private keys
are optimal, in the sense that they match those of the selectively secure schemes
[ABB10a,Boy10] up to a constant factor.

– In our first scheme, the master public key consists of ω(log2 λ) basic matrices1,
which is the smallest among all the previous schemes. The security of the
scheme can be shown from the LWE assumption with approximation factor
Õ(n11), where n is the dimension of the lattices.

1 In our paper, when we say that the size of a parameters is ω(f(λ)), it means that the
parameter can be set to be any (polynomially bounded) function that grows faster
than f(λ). The parameter can be as small as one wants, as long as it does not violate
the lower-bound given by the ω-notation. In this case, we can choose the number of
the matrices to be Θ(log3 λ) or even Θ(log2 λ · log log log λ) for instance.
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– In our second scheme, the master public key consists of only ω(log λ) basic
matrices, which is even smaller than the one above. The security of the scheme
can be shown from the LWE assumption with approximation factors poly(n),
where poly(n) is some fixed polynomial that is determined by the depth of
the circuit computing a certain function.

We constructed the above schemes in a modular way. We first define the notion
of compatible algorithms for partitioning functions. Then, we propose a generic
construction of an IBE scheme from a partitioning function with its associating
compatible algorithms. We obtain our first scheme by instantiating this frame-
work with FMAH and its compatible algorithms. We obtain our second scheme
by instantiating it with FAFF.

New VRF Schemes. We also obtain the following three new VRF schemes
with all the desired properties. For the overview and comparison, we refer to
Table 2. All our schemes are constructed on bilinear groups and proven secure
under the L-DDH assumption,2 as is the same as most of the previous schemes
[ACF14,BMR10,Jag15]. In the following, to measure the sizes of the proofs and
verification keys, we count the number of group elements. Note that in all exist-
ing VRF schemes with all the desired properties [HW10,ACF14,BMR10,Jag15,
HJ16], the sizes of the verification keys and proofs are O(λ).

– Our first scheme is based on FMAH, and is parametrized by several parameters,
which control the tradeoffs of the efficiency. In certain parameter settings, the
scheme achieves the smallest proof-size among all existing VRF schemes that
satisfy all the desired properties. The size of the proofs is ω(log λ), whereas
the size of the verification keys is ω(λ log λ). The security is proven from the
L-DDH assumption with L = Õ(λ).

– Our second scheme is obtained by setting the parameters appropriately in
our first scheme and modifying it slightly. The scheme achieves the smallest
verification-key-size among all existing schemes with all the desired proper-
ties. The size of the verification keys is ω(log λ), whereas the size of the proofs
is ω(

√
λ log λ). The size of the proofs is larger than our first scheme, but still

smaller than all the previous schemes. The security is proven from the L-DDH
assumption with L = Õ(λ).

– Our third scheme is based on FAFF. The size of the verification keys and the
proofs are ω(log λ) and poly(λ), respectively. The security of the scheme is
proven from the L-DDH assumption with L = poly(λ). Here, poly(λ) is some
fixed polynomial that is determined by the depth of the circuit computing a
certain function.

Note that the main advantage of the third scheme over our first and second
schemes is that the security reduction is tighter.

Finally, we note that even though our lattice IBE schemes achieve the best
asymptotic space efficiency, it might not outperform [ABB10a,Boy10] in practi-
cal parameter settings, due to the large poly-logarithmic factors and the heavy
2 The L-DDH assumption says that given elements g, h, gα, . . . , gαL

in a bilinear
group, e(g, h)1/α is pseudorandom for any PPT adversary.



166 S. Yamada

Table 2. Comparison of VRF schemes with all the desired properties

Schemes |vk| (# of G) |π| (# of G) Assumption Reduction cost

[ACF14] O(λ) O(λ) O(λ)-DDH O(εν+1/Qν)a

[BMR10] O(λ) O(λ) O(λ)-DDH O(ε/λ)

[HW10] O(λ) O(λ) O(Qλ/ε)-DDHE O(ε2/λQ)

[Jag15] O(λ) O(λ) O(log (Q/ε))-DDH O(εν+1/Qν)a

[HJ16] O(λ) O(λ) DLIN O(εν+1/λQν)a

Sect. 6.1 (�1 = �, �2 = 1, η =

log2 λ).

O(λ log2 λ) O(log2 λ) Õ(λ)-DDH O(εν+1/Qν)a

Sect. 6.2 (�1 = �2 =
√

�, η =

log2 λ)

O(log2 λ) O(
√

λ log2 λ) Õ(λ)-DDH O(εν+1/Qν)a

App.C of the full version O(log2 λ) poly(λ) poly(λ)-DDH O(ε2/λ2Q)

We compare VRF schemes with all the desired properties. |vk| and |π| show the size of the verification keys

and proofs, respectively. To measure |vk| and |π|, we count the number of group elements. Q and ε denote

the number of evaluation queries and the advantage, respectively. poly(λ) represents fixed polynomial that

does not depend Q and ε. To measure the reduction cost, we show the advantage of the algorithm that

solves the problem (which is L-DDH for some L except for [HJ16]) constructed from the adversary against

the corresponding VRF scheme. To be fair, we measure the reduction cost by employing the technique of

Bellare and Ristenpart [BR09] for all schemes.
a ν is the constant satisfying c = 1−2−1/ν , where c is the relative distance of the underlying error correcting

code C : {0, 1}k → {0, 1}�. We can take ν as close to 1 as one wants, by choosing c < 1/2 appropriately and

make � large enough (See AppendixE.1 of [Gol08]).

encryption algorithm. The construction of truly efficient adaptively secure lattice
IBE still remains open.

Comparison with the Dual System Encryption Methodology. The dual
system encryption methodology [Wat09,LW10] is a very powerful tool to prove
the adaptive security of IBE and even advanced cryptographic primitives such
as attribute-based encryption [LOS+10]. However, currently, the technique is
not available in several settings. These include lattice-based cryptography and
the construction of VRF. We notice that relatively high level of homomorphic
capabilities are available in these settings and show that the partitioning tech-
nique can be performed more compactly by exploiting this fact. Our technique
is somewhat limited in the sense that it requires some homomorphic capabili-
ties and may not be available without them. However, in the settings where our
technique does not apply, the dual system encryption methodology may apply.
In this sense, they have mutual complementary relationship.

1.3 Related Works

Related Works on Lattice IBE. Yamada [Yam16] used the fully key homo-
morphic technique of [BGG+14] and asymptotically reduced the size of the mas-
ter public key. However, it required super-polynomial size modulus. The subse-
quent work by Katsumata et al. [KY16] showed that for the ring version of
Yamada’s scheme, it is possible to prove the security for polynomial-size mod-
ulus. The scheme by Apon et al. [AFL16] also proposed a scheme with shorter
master public keys using a different technique. These schemes require larger
number of matrices in the master public keys than ours. The scheme by Zhang
et al. [ZCZ16] achieved shorter master public key size than ours, however at the
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cost of a weaker security guarantee. In particular, their scheme only achieves
Q-bounded security, i.e., that the security of the scheme is not guaranteed any
more if the number of key extraction queries that the adversary makes exceeds
Q, where Q is a parameter that must be determined at the setup phase of the
scheme. This restriction cannot be removed by just making Q super-polynomial,
since the encryption algorithm of the scheme runs in time proportional to Q.
Finally, Boyen and Li [BL16] proposed the first lattice IBE schemes with tight
security reductions, where the schemes require long master public keys.

Related Works on VRF. Very recently, several works showed generic construc-
tions of VRF from simpler cryptographic primitives [GHKW17,Bit17,BGJS17].
These constructions lead to VRF schemes from various assumptions, including
schemes without bilinear maps. However, they cannot be efficiently instantiated
because they require general NIWI and constrained PRF (for admissible hash).
On the other hand, we focus on the efficient constructions of VRF from the spe-
cific number theoretic assumption. While our results are orthogonal to theirs,
our definition of partitioning function is very similar to that of the “partitioning
scheme” in the independent and concurrent work by Bitansky [Bit17].

2 Technical Overview

2.1 A Twist on the Admissible Hash

We first start with the review of the adaptively secure IBE schemes that use the
admissible hash function [BB04b,CHKP10]. The security proofs of these schemes
are based on the partitioning technique, a proof methodology that allows to
secretly partition the identity space into two sets of exponential size, the uncon-
trolled set and the controlled set, so that there is a noticeable probability that
the adversary’s key extraction queries fall in the controlled set and the challenge
identity falls in the uncontrolled set. Whether the identity is controlled or uncon-
trolled is determined by a function FADH that on input a secret randomness K
chosen during the simulation and an identity ID outputs 0 or 1. Here, 0 (resp.
1) indicates that ID is in the uncontrolled set (resp. controlled set). Concretely,
the partitioning is made by the following specific function:

FADH(K, ID) =

{
0, if ∀i ∈ [�] : C(ID)i = Ki ∨ Ki = ⊥
1, otherwise

where C(·) is a public function that maps an identity to a bit string in {0, 1}�

and K is a string in {0, 1,⊥}�. C(ID)i and Ki represent the i-th bit of C(ID) and
the i-th component of K, respectively. In [BB04b,CHKP10], the master public
keys are sufficiently long so that we can embed the secret randomness K into
them in a component-wise manner in the security proof. Since � = Θ(λ), where
λ is the security parameter, this results in large master public keys containing
O(λ) basic components. Due to the similar reasons, all constructions of VRFs
using admissible hash functions [ACF14,BMR10,Jag15,HJ16] also suffer from
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large public parameters. Our first step to address the problem is to observe
that K is very “sparse” in the sense that it conveys only a small amount of
information compared to its length. In the simulation, K is chosen uniformly at
random from {0, 1,⊥}�, with O(log (Q/ε)) components being not ⊥, where Q and
ε are the number of key extraction queries and the advantage of the adversary,
respectively. Since we assume an adversary that makes polynomial number of
key extraction queries and has non-negligible advantage in the security proof,
we have O(log (Q/ε)) = O(log λ). This means that Ki = ⊥ for most i ∈ [�].

K = ⊥ ⊥ 1 ⊥ 0 ⊥ ⊥
1 3 5© 7 9 11 13
2 4 6 8 10© 12 14

T = { 5, 10, }

C(X)= 0 1 1 0 0 1 0

1 3© 5© 7 9 11© 13
2© 4 6 8© 10© 12 14©

S(X) = {2, 3, 5, 8, 10, 11, 14}

Fig. 1. Pictorial explanation of the definition of S and T.

Our key idea is to encode K into a much shorter bit-string. For K ∈ {0, 1,⊥}�,
let us consider a set T ⊆ {1, 2, . . . , 2�} as

T := { 2i − Ki | i ∈ [�], Ki 	= ⊥ }. (1)

See Fig. 1 for the illustrative example. Since an element in {1, 2, . . . , 2�} can be
represented by a bit-string with length log 2� = O(log λ) and T only consists of
O(log λ) components, T can be represented by a bit-string with length O(log2 λ),
which is much shorter than � = Θ(λ).

In the next step, we introduce a modified admissible hash function FMAH as

FMAH(T, ID) =

{
0, ifT ⊆ S(ID)
1, otherwise

where S(ID) = { 2i − C(ID)i | i ∈ [�] } .

Again, see Fig. 1 for the illustrative example. For T defined as above, we have

FADH(K, ID) = FMAH(T, ID).

Namely, FADH and FMAH are essentially the same functions, but they take differ-
ent forms of inputs. The former takes K as the input, whereas the latter takes
T, an encoded form of K, as the input. This fact suggests the possibility of the
partitioning technique based on FMAH, rather than FADH. Namely, we first choose
K ∈ {0, 1,⊥}� as specified, then set T as Eq. (1). The identity space is parti-
tioned into two sets by FMAH(T, ·), which in turn is exactly the same partitioning
made by FADH(K, ·). Since the simulation strategy based on the function FMAH

uses a much shorter secret randomness (i.e. T) than FADH, this opens up the
possibility of constructing a much more compact IBE scheme.
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Even given the above idea, the constructions of our IBE and VRF are not
straightforward. Although the change is only in the encoding of the secret ran-
domness, it might be the case that the construction of the function is incom-
patible with the underlying algebraic structures. In particular, FMAH seems to
require more homomorphic capability than FADH. Indeed, even though we know
how to construct IBE from bilinear maps using FADH [BB04b], we do not know
how to do it for FMAH. In our lattice IBE, we can realize the idea by employ-
ing the fully key homomorphic technique introduced by [BGG+14]. However,
we have to be careful when applying the technique, otherwise we will end up
with a super polynomial LWE as in [Yam16], which is undesirable both from
the security and efficiency perspectives. For our VRF based on bilinear maps,
we employ the fact that we can compute the function value by highly non-linear
operations in the exponent.

2.2 Our First Lattice IBE

Our proposed IBE scheme follows the general framework for constructing a lat-
tice IBE scheme [CHKP10,ABB10a,Yam16,ZCZ16] that associates to each iden-
tity ID the matrix [A‖BID] ∈ Z

n×2m
q . In the template construction, the main part

of the ciphertext for ID contains s�[A‖BID]+x�, where s $← Z
n
q and x is a small

noise term. On the other hand, a private key for ID is a short vector e satisfying
[A‖BID]e = u for a random public vector u.

We compute the matrix BID using the fully key homomorphic technique
of [BGG+14]. Informally they showed that there exist algorithms PubEval and
TrapEval that satisfy

PubEval
(
F, {ARi + yiG}i∈[u]

)
= ARF + F(y) · G

where RF = TrapEval
(
F,A, {Ri, yi}i∈[u]

)
.

Here, F : {0, 1}u → {0, 1} is some function, Ri is a matrix with small coefficients,
and yi is the i-th bit of the bit-string y. Furthermore, RF has small coefficients.

For our construction, we prepare random matrices A,B1, . . . ,Bu in the mas-
ter public key, where u = ω(log2 λ). Then, we set

BID = PubEval( FMAH( · , ID), {Bi}i∈[u] ).

Here, we consider FMAH(·, ID) as a function that takes an binary string repre-
senting T as an input. This is necessary to apply the result of [BGG+14] without
using the super-polynomial modulus. The security of the scheme is reduced to
the LWE assumption, which says that given A ∈ Z

n×m
q and w ∈ Z

m
q , it is hard

to distinguish whether w $← Z
m
q or w� = s�A+x′� for some noise term x′. To

prove security, we set the matrices {Bi} in the master public key as

Bi = ARi + Ti · G
where A is from the problem instance of the LWE, Ri is a random matrix with
small coefficients, and Ti ∈ {0, 1} is the i-th bit of the binary representation of T.
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Due to the leftover hash lemma, the master public key is correctly distributed.
By the properties of PubEval and TrapEval, we have

BID = ARID + FMAH(T, ID) · G
where RID = TrapEval

(
FMAH( · , ID),A, {Ri,Ti}i∈[u]

)
.

Furthermore, by the property of FMAH, we have

FMAH(T, ID(1)) = · · · = FMAH(T, ID(Q)) = 1 ∧ FMAH(T, ID�) = 0 (2)

with noticeable probability, where ID� is the challenge identity, and
ID(1), . . . , ID(Q) are identities for which the adversary has made key extrac-
tion queries. If this condition holds, the simulation will be successful. The key
extraction queries for ID ∈ {ID(1), . . . , ID(Q)} can be handled by using RID as a
G-trapdoor [MP12] for the matrix [A‖BID] = [A‖ARID + G]. The generation
of the challenge ciphertext is also possible by computing

w�[I‖RID� ] =
(
s�A + x′�

)
· [I‖RID� ] = s�[A‖BID� ] + x′�[I‖RID� ].︸ ︷︷ ︸

noise term

A subtle point here is that the noise term above is not correctly distributed.
However, this problem can be resolved by the technique in [KY16].

Finally, we remark that our actual construction is different from the above in
two points. First, we do not use the (general) fully key homomorphic algorithm of
[BGG+14] to compute BID and RID. If we use the algorithm in a naive way, the
coefficients of RID will become super-polynomial, which somewhat nullifies the
merit of having smaller number of matrices. Instead, we show a direct algorithm
to compute BID and RID using the technique of [GV15], such that the coefficients
of RID are polynomially bounded. The second difference is that we add a matrix
B0 to the master public key and use the matrix [A‖B0 +BID] in the encryption
and the key generation, instead of [A‖BID]. This change is introduced because
of a subtle technical reason to make the security proof easier.

2.3 Our First VRF

Our VRF is constructed on bilinear maps and obtained by incorporating our
technique with the previous inversion-based VRF schemes [DY05,BMR10]. In
the scheme, we set the function as

Vsk(X) = e(g, h)1/θX , (3)

where the value θX = Z
∗
p is deterministically computed by the input X. Let

us ignore the problem of how we add the verifiability to the scheme for the
time being and start with the overview of the security proof for the scheme
as a (plain) PRF. The security will be proven under the L-DDH assumption,
which says that given (h, ĝ, ĝα, . . . ĝαL

, Ψ), it is infeasible to distinguish whether
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Ψ
$← GT or Ψ = e(ĝ, h)1/α. As before, we sample T and partition the input space

into two sets by FMAH. By the property and definition of FMAH, we have

T 	⊆ S(X(1)) ∧ · · · ∧ T 	⊆ S(X(Q)) ∧ T ⊆ S(X�)

with noticeable probability, where X� is the challenge input and X(1), . . . , X(Q)

are the inputs for which the adversary has made evaluation queries. Our strategy
to prove the security is to embed the problem instance and T into the parameters
of the scheme so that we have

θX = PX(α) and g = ĝQ(α).

Here, PX(Z) is a polynomial in Zp[Z] that depends on X and Q(Z) ∈ Zp[Z]
is some fixed polynomial. We want PX(Z) and Q(Z) to satisfy the following
property: There exist ξX ∈ Z

∗
p and RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z)

=

⎧⎨
⎩

ξX

Z
+ RX(Z) if T ⊆ S(X)

RX(Z) if T 	⊆ S(X)
. (4)

If the above holds, the simulation will be successful. To answer the evaluation
query on input X ∈ {X(1), . . . , X(Q)}, we compute e(ĝRX(α), h). This is a valid
answer, since we have T 	⊆ S(X) and thus

e(ĝRX(α), h) = e(ĝQ(α)/PX(α), h) = e(g1/PX(α), h) = e(g, h)1/θX .

To answer the challenge query, we compute Ψ ξX� · e
(
ĝRX� (α), h

)
. If Ψ

$← GT , it
is a random element in GT , as desired. On the other hand, if Ψ = e(ĝ, h)1/α, we
have

Ψ ξX� · e
(
ĝRX� (α), h

)
= e

(
ĝQ(α)/PX� (α), h

)
= e

(
g1/PX� (α), h

)
= e(g, h)1/θX�

which is the correct value. Now we have to find the polynomials with the desired
property (namely, Eq. (4)). Let us take PX(Z) to be the following form:3

PX(Z) =
∏

i∈[η],j∈[�]

(Z − ti + sj) where T = {t1, . . . , tη}, S(X) = {s1, . . . , s�}.

In some sense, PX(Z) checks (ti
?= sj) in a brute-force manner. We can see

that PX(Z) can be divided by Z exactly |T∩S(X)| times. Furthermore, we have
|T∩ S(X)| = |T| = η ⇔ T ⊆ S(X). This motivates us to define Q(Z) as follows:

Q(Z) = Zη−1 ·
∏
a�=0

(Z + a), (5)

where the product is taken for sufficiently many a 	= 0, so that the latter part of
Q(Z) can be divided by any factor of PX(Z) except for Z. It is easy to see that
3 For simplicity, we use a polynomial that is slightly different from the actual proof.
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Q(Z) can be divided by Z exactly η − 1 times. These imply that Q(Z) can be
divided by PX(Z), if and only if the multiplicity of Z in PX(Z) is at most η − 1.
This fact allows us to prove Eq. (4).

Finally, we go back and see how our actual construction works. We set the
verification key as vk = (g, h, {Wi = gwi}i∈[η]) and choose θX as

θX =
∏

(i,j)∈[η]×[�]

(wi + sj)︸ ︷︷ ︸
:=θi,j

=
∏
i∈[η]

⎛
⎝∏

j∈[�]

(wi + sj)

⎞
⎠

︸ ︷︷ ︸
φi

(6)

and set the function value as Vsk(X) = e(g, h)1/θX . The form of θX reflects the
“brute-force structure” that has appeared in PX(Z). To generate a proof for
the function value, we take the “step ladder approach” [Lys02,ACF09,HW10].
Namely, we publish values of the form g1/θ1,1 , g1/θ1,1θ1,2 , . . . , g1/θ1,1···θη,� = g1/θX .
The correctness of the function value can be verified by the pairing compu-
tations using these terms. While this scheme achieves very short verification
key, the proofs for the function values are very long. We can make the proofs
much shorter by a simple trick. We introduce additional helper components
{gwj

i }(i,j)∈[η]×[�] to the verification key. Instead of publishing the proof above,
we publish g1/φ1 , g1/φ1φ2 , . . . , g1/φ1···φη = g1/θX as a proof. Thanks to the helper
components, we can verify whether the function value is correct using the proof.

2.4 Other Constructions

Partitioning with Yet Another Function. We propose another function
FAFF, which is also useful to perform the partitioning technique. The main advan-
tage of the function over FMAH is that it achieves even shorter secret randomness
K of length ω(log λ). Here, we begin by reviewing FWAT, a slight variant of the
celebrated Waters’ hash [Wat05], and then gradually modify it to our FAFF. Let
the identity space of IBE (or input space of VRF) be {0, 1}k. The function FWAT

is defined as

FWAT(K = ({αi}i∈[k], β), ID) =

{
0, if (

∑
i∈[k] αiIDi) + β = 0

1, otherwise

where αi, β ∈ Z, ID ∈ {0, 1}k

Here, IDi is the i-th bit of ID. In order for the function to be useful, we should
choose the random secret K so that

Pr
K

[
FWAT(K, ID(1)) = 1 ∧ · · · ∧ FWAT(K, ID(Q)) = 1 ∧ FWAT(K, ID�) = 0

]
is noticeable. By a standard analysis, one can show that it suffices to satisfy the
following two requirements:
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(A) PrK [FWAT(K, ID�) = 0] is noticeable.
(B) PrK [FWAT(K, ID(i)) = 0 | FWAT(K, ID�) = 0] is sufficiently small for all

i ∈ [Q].

In order to satisfy the requirements, one way to choose is α1, . . . , αk
$← [1, 4Q]

and β
$← [−4kQ, 0]. As for requirement (A), we have

Pr
K

[FWAT(K, ID�) = 0] = Pr
α,β

⎡
⎣β = −

∑
i∈[k]

αiID
�
i

⎤
⎦ =

1
4kQ + 1

where the second equality follows from −4kQ ≤ ∑
i∈[k] αiID

�
i ≤ 0. We can

see that the probability is noticeable as desired. The main observation here
is that since the value of each αi is polynomially bounded and ID�

i ∈ {0, 1},
the total sum is also confined within the polynomially bounded range and thus
can be guessed with noticeable probability. Requirement (B) can be proven by
exploiting a certain kind of pairwise independence of FWAT(K, ·).

The problem of the above function is that it requires long secret randomness
K, whose length is linear in k. As the first attempt to shorten this, we could
consider a modified function F′

WAT defined as

F′
WAT(K = (α, β), ID) =

{
0, if αID + β = 0
1, otherwise

where α, β ∈ Z, ID ∈ [2k − 1]

where we interpret ID ∈ {0, 1}k as an integer in [2k − 1] by the natural bijec-
tion. While it is easy to satisfy requirement (B), we no longer know how to
satisfy requirement (A) at the same time. Even if the size of α is polynomially
bounded, α · ID can be very large, and we can not guess the value better than
with exponentially small probability.

To resolve the problem, we further modify the function and obtain our final
function FAFF defined as follows:

FAFF(K = (α, β, ρ), ID) =

{
0, if αID + β ≡ 0 mod ρ

1, otherwise

where α, β, ρ ∈ Z, ID ∈ [2k − 1].

Here, we choose ρ to be a random polynomial-size prime. Now, we can satisfy
requirement (A), since we only have to guess (α · ID mod ρ), for which there
are only a polynomial number of candidates. However, making the size of ρ
polynomial causes a subtle problem regarding requirement (B). Let us consider
the case where an adversary makes queries such that ID� = ID(1) + ρ. In such
a case, we have FAFF(K, ID�) = FAFF(K, ID(1)) and the simulation fails with
probability 1, no matter how we choose α and β. Such queries can be made
with noticeable probability, since ρ is polynomial-size and the adversary can
guess the value with noticeable probability. However a small subtlety is that the
probability does not need to be negligible in order to satisfy requirement (B).



174 S. Yamada

Due to this observation, by choosing ρ randomly from a large enough domain
(concretely, from [kQ2/ε, 4kQ2/ε]), we can make the probability of such queries
being made sufficiently small, hence satisfying requirement (A) and (B).

New IBE and VRF Based on the Function. Based on the function FAFF,
we propose a lattice based IBE scheme and a VRF scheme on bilinear groups.
To construct a lattice based IBE scheme, we follow the same template as the
case of FMAH and set BID = PubEval(FAFF(· , ID), {Bi}i∈[u]). Again, if we use the
fully key homomorphic algorithm of [BGG+14] naively, the scheme will require
super polynomial modulus q. To avoid this, to compute BID, we first compute a
description of a log-depth circuit corresponding to FAFF. Such a circuit exists by
the classical result of Beam, Cook, and Hoover [BCH86], who showed that the
computation of division can be performed in NC1, since division implies modulo
ρ arithmetic. Then, we convert the log-depth circuit into a branching program
using the Barrington’s theorem [Bar89]. Finally, we use the key homomorphic
algorithm for branching programs in [GV15]. Note that similar approach was
also taken in [BL16] to homomorphically evaluate a PRF. To construct a VRF
based on bilinear groups, we again take advantage of the fact that FAFF can be
computed by a log-depth circuit. This fact is necessary for our VRF to be proven
secure under a polynomial-size assumption, since our security proof requires 2d-
DDH assumption, where d is the depth of the circuit.

3 Preliminaries

Due to the space limitation, we omit most of the proofs for the lemmas presented
in the paper. They can be found in the full version [Yam17].

Notation. We denote by [a] a set {1, 2, . . . , a} for any integer a ∈ N. For a set
S, |S| denotes its size. We treat a vector as a column vector. If A1 is an n × m
and A2 is an n × m′ matrix, then [A1‖A2] denotes the n × (m + m′) matrix
formed by concatenating A1 and A2. We use similar notation for vectors. For a
vector u ∈ Z

n, ‖u‖ and ‖u‖∞ denote its �2 and �∞ norm respectively. Similarly,
for a matrix R, ‖R‖∞ denotes its infinity norm. ‖R‖2 is the operator norm of
R. Namely, ‖R‖2 := sup‖x‖=1 ‖Rx‖. For a function f(·) : N → R≥0, we say that
the function is negligible when for every polynomial g(·) and all sufficiently large
λ we have f(λ) < |1/g(λ)|. We say that the function is noticeable when there
exists a polynomial g(·) such that we have f(λ) ≥ |1/g(λ)| for all λ.

3.1 Cryptographic Primitives

IBE and VRF. We use the standard syntax of IBE [BF01] and VRF with large
input spaces [HW10]. We require standard notion of the correctness for both. For
VRF, we also require unique provability. As for the security, we require adaptive
anonymity for IBE and pseudorandomness for VRF. We refer to the full version
for the formal definitions. These security notions are defined by games between
the challenger and the adversary. In the games, we use two random variables coin
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and ĉoin in {0, 1} for defining the security. coin refers to the random value chosen
by the challenger and ĉoin refers to the guess for coin output by the adversary.
We have the following general statement concerning coin and ĉoin.

Lemma 1 (Lemma8 in [KY16], See also Lemma 28 in [ABB10a]). Let
us consider an IBE (resp. VRF) scheme and an adversary A that breaks the
adaptively-anonymous security (resp. pseudorandomness) with advantage ε. Let
the identity space (resp. input space) be X and consider a map γ that maps
a sequence of elements in X to a value in [0, 1]. We consider the following
experiment. We first execute the security game for A. Let X� be the chal-
lenge identity (resp. challenge input) and X1, . . . , XQ be the identities (resp.
inputs) for which key extraction queries (resp. evaluation queries) were made.
We denote X = (X�,X1, . . . , XQ). At the end of the game, we set coin′ ∈ {0, 1}
as coin′ = ĉoin with probability γ(X) and coin′ $← {0, 1} with probability 1−γ(X).
Then, the following holds.∣∣∣∣Pr[coin′ = coin] − 1

2

∣∣∣∣ ≥ γmin · ε − γmax − γmin

2

where γmin and γmax are the maximum and the minimum of γ(X) taken over all
possible X, respectively.

Though the lemma was proven only for IBE in [KY16], the same proof works
also for VRF.

3.2 Preliminaries on Lattices and Bilinear Maps

For an integer m > 0, let DZm,σ be the discrete Gaussian distribution over Z
m

with parameter σ > 0.

Learning with Errors (LWE) Assumption. We define the learning with
errors (LWE) problem, which was introduced by Regev [Reg05].

Definition 1 (LWE). For an integers n = n(λ), m = m(n), a prime integer
q = q(n) > 2, a real number α ∈ (0, 1), and a PPT algorithm A, an advantage
for the learning with errors problem dLWEn,m,q,α of A is defined as follows:

Adv
dLWEn,m,q,α

A =
∣∣Pr

[A(A, s�A + x�) → 1
]− Pr

[A(A,w� + x�) → 1
]∣∣

where A $← Z
n×m
q , s $← Z

n
q , x $← DZm,αq, w $← Z

m
q . We say that dLWEn,m,q,α

assumption holds if AdvdLWEn,m,q,α

A is negligible for all PPT A.

Regev [Reg05] (see also [GKV10]) showed that solving dLWEn,m,q,α for αq >
2
√

2n is (quantumly) as hard as approximating the SIVP and GapSVP problems
to within Õ(n/α) factors in the �2 norm, in the worst case. In the subsequent
works, (partial) dequantumization of the Regev’s reduction were achieved [Pei09,
BLP+13].
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Gadget Matrix. Let m > n�log q�. There is a fixed full-rank matrix G ∈ Z
n×m
q

such that there exists a deterministic polynomial-time algorithm G−1 which
takes the input U ∈ Z

n×m
q and outputs V = G−1(U) such that V ∈ {0, 1}m×m

and GV = U.

Trapdoors. Here, we follow the presentation of [BV16]. Let n,m, q ∈ N and
consider a matrix A ∈ Z

n×m
q . For all V ∈ Z

n×m′
q , we let A−1

σ (V) be a dis-
tribution that is a Gaussian (DZm,σ)m′

conditioned on A · A−1
σ (V) = V. A

σ-trapdoor for A is a procedure that can sample from the distribution A−1
σ (V)

in time poly(n,m,m′, log q), for any V. We slightly overload notation and denote
a σ-trapdoor for A by A−1

σ . The following properties had been established in a
long sequence of works [GPV08,ABB10a,CHKP10,ABB10b,MP12,BLP+13].

Lemma 2 (Properties of Trapdoors). Lattice trapdoors exhibit the following
properties.

1. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.
2. Given A−1

σ , one can obtain [A‖B]−1
σ and [B‖A]−1

σ for any B.
3. For all A ∈ Z

n×m
q and R ∈ Z

m×m, with m ≥ n�log q�, one can obtain
[AR + G‖A]−1

σ for σ = m · ‖R‖∞ · ω(
√

log m).
4. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1

σ0
)

where A ∈ Z
n×m
q for some m = O(n log q) and is 2−n-close to uniform, where

σ0 = ω(
√

n log q log m).
5. For A−1

σ and u ∈ Z
n
q , it follows Pr[ ‖A−1

σ (u)‖ >
√

mσ ] = negl(n).

Certified Bilinear Group Generators. We define certified bilinear group
generators following [HJ16]. We require that there is an efficient bilinear group
generator algorithm GrpGen that on input 1λ and outputs a description Π of
bilinear groups G,GT with prime order p and a map e : G × G → GT . We also
require that GrpGen is certified, in the sense that there is an efficient algorithm
GrpVfy that on input a (possibly incorrectly generated) description of the bilinear
groups and outputs whether the description is valid or not. Furthermore, we
require that each group element has unique encoding, which can be efficiently
recognized. For the precise definitions, we refer to [HJ16] and the full version.

L-Diffie-Hellman Assumptions

Definition 2 (L-Diffie-Hellman Assumptions). For a PPT algorithm A,
an advantage for the decisional L-Diffie Hellman problem L-DDH of A with
respect to GrpGen is defined as follows:

AdvL-DDH
A = |Pr[A(Π, ĝ, h, ĝα, ĝα2

, . . . ĝαL

, Ψ0) → 1]

−Pr[A(Π, ĝ, h, ĝα, ĝα2
, . . . ĝαL

, Ψ1) → 1]|

where Π
$← GrpGen(1λ), α

$← Z
∗
p, ĝ, h

$← G, Ψ0 = e(ĝ, h)1/α, and Ψ1
$← GT . We

say that L-DDH assumption holds if AdvL-DDH
A is negligible for all PPT A.
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4 Partitioning Functions

In this section, we introduce the notion of partitioning functions. The notion
abstracts out the information theoretic properties that are useful in the security
proofs based on the partitioning techniques. Then, we proceed to recap the spe-
cific partitioning function that was given by [Jag15]. Then, we propose two new
constructions of partitioning functions. The first one is obtained by introduc-
ing a simple but novel twist to the construction by [Jag15]. The second one is
based on the affine-functions on random modulus. In the later sections, we will
construct new lattice IBEs and VRFs based on these partitioning functions.

4.1 Definition

In the security proofs based on the partitioning technique [BB04b,Wat05], the
simulations are successful only with noticeable probabilities. As observed by
Waters [Wat05], this causes a subtle problem when considering the reduction
to the decisional assumptions (such as the L-DDH). He resolved the problem
by introducing the artificial abort step, where the simulator intentionally aborts
with certain probability even when the simulation is successful. Later, Bellare
and Ristenpart [BR09] showed that by requiring reasonable upper bound on the
probability that the simulation is successful in addition to the lower bound, this
step can be removed. In the subsequent work, Jager [Jag15] incorporated the
idea of [BR09] into the notion of the admissible hash function [BB04b,CHKP10,
FHPS13] to define balanced admissible hash function. The notion is a useful tool
to perform the security proofs based on the partitioning technique. In addition,
it is compatible with the decisional assumptions in the sense that it does not
require the artificial abort step. Here, we define the notion of the partitioning
function by slightly generalizing the balanced admissible hash function [Jag15].

Definition 3. Let F = {Fλ : Kλ × Xλ → {0, 1}} be an ensemble of func-
tion families. We say that F is a partitioning function, if there exists an effi-
cient algorithm PrtSmp(1λ, Q, ε), which takes as input polynomially bounded
Q = Q(λ) ∈ N and noticeable ε = ε(λ) ∈ (0, 1/2] and outputs K such that:

1. There exists λ0 ∈ N such that

Pr
[
K ∈ Kλ : K

$← PrtSmp
(
1λ, Q(λ), ε(λ)

)]
= 1

for all λ > λ0. Here, λ0 may depend on functions Q(λ) and ε(λ).
2. For λ > λ0, there exists γmax(λ) and γmin(λ) that depend on Q(λ) and ε(λ)

such that for all X(1), . . . , X(Q),X� ∈ Xλ with X� 	∈ {X(1), . . . , X(Q)},
γmax(λ) ≥ γ(X(1), . . . , X(Q)) ≥ γmin(λ) (7)

holds where

γ(X(1), . . . , X(Q)) = Pr
[(

F(K,X(j)) = 1 ∀j ∈ [Q]
)

∧ F(K,X�) = 0
]
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and the function τ(λ) defined as

τ(λ) := γmin(λ) · ε(λ) − γmax(λ) − γmin(λ)
2

(8)

is noticeable. We note that the probability above is taken over the choice of
K

$← PrtSmp(1λ, Q(λ), ε(λ)).

We call K the partitioning key and τ(λ) the quality of the partitioning function.

In the following, we often drop the subscript λ and denote F, K, and X for
the sake of simplicity. We remark that the term τ(λ) above, which may seem
very specific, is inherited from [Jag15]. As explained in [Jag15], such a term
appears typically in security analyses that follows the approach of Bellare and
Ristenpart [BR09] (See also Lemma 1). Looking ahead, the quantity τ(λ) will
directly affect the reduction cost of our IBEs and VRFs. The length of (the
binary representation of) the partitioning key K will affect the efficiency of the
resulting schemes. Therefore, we want the partitioning function F for the largest
possible τ(λ) and the shortest possible partitioning key.

There are two main differences from the definition of [Jag15]. Firstly, we con-
sider any function F, whereas they only considered a specific function (namely,
FADH in Sect. 4.2). Secondly, we explicitly add the condition regarding the domain
correctness of the output of PrtSmp (the first condition), which was implicit in
[Jag15].

Comparison with Programmable Hash Functions. Our notion of the par-
titioning function is similar to the programmable hash function [HK08,ZCZ16].
The main difference is that whereas the notion of the programmable hash func-
tion is defined on specific algebraic structures such as (bilinear) groups [HK08]
and lattices [ZCZ16], our definition is irrelevant to them. Since the security
proofs of our IBEs and VRFs have the same information theoretic structure in
common, we choose to decouple them from the underlying algebraic structures.

4.2 Construction from Admissible Hash Function

Here, we recap the result of Jager [Jag15] who constructed a specific partitioning
function that he calls balanced admissible hash function. The result will be
used in the next subsection to construct our first partitioning function. Let
k(λ) = Θ(λ) and �(λ) = Θ(λ) be integers and let {Ck : {0, 1}k → {0, 1}�}k∈N be
a family of error correcting codes with minimal distance �c for a constant c ∈
(0, 1/2). Explicit constructions of such codes are given in [SS96,Zém01,Gol08]
for instance. Let us define

KADH = {0, 1,⊥}� and XADH = {0, 1}k.

We define FADH as

FADH(K,X) =

{
0, if ∀i ∈ [�] : C(X)i = Ki ∨ Ki = ⊥
1, otherwise
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where C(X)i and Ki are the i-th significant bit of C(X) and K, respectively.
Jager [Jag15] showed the following theorem.

Theorem 1 (Adapted from Theorem 1 in [Jag15]). There exists an efficient
algorithm AdmSmp(1λ, Q, ε), which takes as input Q ∈ N and ε ∈ (0, 1/2] and
outputs K with exactly η′ components not equal to ⊥, where

η′ :=
⌊

log(2Q + Q/ε)
− log (1 − c)

⌋
,

such that Eqs. (7) and (8) hold with respect to F := FADH, PrtSmp := AdmSmp,
and τ(λ) = 2−η′−1 · ε. In particular, FADH is a partitioning function.

4.3 Our Construction Based on Modified Admissible Hash Function

Here, we propose our first construction of the partitioning function FMAH, which
is obtained by modifying FADH in the previous subsection. The advantage of
FMAH is that it achieves much shorter partitioning keys compared with FADH. In
particular, the length is ω(log2 λ) in FMAH, whereas Θ(λ) in FADH. We will use
the same notation as in Sect. 4.2. Let us introduce an integer η(λ) = ω(log λ).
η(λ) can be set arbitrarily as long as it grows faster than log λ. (See footnote in
Sect. 1.) For our construction, we set

KMAH = {T ⊆ [2�] | |T| < η} and XMAH = {0, 1}k.

We define FMAH as

FMAH(T,X) =

{
0, ifT ⊆ S(X)
1, otherwise

where S(X) = { 2i − C(X)i | i ∈ [�] } .

In the above, C(X)i is the i-th bit of C(X) ∈ {0, 1}�. See Fig. 1 in Sect. 2.1 for
an illustrative example of S.

Lemma 3. The function FMAH defined above is a partitioning function.

Proof. To prove the lemma, we define PrtSmpMAH as follows. It uses the algo-
rithm AdmSmp from the previous subsection as a subroutine.

PrtSmpMAH(1λ, Q, ε) : It runs AdmSmp(1λ, Q, ε) → K and sets

T = {2i − Ki | i ∈ [�], Ki 	= ⊥} ⊆ [2�],

where Ki is the i-th bit of K. It finally outputs T.

See Fig. 1 in Sect. 2.1 for an illustrative example of T. We first show that
PrtSmpMAH satisfies the first property of Definition 3. By Theorem 1, |T| = η′ =
�log (2Q + Q/ε)/ log (1 − c)�. To show T ∈ KMAH for all sufficiently large λ, it
suffices to show η′(λ) < η(λ) for all sufficiently large λ. This follows since

η′(λ) =
⌊

log(2Q + Q/ε)
− log (1 − c)

⌋
= O (log(poly(λ))) = O(log λ) and η(λ) = ω(log λ)
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when Q(λ) is polynomially bounded and ε is noticeable for constant c. We next
prove the second property. This follows from Theorem 1 and by the following
observation:

FADH(K,X) = 0 ⇔ C(X)i = Ki ∀i ∈ [�] such that Ki 	= ⊥
⇔ T ⊆ S(X)
⇔ FMAH(T,X) = 0.

This completes the proof of Lemma 3.

4.4 Our Construction Based on Affine Functions

Here, we propose our second construction of the partitioning function FAFF.
Compared to FMAH, the function achieves an even shorter length of ω(log λ) for
the partitioning keys. Let k(λ) = Θ(λ) and η(λ) = ω(log λ) be integers. For our
construction, we set

KAFF = {0, 1}3η, XAFF = {0, 1}k

FAFF(K,X) is defined as

FAFF(K = (α, β, ρ), X) =

{
0, if ρ 	= 0 ∧ αX + β ≡ 0 mod ρ

1, otherwise
,

where α, β, ρ ∈ {0, 1}η. Here, we slightly abuse the notation and identify a
bit-string in {0, 1}η with an integer in [0, 2η − 1] by its binary representation.
Similarly, a bit-string in {0, 1}k is identified with an integer in [0, 2k − 1].

Theorem 2. FAFF defined above is a partitioning function.

5 Our IBE Schemes

In this section, we give a generic construction of an adaptively secure lattice
based IBE from a partitioning function. Our generic construction requires the
underlying partitioning function to be compatible (in some sense) with the struc-
ture of lattices. In the following, we first formalize the requirement by giving the
definition of compatibility. Then, we show that FMAH and FAFF are compatible
in this sense. Finally, we show the generic construction of IBE.

5.1 Compatible Algorithms for Partitioning Functions

The following definition gives a sufficient condition for partitioning functions to
be useful for constructing adaptively secure IBE schemes.

Definition 4. We say that the deterministic algorithms (Encode,PubEval,
TrapEval) are δ-compatible with a function family {F : K × X → {0, 1}} if they
are efficient and satisfy the following properties:
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– Encode(K ∈ K) → κ ∈ {0, 1}u

– PubEval
(
X ∈ X , {Bi ∈ Z

n×m
q }i∈[u]

) → BX ∈ Z
n×m
q

– TrapEval
(
K ∈ K, X ∈ X , A ∈ Z

n×m
q , {Ri ∈ Z

m×m}i∈[u]

) → RX ∈ Z
m×m

We require that the following holds:

PubEval
(
X, {ARi + κiG}i∈[u]

)
= ARX + F(K,X) · G

where κi ∈ {0, 1} is the i-th bit of κ = Encode(K) ∈ {0, 1}u. Furthermore, if
Ri ∈ {−1, 0, 1}m×m for all i ∈ [u], we have ‖RX‖∞ ≤ δ.

It is possible to obtain compatible algorithms for any partitioning functions,
including ours, by directly leveraging the fully key homomorphic algorithm in
[BGG+14]. However, if we apply the algorithm naively, it will end up with super-
polynomial δ, which is undesirable. By carefully applying the idea from [GV15],
we can provide δ-compatible algorithms for FMAH and FAFF with polynomial δ.
In particular, we have following lemmas.

Lemma 4. For u = η ·�log (2� + 1)�, there are m3u(�+1)-compatible algorithms
for FMAH.

Lemma 5. For u = 3η, there are poly(n)-compatible algorithm for FAFF, where
poly(n) denotes some fixed polynomial in n.

5.2 Construction

Here, we construct an IBE scheme based on a partitioning function F : K×X →
{0, 1} with associating δ-compatible algorithms (Encode,PubEval,TrapEval). We
assume X = ID = {0, 1}k, where ID is the identity space of the scheme. If
a collision resistant hash CRH : {0, 1}∗ → {0, 1}k is available, we can use any
bit-string as an identity. For simplicity, we let the message space of the scheme
be {0, 1}. For the multi-bit variant, we refer to Sect. 5.3. Our scheme can be
instantiated with FMAH and FAFF, which would lead to schemes with efficiency
and security trade-offs. We compare the resulting schemes with existing schemes
in Sect. 7. (See also Table 1 in Sect. 1.)

Setup(1λ) : On input 1λ, it sets the parameters n, m, q, σ, α, and α′ as specified
later in this section, where q is a prime number. Then, it picks random matri-
ces B0,Bi

$← Z
n×m
q for i ∈ [u] and a vector u $← Z

n
q . It also picks (A,A−1

σ0
) $←

TrapGen(1n, 1m, q) such that A ∈ Z
n×m
q and σ0 = ω(

√
n log q log m). It finally

outputs

mpk =
(

A, B0, {Bi}i∈[u], u
)

and msk = A−1
σ0

.

KeyGen(mpk,msk, ID) : Given an identity ID, it first computes

PubEval
(
ID, {Bi}i∈[u]

) → BID ∈ Z
n×m
q .
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It then computes [A‖B0 + BID]−1
σ from A−1

σ0
and samples

e $← [A‖B0 + BID]−1
σ (u).

Then, it returns skID = e ∈ Z
2m. Note that we have [A‖B0 + BID] · e = u

mod q.

Encrypt(mpk, ID,M) : To encrypt a message M ∈ {0, 1} for an identity ID, it first
computes PubEval(ID, {Bi}i∈[u]) → BID. It then picks s $← Z

n
q , x0

$← DZ,αq,
x1,x2

$← DZm,α′q and computes

c0 = s�u + x0 + M · �q/2�, c�
1 = s� [A‖B0 + BID] + [x�

1 ‖x�
2 ].

Finally, it returns the ciphertext ct = (c0, c1) ∈ Zq × Z
2m
q .

Decrypt(mpk, skID, ct) : To decrypt a ciphertext ct = (c0, c1) using a private key
skID := e, it first computes

w = c0 − c�
1 · e ∈ Zq.

Then it returns 1 if |w − �q/2�| < �q/4� and 0 otherwise.

We claim that the correctness and security of the scheme can be proven under
the following parameter selection. We refer full version to the justification.

m = O(n log q), q = n7/2 · δ2 · ω(log7/2 n), σ = m · δ · ω(
√

log m)

αq = 3
√

n, α′q = 5
√

n · m · δ.

Here, the parameter δ is determined by the compatible algorithms corresponding
to F. The following theorem addresses the security of the scheme.

Theorem 3. If F : K × X → {0, 1} is a partitioning function and (Encode,
PubEval,TrapEval) are the corresponding δ-compatible algorithms, our scheme
achieves adaptively-anonymous security assuming dLWEn,m+1,q,α.

5.3 Multi-bit Variant

Here, we explain how to extend our scheme to be a multi-bit variant with-
out increasing much the size of the master public keys and ciphertexts follow-
ing [PVW08,ABB10a,Yam16]. (However, it comes with longer private keys.) To
modify the scheme so that it can deal with the message space of length �M , we
replace u ∈ Z

n
q in mpk with U ∈ Z

n×�M
q . The component c0 in the ciphertext is

replaced with c�
0 = s�U+x�

0 +M�q/2�, where x0
$← D

Z
�M ,αq and M ∈ {0, 1}�M

is the message to be encrypted. The private key is replaced to be E ∈ Z
m×�M ,

where E is chosen as E $← [A‖B0 + BID]−1
σ (U). We can prove security for

the multi-bit variant from dLWEn,m+�M ,q,α by naturally extending the proof of
Theorem 3. We note that the same parameters as in Sect. 5.2 will also work
for the multi-bit variant. By this change, the sizes of the master public keys,
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ciphertexts, and private keys become Õ(n2u + n�M ), Õ(n + �M ), and Õ(n�M )
from Õ(n2u), Õ(n), and Õ(n), respectively. The sizes of the master public keys
and ciphertexts will be asymptotically the same as long as �M = Õ(n). To
deal with longer messages, we employ a KEM-DEM approach as suggested in
[Yam16]. Namely, we encrypt a random ephemeral key of sufficient length and
then encrypt the message by using the ephemeral key.

6 Our VRF Scheme Based on FMAH

6.1 Construction

Here, we construct a verifiable random function scheme based on the partitioning
function FMAH. We let the input and output space of the scheme be X = {0, 1}k

and Y = GT , respectively. Let η := η(λ), � := �(λ), C : {0, 1}k → {0, 1}�, and
S be as in Sect. 4.3. We also introduce �1 := �1(λ) and �2 = �2(λ) such that
� = �1�2. These parameters will control the trade-offs between sizes of proofs
and verification keys. A typical choice would be (�1, �2) = (O(

√
�), O(

√
�)) or

(�1, �2) = (O(�), O(1)).

Gen(1λ) : On input 1λ, it chooses a group description Π
$← GrpGen(1λ). It

chooses random generators g, h
$← G

∗ and w1, . . . , wη
$← Zp. It then out-

puts

vk =
(

Π, g, h,
{

Wi,j1 := gw
j1
i

}
(i,j1)∈[η]×[�1]

)
and sk =

({wi}i∈[η]

)
.

Eval(sk,X) : Given X ∈ {0, 1}k, it first computes S(X) = {s1, . . . , s�} ⊂ [2�],

θ =
∏

(i,j)∈[η]×[�]

(wi + sj), and θi,j2 =
∏

(i′,j′)∈Ωi,j2

(wi′ + sj′) (9)

for (i, j2) ∈ [η] × [�2], where

Ωi,j2 = {(i′, j′) ∈ [η] × [�] | (i′ ∈ [i − 1]) ∨ (i′ = i ∧ j′ ∈ [j2�1])} .

We note that θ = θη,�2 . If θ ≡ 0 mod p, it outputs Y = 1GT
and π = ({πi,j2 =

1G}(i,j2)∈[η]×[�2])
4. Otherwise, it outputs

Y = e(g, h)1/θ and π =
({

πi,j2 = g1/θi,j2

}
(i,j2)∈[η]×[�2]

)
.

Verify(vk,X, Y, π) : It first checks the validity of vk by the following steps. It
outputs 0 if any of the following does not hold:

4 The event occurs with only negligible probability. This choice of the output is arbi-
trary and can be replaced with any fixed group elements.
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1. vk is of the form (Π, g, h, {Wi,j1}(i,j1)∈[η]×[�1]).
2. GrpVfy(Π) → 1, g, h ∈ G

∗, and Wi,j1 ∈ G for all (i, j1) ∈ [η] × [�1].
3. e (Wi,1,Wi,j1−1) = e (g,Wi,j1) for all (i, j1) ∈ [η] × [2, �1].

It then checks the validity of Y and π. To do this, it computes Φi,j2 ∈ G for
(i, j2) ∈ [η] × [�2] as

Φi,j2 := gϕj2,0 ·
∏

j1∈[�1]

W
ϕj2,j1
i,j1

, (10)

where {ϕj2,j1 ∈ Zp}(j2,j1)∈[�2]×[0,�1] are the coefficients of the following poly-
nomial: ∏

j′∈[(j2−1)�1+1,j2�1]

(Z + sj′) = ϕj2,0 +
∑

j1∈[�1]

ϕj2,j1Z
j1 ∈ Zp[Z].

It outputs 0 if any of the following does not hold:
4. X ∈ {0, 1}k, Y ∈ GT , π is of the form π = ({πi,j2 ∈ G}(i,j2)∈[η]×[�2]).
5. If there exists (i, j2) ∈ [η] × [�2] such that Φi,j2 = 1G, we have Y = 1GT

and πi,j2 = 1G for all (i, j2) ∈ [η] × [�2].
6. If Φi,j2 	= 1G for all (i, j2) ∈ [η] × [�2], the following equation holds for all

(i, j2) ∈ [η] × [�2]:

e (πi,j2 , Φi,j2) = e(πi,j2−1, g) (11)

where we define πi,0 := πi−1,�2 for i ≥ 2 and π1,0 := g.
7. e(πη,�2 , h) = Y holds.

If all the above conditions hold, it outputs 1.

The correctness and unique provability of the scheme can be proven by a
standard argument. The following theorem addresses the pseudorandomness of
the scheme.

Theorem 4. Our scheme satisfies pseudorandomness assuming L-DDH with
L = (4� + 1)η + �1.

Proof. Let A be a PPT adversary that breaks pseudorandomness of the scheme.
In addition, let ε = ε(λ) and Q = Q(λ) be its advantage and the upper bound
on the number of evaluation queries, respectively. By assumption, Q(λ) is poly-
nomially bounded and there exists a noticeable function ε0(λ) such that ε(λ) ≥
ε0(λ) holds for infinitely many λ. By the property of the partitioning function
(Definition 3, Item 1), we have that

|T| < η where T
$← PrtSmpMAH(1λ, Q, ε0)

holds with probability 1 for all sufficiently large λ. Therefore, in the following, we
assume that this condition always holds. We show the security of the scheme via
the following sequence of games. In each game, a value coin′ ∈ {0, 1} is defined.
While it is set coin′ = ĉoin in the first game, these values might be different in
the later games. In the following, we define Ei be the event that coin′ = coin.
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Game0 : This is the real security game. Recall that since the range of the function
is Y = GT , in the challenge phase, Y �

1
$← GT is returned to A if coin = 1. At

the end of the game, A outputs a guess ĉoin for coin. Finally, the challenger
sets coin′ = ĉoin. By definition, we have∣∣∣∣Pr[E0] − 1

2

∣∣∣∣ =
∣∣∣∣Pr[coin′ = coin] − 1

2

∣∣∣∣ =
∣∣∣∣Pr[ĉoin = coin] − 1

2

∣∣∣∣ = ε.

Game1 : In this game, we change Game0 so that the challenger performs the
following additional step at the end of the game. First, the challenger runs
PrtSmpMAH(1λ, Q, ε0) → T ⊆ [2�] and checks whether the following condition
holds:

T 	⊆ S(X(1)) ∧ · · · ∧ T 	⊆ S(X(Q)) ∧ T ⊆ S(X�) (12)

where X� is chosen by A at the challenge phase, and X(1), . . . , X(Q) are
inputs to the VRF for which A has queried the evaluation of the function.
If it does not hold, the challenger ignores the output ĉoin of A, and sets
coin′ $← {0, 1}. In this case, we say that the challenger aborts. If condition
(12) holds, the challenger sets coin′ = ĉoin. By Lemmas 1 and 3 (See also
Definition 3, Item 2),∣∣∣∣Pr[E1] − 1

2

∣∣∣∣ ≥ γminε − γmax − γmin

2
≥ γminε0 − γmax − γmin

2
= τ

holds for infinitely many λ and a noticeable function τ = τ(λ). Here, γmin,
γmax, and τ are specified by ε0, Q, and the underlying partitioning function
FMAH.

Game2 : In this game, we change the way wi are chosen. At the beginning of
the game, the challenger picks T

$← PrtSmpMAH(1λ, Q, ε0) and parses it as
T = {t1, . . . , tη′} ⊂ [2�]. Recall that by our assumption, we have η′ < η. It
then sets ti := 0 for i ∈ [η′ + 1, η]. It then samples α

$← Z
∗
p, and w̃i

$← Z
∗
p for

i ∈ [η]. Then, wi are defined as

wi = w̃i · α − ti for i ∈ [η].

The rest of the game is the same as in Game1. The statistical distance of
the distributions of {wi}i∈[η] in Game1 and Game2 is at most η/p, which is
negligible. Therefore, we have |Pr[E1] − Pr[E2]| = negl(λ).

Before describing the next game, for any Ω ⊆ [η] × [�], T ⊂ [2�] with |T| =
η′ < η, and X ∈ {0, 1}k, we define polynomials PX,Ω(Z),Q(Z) ∈ Zp[Z] as

PX,Ω(Z) =
∏

(i,j)∈Ω

(w̃iZ − ti + sj)

and Q(Z) = Zη′−1 ·
∏

(i,j)∈[η]×[−2�,2�]\{0}
(w̃iZ + j) ,
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where {sj}j∈[�] = S(X) and {ti}i∈[η] are defined as in Game2 (namely, T =
{ti}i∈[η′] and ti = 0 for i > η′). In the special case of Ω = [η] × [�], we denote
PX(Z) := PX,[η]×[�](Z). We state the following lemma, which plays an important
roll in our security proof.

Lemma 6. There exist ξX ∈ Z
∗
p and RX(Z) ∈ Zp[Z] such that

Q(Z)
PX(Z)

=

⎧⎨
⎩

ξX

Z
+ RX(Z) if T ⊆ S(X)

RX(Z) if T 	⊆ S(X)
.

From the above lemma, we can see that for any Ω ⊆ [η] × [�], it holds that

PX,Ω(Z) | Q(Z) if T 	⊆ S(X),

because PX,Ω(Z) | PX(Z).

Game3 Recall that in the previous game, the challenger aborts at the end of the
game, if condition (12) is not satisfied. In this game, we change the game so
that the challenger aborts as soon as the abort condition becomes true. Since
this is only a conceptual change, we have Pr[E2] = Pr[E3].

Game4 In this game, we change the way g is sampled. Namely, Game4 challenger
first picks α and w̃i as specified in Game2. It further picks ĝ

$← G
∗. Then, it

computes (coefficients of) Q(Z) and sets

g := ĝQ(α), Wi,j1 = gw
j1
i = ĝQ(α)·(w̃iα−ti)

j1 for (i, j1) ∈ [η] × [�1].

It aborts and outputs a random bit if g = 1G ⇔ Q(α) ≡ 0 mod p. It can
be seen that the distribution of g and Wi,j1 is unchanged, unless Q(α) ≡ 0
mod p. Since Q(Z) is a non-zero polynomial with degree (4η� + η′ − 1) and α
is chosen uniformly at random from Z

∗
p, it follows from the Schwartz-Zippel

lemma that this happens with probability at most (4η� + η′ − 1)/(p − 1) =
negl(λ). We therefore have |Pr[E3] − Pr[E4]| = negl(λ).

Game5 In this game, we change the way the evaluation queries are answered.
By the change introduced in Game4, we assume Q(α) 	≡ 0 mod p in the
following. When A makes a query for an input X, the challenger first checks
whether T ⊆ S(X) and aborts if so (as specified in Game3). Otherwise, it
computes RX,Ωi,j2

(Z) ∈ Zp[Z] such that Q(Z) = PX,Ωi,j2
(Z) · RX,Ωi,j2

(Z) for
(i, j2) ∈ [η] × [�2]. Note that such polynomials exist by Lemma 6. Then, it
returns

Y = e
(
ĝ
RX,Ωη,�2

(α)
, h
)

, π =
({

πi,j2 = ĝ
RX,Ωi,j2

(α)
}
(i,j2)∈[η]×[�2]

)

to A. We claim that this is only a conceptual change. To see this, we first
observe that

PX,Ωi,j2
(α) =

∏
(i′,j′)∈Ωi,j2

(w̃i′α − ti′ + sj′)
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=
∏

(i′,j′)∈Ωi,j2

(wi′ + sj′) = θi,j2 . (13)

We have θi,j2 	≡ 0 mod p, since otherwise we have Q(α) ≡ PX,Ωi,j2
(α) ·

RX,Ωi,j2
(α) ≡ θi,j2 · RX,Ωi,j2

(α) ≡ 0 mod p, which is a contradiction. Thus,
we have

ĝ
RX,Ωi,j2

(α) = ĝ
Q(α)/PX,Ωi,j2

(α) = g
1/PX,Ωi,j2

(α) = g1/θi,j2 .

This indicates that the simulation by the challenger is perfect. Since the view
of A is unchanged, we have Pr[E4] = Pr[E5].

Game6 : In this game, we change the way the challenge value Y �
0 = Eval(sk,X�)

is created when coin = 0. If coin = 0, to generate Y �
0 , it first computes

ξX� ∈ Z
∗
p and RX�(Z) ∈ Zp[Z] such that Q(Z)/PX�(Z) = ξX�/Z + RX�(Z).

Note that such ξX� and RX�(Z) exist by Lemma 6 whenever T ⊆ S(X�). It
then sets

Y �
0 =

(
e (ĝ, h)1/α

)ξX�

· e
(
ĝRX� (α), h

)
and returns it to A. We claim that this is only a conceptual change. This can
be seen by observing that

e
(
ĝ1/α, h

)ξX�

· e
(
ĝRX� (α), h

)
= e

(
ĝξX� /α+RX� (α), h

)
= e

(
ĝQ(α)/PX� (α), h

)
= e (g, h)1/PX� (α)

and PX�(α) = θη,�2 , where the latter follows from Eq. (13). Since the view of
A is unchanged, we therefore conclude that Pr[E5] = Pr[E6].

Game7 In this game, we change the challenge value to be a random element in
GT regardless of whether coin = 0 or coin = 1. Namely, Game7 challenger sets
Y �
0

$← GT . In this game, the value coin is independent from the view of A.
Therefore, Pr[E7] = 1/2.
We claim that |Pr[E6] − Pr[E7]| is negligible assuming L-DDH with L =
(4�+1)η+�1. To show this, we construct an adversary B against the problem
using A, which is described as follows.
B is given the problem instance (Π, ĝ, h, {ĝαi}i∈[L], Ψ) of L-DDH where Ψ =
e(ĝ, h)1/α or Ψ

$← GT . At any point in the game, B aborts and sets coin′ $←
{0, 1} if condition (12) is not satisfied. It first sets g and Wi,j1 as in Game4 and
returns vk = (Π, g, h, {Wi,j1}(i,j1)∈[η]×[�1]) to A. These terms can be efficiently
computable from the problem instance because logĝ g and logĝ Wi,j1 can be
written as polynomials in α with degree at most η′ −1+4η�+ �1 < L and the
coefficients of the polynomials can be efficiently computable. When A makes
an evaluation query on input X, it computes (Y, π) as in Game5 and returns
it to A. Again, these terms can be efficiently computable from the problem
instance, because the degree of RX,Ωi,j2

(α) is at most L and coefficients of
them can be efficiently computable. When A makes the challenge query on
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input X�, B first picks coin
$← {0, 1} and returns Y � $← G if coin = 1.

Otherwise, it returns

Y � = Ψ ξX� · e
(
ĝRX� (α), h

)
to A. Note that ĝRX� (α) can be efficiently computed from the problem instance
because the degree of RX�(Z) is at most L. At the end of the game, coin′ is
defined. Finally, B outputs 1 if coin′ = coin and 0 otherwise.
It can easily be seen that the view of A corresponds to that of Game6 if
Ψ = e(ĝ, h)1/α and Game7 if Ψ

$← GT . It is clear that the advantage of B is
|Pr[E6] − Pr[E7]|. Assuming L-DDH, we have |Pr[E6] − Pr[E7]| = negl(λ).

Analysis. From the above, we have∣∣∣∣Pr[E7] − 1
2

∣∣∣∣ =

∣∣∣∣∣Pr[E1] − 1
2

+
6∑

i=1

Pr[Ei+1] − Pr[Ei]

∣∣∣∣∣
≥
∣∣∣∣Pr[E1] − 1

2

∣∣∣∣−
6∑

i=1

|Pr[Ei+1] − Pr[Ei]| ≥ τ(λ) − negl(λ).

for infinitely many λ. Since Pr[E7] = 1/2, this implies τ(λ) ≤ negl(λ) for infinitely
many λ, which is a contradiction. This completes the proof of Theorem4.

6.2 A Variant with Short Verification Keys

Here, we introduce a variant of our scheme in Sect. 6.1. In the variant, we remove
{Wi,j1 = gw

j1
i }(i,j1)∈[η]×[2,�1] from vk. Instead, we add these components to π.

We do not change the verification algorithm and other parts of the scheme. It is
straightforward to see that the correctness and pseudorandomness of the scheme
can still be proven. To prove the unique provability, we observe that the only
possible strategy to break is to include invalid {Wi,j1}(i,j1)∈[η]×[2,�1] in the proof.
This is because if these values are correct, the unique provability of the original
scheme immediately implies that of the modified scheme. However, this strategy
does not work since the invalid values will be detected at Step 3 of the verification
algorithm using {Wi,1 = gwi}i∈[η] in vk. The advantage of the variant is that the
size of vk is small. In particular, vk only consists of η + 2 group elements in this
variant, whereas η�1 +2 group elements were required in the scheme in Sect. 6.1.
Of course, this change increases the size of the proofs π. The number of group
elements will become η(�1 + �2 − 1) from η�2 by this modification. To minimize
the size of the proofs we choose �1 = �2 =

√
�.

7 Comparisons

Here, we compare our proposed schemes with previous schemes.

New Lattice IBE Schemes. In Sect. 5.2, we showed how to construct an IBE
scheme from a partitioning function with associating compatible algorithms. We
have two ways of instantiating the scheme.
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– By using the partitioning function FMAH in Sect. 4.3 and the correspond-
ing compatible algorithms, where the latter is given by Lemma4, we obtain
our first IBE scheme. The master public key of the scheme only consists of
ω(log2 λ) matrices.

– By using the partitioning function FAFF in Sect. 4.4 and the corresponding
compatible algorithms, where the latter is given by Lemma 5, we obtain our
second IBE scheme. The master public key of the scheme is even shorter: It
only consists of ω(log λ) matrices.

Both our schemes achieve the best asymptotic space efficiency (namely, the
sizes of the master public keys, ciphertexts, and private keys) among existing
IBE schemes that are adaptively secure against unbounded collusion without sub-
exponential security assumptions. In Table 1 in Sect. 1, we compare our schemes
with previous schemes. Note that the scheme by Zhang et al. [ZCZ16] achieves
shorter master public key size than ours, but only achieves Q-bounded security.
This restriction cannot be removed by just making Q super-polynomial, since
the encryption algorithm of the scheme runs in time proportional to Q.

Finally, we note that there are two drawbacks that are common in our
schemes. The first drawback is that the encryption algorithm is heavy. Our
first scheme requires Õ(λ) times of matrix multiplications for the encryption
algorithm. Our second scheme requires even heavier computation. It first com-
putes the description of the “division in NC1 circuit” [BCH86] and then invokes
Barrington’s theorem [Bar89] to convert it into a branching program. The sec-
ond drawback is that we have to rely on the LWE assumption with large (but
polynomial) approximation factors to prove the security.

New VRF Schemes. Following [HJ16], we say that a VRF scheme has “all the
desired properties” if it has exponential-sized input space and a proof of adaptive
security under a non-interactive complexity assumption. Here, we compare our
schemes proposed in this paper with previous schemes that satisfy all the desired
properties.

– In Sect. 6.1, we proposed new VRF scheme based on FMAH. The scheme is
parametrized by the parameters �1 and �2. By setting �1 = � and �2 = 1,
we obtain a new VRF scheme with very short proofs. They only consist of
ω(log λ) group elements.

– In Sect. 6.2, we proposed a variant of the above scheme. The verification keys
consist of ω(log λ) group elements and proofs consist of ω(

√
λ log λ) group

elements.
– In the full version (Appendix C), we proposed a new VRF scheme based

on FAFF. The verification key of the scheme only consists of ω(log λ) group
elements. However, the proof size of the scheme is large.

We refer to Table 2 in Sect. 1 for the overview. From the table, it can be seen
that all previous VRF schemes that satisfy all the desired properties [ACF14,
BMR10,HW10,Jag15,HJ16] require O(λ) group elements for both of verification
keys and proofs. Our first scheme above significantly improves the size of proofs.
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Our second scheme improves both of the sizes of the verification keys and proofs.
Compared to our second scheme, only advantage of our third scheme is that the
reduction cost is better. Still, we think that our third scheme is also of interest
because the construction is quite different from previous schemes.
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