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Abstract. Hedged PKE schemes are designed to provide useful security
when the per-message randomness fails to be uniform, say, due to faulty
implementations or adversarial actions. A simple and elegant theoretical
approach to building such schemes works like this: Synthesize fresh ran-
dom bits by hashing all of the encryption inputs, and use the resulting
hash output as randomness for an underlying PKE scheme.

In practice, implementing this simple construction is surprisingly dif-
ficult, as the high- and mid-level APIs presented by the most commonly
used crypto libraries (e.g. OpenSSL and forks thereof) do not permit
one to specify the per-encryption randomness. Thus application devel-
opers are forced to piece together low-level functionalities and attend to
any associated, security-critical algorithmic choices. Other approaches to
hedged PKE present similar problems in practice.

We reconsider the matter of building hedged PKE schemes, and the
security notions they aim to achieve. We lift the current best-possible
security notion for hedged PKE (IND-CDA) from the CPA setting to
the CCA setting, and then show how to achieve it using primitives that
are readily available from high-level APIs. We also propose a new secu-
rity notion, MM-CCA, which generalizes traditional IND-CCA to admit
imperfect randomness. Like IND-CCA, and unlike IND-CDA, our notion
gives the adversary the public key. We show that MM-CCA is achieved
by RSA-OAEP in the random-oracle model; this is significant in prac-
tice because RSA-OAEP is directly available from high-level APIs across
all libraries we surveyed. We sort out relationships among the various
notions, and also develop new results for existing hedged PKE construc-
tions.
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1 Introduction

The security of many cryptographic primitives relies on access to reliable, high-
quality randomness. However, generating good randomness is a complex process
that often fails, due to use of ill-designed random number generators (RNGs),
software bugs, or malicious subversion [18,20,21,26,30,31]. Such failures have
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led to serious breaches of security in deployed cryptographic schemes [12,18,27,
35]. Recent high-profile examples include security vulnerabilities in a significant
fraction of TLS and SSH servers caused by problems with RNGs as exposed
by Heninger et al. [27] and the vulnerabilities with Juniper NetScreen-branded
firewalls that use Dual EC RNG designed by NSA to have a backdoor, as studied
by Checkoway et al. in [18].

Theorists have begun to address the practical issue of weak randomness.
Of particular interest has been the case of public-key encryption (PKE), since
there are no shared secrets upon which to bootstrap security. In their seminal
work [5], Bellare et al. introduce the notion of hedged public-key encryption.
Informally, hedged encryption guarantees traditional semantic security when the
per-message randomness is perfect, and retains best-possible security guarantees
when not, assuming there is sufficient min-entropy in the joint distribution over
the plaintext messages and the per-message randomness. Such security is called
hedged security.

A particularly simple and elegant approach to building hedged PKE is what
Bellare et al. refer to as Encrypt-with-Hash (EwH)1. Loosely, to encrypt a mes-
sage M (and potentially some auxiliary input I) using public key pk and ran-
domness r, one computes a string r̃ by hashing (pk,M, I, r), and then returns
a ciphertext E(pk,M ; r̃). In the random oracle model (ROM) [8], any entropy
contained among the hash inputs is harvested to synthesize new randomness r̃
that can be treated as uniform. Intuitively, unless the attacker manages to guess
(pk,M, I, r), or r̃ directly, this EwH scheme remains hedged-secure if the under-
lying scheme E is IND-CPA.

Other works on hedged PKE and related efforts to deal with imperfect
per-message randomness have followed this approach [11,32,34,38]. It has also
been used to construct deterministic encryption [4,13,34]. In fact, this trick of
synthesizing randomness for encryption dates back (at least) to Fujisaki and
Okamoto [24], who used this as part of a transform to turn CPA-secure encryp-
tion into CCA-secure encryption.

EwH in practice. Say that a developer is aware of the security breaches caused
by bad randomness, and wants to implement EwH using the best-known and
most widely-deployed cryptographic library, OpenSSL. To protect application
developers from having to understand and properly handle lower-level algorith-
mic details, OpenSSL encourages the use of high-level “envelope” API calls. For
public-key encryption, the interface is

int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx, unsigned char *out,

size_t *outlen, const unsigned char *in, size_t inlen)

where ctx points to the so-called encryption context, which acts as state across
calls. Among other things, it contains the public key and a descriptor of the
particular PKE scheme to be used: Textbook RSA, PKCS #1 v1.5 RSA encryp-
tion (RFC 2313), and a variant of RSA-OAEP [9] specified in PKCS #1 v2.2
1 To be precise, [5] refers to their constructions as REwH, and those are extensions of

the EwH scheme from [4]. We use the name EwH for simplicity.
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(RFC 8017). The plaintext input is pointed to by in, and out points to where
the ciphertext output should be written. Notice: Nowhere is one able to specify
the randomness to be used. The mid-level function calls that are wrapped by
EVP PKEY encrypt also do not expose the randomness to the caller. One could
try to manipulate the source of randomness, RAND bytes, used by the higher-
level calls. Indeed, OpenSSL provides an interface for adding entropy into the
state of the underlying (P)RNG; doing so, however, presents several technical
challenges, which we discuss at length in Sect. 2. Hence, to implement EwH in
OpenSSL, the developer is forced to cobble together low-level functionalities,
which implies needing to attend to security-critical details, such as parameters,
padding schemes, or how the randomness is generated. The same is true for the
two most popular forks of OpenSSL (BoringSSL and LibreSSL) and several other
common libraries. We give a survey of crypto libraries in Sect. 2.

Encrypt-with-Hash is not the only approach to building hedged PKE (or
deterministic PKE, etc.), and we will discuss some others shortly. But the punch-
line there will be the same: Developers face similar hurdles when they attempt
to instantiate those constructions with modern crypto libraries.

To summarize, while hedged PKE has received significant theoretical study,
the gap between theory and practice remains large. Existing theoretical con-
structions offer little to developers who respect the guidance of widely deployed
crypto libraries to use high-level APIs.

Reconsidering hedged PKE. We reconsider the matter of constructing PKE
schemes that maintain useful security guarantees when forced to use imperfect
randomness. There are two important questions that guide us:

– What simple and efficient schemes can we implement via high-level APIs
exported by standard crypto libraries?

– What security notions can we hope to achieve with these schemes?

To the latter question, we take as our starting point the IND-CDA notion
of [5], which we rename as MMR-CPA. In the MMR-CPA experiment, the adver-
sary may query an encryption oracle with sources M, each of these outputting
a triple (M0,M1, r), consisting of a pair of vectors of messages and a vector of
randomness to be used for encryption (hence MMR). The oracle, which contains
the public key pk and a secret challenge bit b, returns a vector of component-
wise encryption of M b, each under the corresponding component randomness
from r. The adversary’s goal is to guess the value of b. Crucially, the adver-
sary is not provided with the public key pk until after all encryption queries are
made; otherwise, pk-dependent M can be crafted that would make MMR-CPA
unachievable, even when M is a high min-entropy source [5]. Also implicit is that
the public key was generated using uniform coins, and that only the per-message
randomness is under suspicion.

Achieving MMR-CCA. As a small definitional contribution, we extend MMR
to the CCA setting, and both the CPA and CCA notions are formalized for PKE
with associated data (AD). Associated data was originally called “labels” in the
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PKE literature [1,17,19,37]. But AD seems to be more often used among prac-
titioners, so we adopt it. (This also aligns better with the language of symmetric
encryption.)

The MMR attack effectively assumes the adversary can arbitrarily and adap-
tively re-corrupt the randomness source used by the libraries when producing
ciphertexts. In many settings, where the per-message randomness source is pro-
vided by the operating system (or even hardware), this equates to re-corrupting
the OS (or hardware) at will with each encryption. The strength of this attack
model makes RSA-OAEP, for example, unable to achieve MMR-CPA (let alone
-CCA) security.2 This is unfortunate, as RSA-OAEP is the only provably-secure
scheme implemented by EVP PKEY encrypt, and it is available across virtually
all libraries. In fact, there are currently no positive results for RSA-OAEP in
the presence of imperfect randomness.

That said, we give the first MMR-CCA secure PKE scheme. It is a hybrid-
encryption construction that uses a trapdoor function, a hash function (modeled
as a random oracle), and a symmetric-key authenticated encryption scheme.
Each of these components can be called with most crypto libraries, includ-
ing OpenSSL, via high-level APIs. We prove that the scheme is MMR-CCA in
the ROM assuming the standard assumptions on security of the base schemes.
Despite the simplicity of the scheme, the security proof is quite involved. See
Sect. 6.2 for details.

The MM notions. The MMR notions define security in the hedged PKE
setting with imperfect randomness, yet no common crypto library explicitly
exposes a single primitive that achieves it. We define a new pair of notions,
MM-{CPA,CCA}, which are identical to their MMR counterparts but with two
important exceptions. First, the adversary is provided the public key as initial
input. Second, the per-message randomness source R may be corrupted once,
prior to any encryptions. This models scenarios in which the OS code base, a
standards document, or a hardware RNG may have been modified (maliciously
or otherwise) to produce faulty randomness prior to widespread distribution.
And, while it is good practice to be cautious, we are unaware of any practi-
cal scenarios or documented attacks in which the randomness source may be
continuously re-corrupted to depend on previously observed ciphertexts and the
messages about to be encrypted, as is allowed in the MMR attack setting.

We show that RSA-OAEP is MM-CCA secure (in the ROM) whenever R has
min-entropy sufficient to stop attacks that would break any PKE scheme in the
MM setting. Not only does this give the first positive result for RSA-OAEP in
the presence of imperfect randomness, but it also gives developers an immediate
option across virtually all libraries.

Because MM adversaries are given the public key, MM security against adap-
tive attackers follows “for free” (via a standard hybrid argument) from MM secu-
rity against non-adaptive attackers. On the other hand, in general one converts

2 Consider the plaintext-recovery attack by Brown [15] on RSA-OAEP with public
exponent e = 3. The attack exploits low entropy coins and is effective even if mes-
sages have high min-entropy.
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Construction Assumptions Achieves

F -EME-OAEP F is POWF MM+IND-CCA

HE[F, AEAD] F is OWF, AEAD is IND-CPA+AUTH MMR+IND-CCA

PtD[F -DOAEP] F is OWF MM+IND-CCA

RtD[Πr, F -DOAEP] Πr is IND-CPA, F is OWF MM+IND-CPA

Fig. 1. A summary of our constructions and the security they achieve.

non-adaptive MMR security into adaptive MMR security only with the addition
of an extra key-anonymity property (ANON); Bellare et al. [5] show this in the
CPA setting, and we give an analogous result in the CCA setting (Theorem1).

Relating the notions. We view MM-{CPA,CCA} as a direct generaliza-
tion of IND-{CPA,CCA}. In the latter, the randomness source is perfect, and
the adversary queries (effectively) a source whose support contains exactly one
pair (M0,M1), i.e., a source with zero min-entropy. We work out relation-
ships among the MM, MMR and IND notions. Among them, we show that
IND-CCA �=⇒ MM-CCA in general, which makes our positive result for RSA-
OAEP non-trivial.

Perhaps unintuitively, we show that the MMR notions are not stronger secu-
rity notions than the MM notions. They are incomparable: in the MMR setting,
the adversary is allowed to re-corrupt the randomness source but does not have
the public key; in the MM setting, the adversary has the public key, but may
only use it to produce message sources, and may not re-corrupt the randomness
source.

Hedging beyond EwH. Not all previous proposals for hedged encryption
require direct manipulation of the randomness used by some underlying PKE
scheme. For example, Bellare et al. [5] propose doing Ed(pkd, Er(pkr,M ; r)),
which first encrypts the message M using a randomized PKE scheme Er, and then
re-encrypts the resulting ciphertext using a deterministic scheme. They call this
the Randomized-then-Deterministic (RtD) composition. (Note that this means
two public-keys are needed, potentially requiring the issuing of new certificates,
among other deployment issues.) They also propose a construction called Pad-
then-Deterministic (PtD), where E(pkd,M) is defined by sampling randomness r
and then returning Ed(pkd,M ‖ r). In both cases, to provide security against
weak randomness, it is necessary (although not sufficient) that the deterministic
scheme is PRIV-secure in the sense of [4].

Here, too, we run into problems in practice. Standard crypto libraries do not
offer function calls that directly implement any PRIV-secure deterministic PKE
schemes. Several such schemes are known in the literature [4,5,13,34], but imple-
menting these would require piecing together calls to low-level functionalities,
precisely what modern APIs attempt to avoid.

One potential exception is RSA-DOAEP [4], a three-round Feistel construc-
tion followed by a single call to RSA. This is the most amenable scheme to being
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implemented from high-level calls—OpenSSL exposes EVP calls for hashing, and
the EVP PKEY encrypt function admits raw RSA as one of its options.

We show that RtD, where the deterministic scheme is DOAEP, is both MM-
CPA and IND-CPA secure. Better yet, we are able to show, under appropriate
conditions, that PtD with DOAEP is MM+IND-CCA secure.

Open questions. Our work leaves open some interesting questions. For one,
is MM-CCA achievable in the standard model? In particular, from reasonable
assumptions and via primitives that are available in crypto libraries (without
making very low-level calls)? Asking a bit less, is MM-CPA achievable with the
same restrictions? By composing two of the theorems we give, any scheme that
is (non-adaptive) MMR-CCA and ANON-CCA in the standard model would
be MM-CCA, too. But this only shifts the focus to the question of how to
build schemes that achieve these two properties, and within the constraints we
mentioned.

In an analogous result, we show that a scheme that is (non-adaptive) MMR-
CPA and ANON-CPA in the standard model is MM-CPA. Prior work does
give schemes that are non-adaptive MMR-CPA and ANON-CPA (e.g., the RtD
and PtD schemes from [5]), but none that can be realized from typical high-
level APIs. So from our perspective, achieving MM-CPA in the standard model
remains open in practice.

A call to action. A theoretician’s viewpoint on this work might be to suggest
that libraries should be modified to keep up with the nice primitives that our
community provides. In practice, this viewpoint is unhelpful. The design of good
APIs, like the design of good cryptography, is hard work. A recent study by Acar
et al. [2] reveals that modern APIs make even simple tasks difficult to implement,
which has been shown time and time again to result in security vulnerabilities
in real systems. Yet, the question of what is the “right” level of exposure to the
user is a complex trade-off between usability and flexibility. APIs have very long
lifetimes because, once adopted, changing them potentially implies altering all of
the applications upon which they are built. Our thesis is that raising awareness
of real APIs in our research community will better serve cryptographic practice,
and will uncover interesting new theory challenges (like those we explore) as
well.

Related work. Raghunathan et al. [34] extend the security notion for deter-
ministic encryption to the setting where the adversary is given the public key.
They also consider chosen-ciphertext attacks and argue that their extension can
be applied to hedged encryption. So that their notion is achievable, the adversary
is restricted to choosing sources for its queries from a finite set (whose size is
bounded by a parameter of the experiment) of sources that do not depend on the
public key. We note a similar restriction in the MM-CCA setting; the random-
ness source may not depend on the public key, since otherwise the source could
be crafted to leak information about the plaintext. Their definition is incompa-
rable to our MM-CCA notion, and it is not clear what practical threat model
it captures. Moreover, their definition deems RSA-OAEP insecure, while our
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MM-CCA definition permits for useful security analysis of the most deployed
PKE scheme, in case of imperfect randomness.

Paterson et al. [32] give notions of security under related-randomness attacks
(RRA). Here, too, the adversary is provided with the public key. The RRA
notions generalize the reset attack (RA) notions due to Yilek [38] by allowing
the adversary to specify certain functions to be applied to fresh uniform random-
ness, or to previously sampled uniform randomness, and have the result used to
encrypt chosen plaintexts. These functions must be output-unpredictable, loosely
meaning that they cannot allow the attacker to guess the randomness that will
be used for encryption, and collision-resistant, meaning that the queried func-
tions, if applied to the same uniform random string, should not produce the
same output. If either of these conditions is violated, there is an attack that
makes RRA security impossible for any scheme. This is similar to our require-
ment in the MM notions that the encryption randomness have min-entropy that
is ω(log k), where k is the security parameter. Again, their definition is incom-
parable to our MM-CCA notion, and unlike our definition, does not allow to
consider randomness sources with arbitrary high-min-entropy distributions. We
note that again, RRA security is not achievable by randomness-recovering PKE
schemes, such as RSA-OAEP.

Bellare and Tackmann [11] give notions of hedged security in the presence
of nonces. They consider a setting where a sender uses a uniform seed and a
nonce, and security is guaranteed if either the seed is secret and the nonces are
non-repeating, or the seed is compromised and the nonces are unpredictable.
Brzuska et al. and Bellare and Hoang [7,16] show that assuming the existence of
indistinguishability obfuscation (iO), the random oracle in the EwH construction
is uninstantiable. Finally, Hoang et al. [28] study public-key encryption security
against selective-opening attacks in the presence of randomness failures.

2 Crypto Libraries

In this section we provide a brief survey of real-world libraries: In particular,
the extent to which their APIs for PKE expose the per-message encryption
randomness.

We begin with OpenSSL, the most widely-used library for encryption on
the Web. As discussed in the introduction, OpenSSL encourages the use of
“envelopes”, which are designed to abstract the details of the algorithm used.
We have noted that the high-level call EVP PKEY encrypt does not allow the pro-
grammer to specify the source of entropy. This call is a wrapper for RSA-based
encryption, internally invoked by calling RSA public encrypt. This function has
the interface

int RSA_public_encrypt(int flen, unsigned char *from,

unsigned char *to, RSA *pk, int padding)

It allows one to specify one of three padding schemes (via padding), which is
passed down from the ctx input of EVP PKEY encrypt. So we see that here, too,
there is no explicit place to insert external randomness.
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This design pattern is maintained by BoringSSL and LibreSSL, the two most
popular forks of the OpenSSL codebase. It is also adopted by a number of other
libraries, including the popular open source libraries libgcrypt and PyCrypto, as
well as the commercial library cryptlib.

The *SSL API style reflects the opinion that APIs should not allow appli-
cation developers to touch the coins, as doing so invites errors that can fatally
impact security. Indeed, at Real World Cryptography 2017, Google security-team
developers said interfaces should “Never ask users to provide critical input (e.g.,
randomness, etc.)”[22].

Hedging via providing the coins source. Of course, there are APIs that
surface access to the coins directly. For example, in Go’s native crypto library
the function call for RSA-OAEP has the signature

func EncryptOAEP(hash hash.Hash, random io.Reader,

pub *PublicKey, msg []byte, label []byte)

The randomness source is the second parameter of this routine. One can hedge
RSA-OAEP by implementing the io.Reader interface. Other examples of APIs
that expose the coins are Botan, Crypto++, wolfSSL, and SCAPI.

Falling (somewhat confusingly) in the middle is the popular Java library
known as Bouncy Castle. Java provides a built-in interface for various security-
related functionalities. The programmer can control which library implements
these functionalities by specifying a security provider, e.g., Bouncy Castle.
Bouncy Castle’s own API does not surface coins. On the other hand, the native
Java API does. For instance, one initializes a structure for ElGamal encryp-
tion [23] as follows. Let pubKey be an ElGamal public key:

Cipher cipher = Cipher.getInstance("ElGamal/None/NoPadding", "BC");

cipher.init(Cipher.ENCRYPT_MODE, pubKey, new SecureRandom());

The string "BC" means the security provider is Bouncy Castle. So one could
instantiate EwH (over ElGamal) here by providing their own implementation of
SecureRandom.

Hedging via reseeding the coins source. Although OpenSSL does not
explicitly surface the coins, it exposes an interface for manipulating the coins
used to provide randomness for higher-level calls. Coins are sampled in OpenSSL
via the interface RAND bytes(unsigned char *buf, int num), which writes
the next num bytes output by the source to buf. By default, the output is a
stream of bytes generated by a PRNG seeded with entropy gathered by the sys-
tem, e.g., by reading from /dev/urandom. When the PRNG is called, it generates
the requested bytes and updates its internal state by applying a cryptographic
hash function. (The hash function may be specified by the programmer.) Alter-
natively, a hardware-based RNG can be used. For our purposes, there are two
relevant ways to manipulate the state:

– RAND seed(const void *buf, int num): Resets the state using the first num
bytes of buf as a seed.
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– RAND add(const void *buf, int num, double entropy): “Mixes” the
first num bytes of buf into the state. entropy is an estimate of the num-
ber of full bytes of entropy of the input.

A search of the source code3 reveals that the implementation of the padding
scheme calls RAND bytes. To hedge RSA-OAEP using this interface, one might
do as follows:

RAND_add((const void *)in, in_len, in_entropy);

ctxt_len = RSA_public_encrypt(msg_len, msg, ctxt, pk,

RSA_PKCS1_OAEP_PADDING);

where in entropy is an estimate of the bytes of entropy of the string in, which
encodes pk, and msg. There are a number of technical details to attend to here.
First, estimating the entropy of in is non-trivial. (The OpenSSL documentation
refers the reader to RFC 1750 for estimation methodologies.4) Second, the doc-
umentation does not specify how the state is updated, except that if entropy
is equal to num, then this call is equivalent to resetting the state via RAND seed,
effectively evicting the initial entropy provided by the system. Third, if a hard-
ware RNG is used to instantiate RAND bytes, then calling RAND add fails silently,
meaning the call has no effect on the randomness. Alternatively, one might first
call RAND bytes(rand, rand len), then reset the state via RAND seed on input
of a buffer containing pk, msg, and rand. Again, if a hardware RNG is used, then
calling RAND seed has no effect.

Apart from these practical considerations, we note a subtle theoretical issue
with hedging OpenSSL in this manner. At first glance, it would appear that
if one is careful with the technical details, then these interfaces could be used
to implement EwH. However, since the PRNG is stateful, the coins used to
encrypt a message necessarily depend on the inputs of all prior encryptions. It is
not clear that the proof security for EwH holds for this instantiation, since the
message-coins source is assumed to be stateless [5, Theorem 6.1].

To summarize, if a developer chooses to (or must) use a library whose APIs
do not expose the encryption randomness, e.g., any of the widely-deployed *SSL
libraries, they are forced to work with low-level functionalities and attend to
security-critical details about parameters, padding, the implementation of the
(P)RNG, etc. If they are free to work with, say, the Go native library, then they
can implement EwH by extending the functionality of the exposed randomness
source.

3 Preliminaries

Notation. If n is an integer we write [n] for the set {1, 2, . . . , n}. If i and j are
integers such that i ≤ j, we let [i..j] denote the set {i, i + 1, . . . , j}. (If i > j,
then let [i..j] = ∅.) The implicit, unambiguous encoding of one or more objects

3 See https://github.com/openssl/openssl/blob/OpenSSL 1 0 2-stable/crypto.
4 See https://wiki.openssl.org/index.php/Manual:RAND add(3).

https://github.com/openssl/openssl/blob/OpenSSL_1_0_2-stable/crypto
https://wiki.openssl.org/index.php/Manual:RAND_add(3)
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as a bit string is written as 〈X,Y, . . .〉. We write vectors in boldface, e.g., X. We
let Xi and X[i] denote the i-th element of X. We say that X,Y are length-
equivalent if |X| = |Y | = m and, for all i ∈ [m], |Xi| = |Y i|. We let Λ denote
the empty vector. All algorithms, unless noted otherwise, are randomized. An
adversary is a randomized algorithm. The runtime of adversary A (at security
parameter k) is denoted timeA(k).

Games. We adopt the game-playing framework of Bellare and Rogaway [10].
The notation Exp(A, k) denotes the execution of game Exp with adversary A
at security parameter k. Let Exp(A, k) ⇒ x be the random variable denoting
the event that game Exp outputs x when played by A at security parameter k.
If the outcome of the game is either true or false, then we write Exp(A, k) as
short hand for Exp(A, k) ⇒ true.

3.1 Public-Key Encryption with Associated Data

A public-key encryption scheme with associated data PKEAD is a triple of algo-
rithms (Kgen,Enc,Dec) with associated data space AD ⊆ {0, 1}∗ and randomness
length ρ(·). The key-generation algorithm Kgen takes 1k as input, and outputs a
pair of strings (pk, sk), the public key and secret key respectively. The encryption
algorithm takes as input the public key pk, associated data H ∈ AD, message
M ∈ {0, 1}∗, and coins r ∈ {0, 1}ρ(k) and outputs a ciphertext C ∈ {0, 1}∗ or
the distinguished symbol ⊥, indicating that encryption failed. When the value
of the coins used is not important, we write Enc(pk,H,M) or EncH

pk(M) as short
hand for r ←$ {0, 1}ρ(k);Enc(pk,H,M ; r). Otherwise, we write Enc(pk,H,M ; r)
or EncH

pk(M ; r). The decryption algorithm takes the secret key sk, associated data
H ∈ AD, and a ciphertext C ∈ {0, 1}∗ and outputs a message M ∈ {0, 1}∗ or ⊥,
indicating failure to decrypt. Just as for encryption, we write M ← Dec(sk,H,C)
or M ← DecH

sk(C).
It will be convenient to define vector-valued encryption. To that end, let

v ∈ N, M ∈ ({0, 1}∗)v, and H ∈ ADv. Then the notation C ←$ Enc(pk,H ,M)
means to compute Ci ←$ Enc(pk,Hi,M i) for every i ∈ [v], and to assemble
C = (C1, . . . ,Cv) as the return value.

In this work, we consider schemes for which the following holds: If for every
k ∈ N, (pk, sk) ∈ [Kgen(1k)], H ∈ AD, and M ∈ {0, 1}∗, there exists an r′ ∈
{0, 1}ρ(k) such that EncH

pk(M ; r′) �= ⊥, then for every r ∈ {0, 1}ρ(k), it holds
that EncH

pk(M ; r) �= ⊥. Such a scheme is correct if for every k ∈ N, (pk, sk) ∈
[Kgen(1k)], H ∈ AD, M ∈ {0, 1}∗ and r ∈ {0, 1}ρ(k), we have C �= ⊥ =⇒
DecH

sk(C) = M , where C = EncH
pk(M ; r). As this condition makes clear, proper

operation is demanded when both encryption and decryption are in possession
of H. We note H may be the empty string, recovering more traditional public-key
encryption.

3.2 Sources

In our security definitions, we will rely on the notion of a source, so we start
with generalizing this notion as described in [5]. Let β and γ be non-negative
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integers, k be a positive integer, and μ, v, ρ0, . . . , ργ−1 : N → N be functions. We
define a (μ, v, ρ0, ρ1, . . . , ργ−1)-mβrγ-source M as an algorithm that on input 1k

returns a tuple (M0,M1, . . . ,Mβ−1, r) with the following properties: one, for
every b ∈ [0..β − 1], vector M b is over strings; two, vector r is over γ-tuples of
strings; three, each of the vectors has v(k) elements; four, for every i ∈ [v(k)]
and c ∈ [0..γ − 1], string rc has length ρc(k) where (r0, . . . , rγ−1) = r[i]; five, for
every b, b′ ∈ [0..β − 1], vectors M b and M b′ are length-equivalent; and six, for
every k ∈ N, b ∈ [0..β − 1], i ∈ [v(k)], and (M, r) ∈ {0, 1}|Mb[i]| × ({0, 1}ρ0(k) ×
· · · × {0, 1}ργ−1(k)) it holds that

Pr
[
(M0, . . . ,Mβ−1, r) ←$ M(1k) : (M b[i], r[i]) = (M, r)

] ≤ 2−μ(k).

We say that such a source has output length v(·) and min-entropy μ(·). When
stating the parameters is not important, we refer to the source as an mβrγ-source.
In this paper we will consider mr-, mmr-, mm-, and r-sources.

We define the equality pattern of v(k)-vectors M and r as the bit-valued
matrix EM ,r defined by EM ,r[i, j] = 1 ⇐⇒ (M [i], r[i]) = (M [j], r[j]) for every
i, j ∈ [v(k)]. A (μ, v, ρ0, . . . , ργ−1)-mβrγ-source is distinct if for every k ∈ N and
b ∈ [0..β − 1], it holds that Pr[(M0, . . . ,Mβ−1, r) ←$ M(1k) : EMb,r = Iv(k)] =
1, where Iv(k) denotes the v(k) × v(k) identity matrix. Security against chosen
distribution attacks will be defined with respect to adversaries that specify dis-
tinct sources. We remark that it is possible to relax this requirement somewhat
[5, Sect. 4.3], but we will not belabor this point.

4 Security Notions

Let PKEAD = (Kgen,Enc,Dec) be a PKEAD scheme with associated data
space AD and randomness length ρ(·). (We will refer to PKEAD throughout this
section.) In this section we define three notions of privacy. The first, IND-CCA,
is standard (IND-CCA2 in the taxonomy of [6]), except that it considers asso-
ciated data. In this notion, the source of coins for encryption is fixed and uni-
form. The second, MMR-CCA is a lifting of the MMR-CPA notion from [5]
(where it is called IND-CDA) to the CCA setting with associated data. In this
notion, the adversary is free to re-corrupt the source of coins on each encryp-
tion. The third, MM-CCA, is entirely new. In this notion, the coins source is
corrupted once prior to the keys being chosen and any encryption are made.
We now discuss the notions (presented in Fig. 2) in more detail. For each
attack and setting (ATK,STG) ∈ {IND,MMR,MM} × {CPA,CCA} we define
Advatk-stg

PKEAD (A, k) = 2 · Pr
[
Expatk-stg

PKEAD (A, k)
]

− 1.

4.1 IND Security

The standard notion of indistinguishability under chosen-ciphertext attacks is
generalized to incorporate associated data in Fig. 2. We say that PKEAD is
IND-CCA secure if for every PT (“polynomial-time”) adversary A, the function
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Fig. 2. Security notions for public-key encryption with associated data.

Advind-cca
PKEAD (A, ·) is negligible. The corresponding notion in the chosen-plaintext

attack setting is obtained by denying the adversary access to the decryption
oracle. Let Expind-cpa

PKEAD (A, k) denote this experiment. We say that PKEAD is
IND-CPA secure if for every PT adversary A, the function Advind-cpa

PKEAD (A, ·) is
negligible.

4.2 MMR Security

We adapt the definition of security against chosen-distribution attacks (IND-
CDA) from [5] to deal with associated data and chosen-ciphertext attacks.

Consider the MMR-CCA experiment defined in Fig. 2 associated to PKEAD,
adversary A, and security parameter k. The output of the LR oracle is well-
defined if for every k ∈ N and some μ, v : N → N, it holds that M is a
(μ, v, ρ)-mmr-source, and H ∈ ADv(k). Fix functions μ, v : N → N where
μ(k) ∈ ω(log k). We call A a (μ, v, ρ)-mmr-adversary if its queries are well-
defined and its LR queries consist of distinct (μ, v, ρ)-mmr-sources. We say that
PKEAD is MMR-CCA secure with respect to distinct (μ, v, ρ)-mmr-sources if for
every polynomial-time (μ, v, ρ)-mmr-adversary A, the function Advmmr-cca

PKEAD (A, ·)
is negligible.

The corresponding notion in the chosen-plaintext attack setting is obtained
by denying A access to Dec. Let Expmmr-cpa

PKEAD (A, k) denote this experiment and
let MMR-CPA security be defined analogously to MMR-CCA.
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Remarks about MMR. Notice that the adversary is not given the public
key until after it is done seeing the challenge ciphertexts. It has previously been
observed (in [5], building on [4]) that otherwise, the adversary may craft an mmr-
source, which depends on the public key, and completely leaks the challenge bit
with one query. Therefore, giving the adversary the public key would render the
notion unachievable.

Min-entropy requirements. Just as in prior work [4,5], we require that the
joint message-coins distribution have high min-entropy. In the MMR setting,
this means the sources queried by the adversary have min-entropy μ = μ(k) ∈
ω(log k). This is sufficient to thwart trial-encryption attacks by which the adver-
sary, given the public key, exhaustively encrypts message-coins pairs until a
ciphertext matches the output of its LR oracle.

4.3 ANON Security

Bellare et al. [5] studied how key anonymity is important for achieving adaptivity
against MMR attacks. Unlike with the standard IND-CPA or -CCA notions, non-
adaptive MMR (MMR1) security does not imply adaptive security. This is due
to the fact that the adversary is not given the public key when it makes the
queries to see the challenge ciphertexts. They observed that in the CPA setting,
a property called key anonymity suffices to gain adaptivity. We extend their
notion to the CCA setting; refer to the game defined in Fig. 3.

Fig. 3. Key anonymity of public-key encryption as formalized by [5], lifted to the
CCA setting.

The game begins by choosing two key pairs (pk0, sk0) and (pk1, sk1) and a
challenge bit d. The adversary is executed with the security parameter as input
and with access to three oracles as defined in the figure. The outcome of the game
is true if and only if the adversary’s output is equal to d. The output of the LR
and Enc oracles is well-defined when H ∈ ADv(k) and M is an (μ, v, ρ)-mr-
source for some μ, v : N → N. Following the lead of [3], we provide a decryption
oracle for both the primary and alternate secret key. On input (b,H,C) where
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b ∈ {0, 1}, H ∈ AD, and C ∈ {0, 1}∗, oracle Dec decrypts (H,C) under skb and
returns the result as long as (H,C) was never output by LR.

Fix functions μ, v : N → N such that μ(k) ∈ ω(log k). We define a (μ, v, ρ)-mr-
adversary as one whose oracle queries consist of well-defined inputs and distinct
(μ, v, ρ)-mr-sources. We say that PKEAD is ANON-CCA secure with respect
to distinct (μ, v, ρ)-mr-sources if the function Advanon-cca

PKEAD (A, ·) is negligible for
every PT (μ, v, ρ)-mr-adversary A. As usual, we capture ANON-CPA security
by denying the adversary access to the Dec oracle. This is equivalent to the
ANON notion of [5], which in turn lifts [3] to the hedged setting.

Non-adaptive to adaptive MMR via ANON. Intuitively, key anonymity
captures the adversary’s ability to discern information about the public key
given adaptively-chosen encryptions under the public key and, in our setting,
decryptions under the corresponding secret key. This property suffices for the
following result, lifting [5, Theorem 5.2] to the CCA setting.

Theorem 1 (MMR1+ANON-CCA =⇒ MMR-CCA). Let μ, v, ρ : N →
N be functions where μ(k) ∈ ω(log k). Let A be a (μ, v, ρ)-mmr-adversary who
makes q queries to its LR oracle. There exists a (μ, v, ρ)-mmr-adversary B, who
makes one query to its LR oracle, and a (μ, v, ρ)-mr-adversary D such that

Advmmr-cca
PKEAD (A, k) ≤ q · Advmmr-cca

PKEAD (B, k) + 2q · Advanon-cca
PKEAD (D, k) .

where D and B have the same runtime as A. Moreover, adversary D makes as
many decryption queries as A, q − 1 encryption queries, and one query to LR,
and adversary B makes as many decryption queries as A and one query to LR.

The proof is a simple extension of [5, Theorem 5.2] that takes the decryption
oracle into account; we refer the reader to the full version of this paper for the
details [14]. The intuition is that leakage of the public key in the ciphertext is
tolerable in the non-adaptive setting since the adversary may obtain the public
key after making its LR query. In the adaptive setting, this leakage could lead to
attacks based on key-dependent message-coins distributions in subsequent LR
queries.

Remark. We note that the converse is not true: MMR-CPA does not imply
ANON-CPA. Suppose we modify an MMR-CPA secure PKEAD scheme by
appending the hash of the public key to the end of the ciphertext. Modeling the
hash function as a random oracle, this construction remains MMR-CPA secure.
However, it is clearly not ANON-CPA. Since the adversary is given the primary
and alternate key in response to its LR query, it can easily check (with one
random oracle query) which key was used to encrypt.

4.4 MM Security

Next, we consider the practical setting in which the coins are non-adaptively
corrupted. Consider the MM-CCA experiment defined in Fig. 2 associated
to PKEAD, adversary A, randomness source R, and security parameter k.
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The output of the LR oracle is well-defined if for every k ∈ N and some
μ1, μ2, v : N → N, it holds that M is a (μ1, v)-mm-source, H ∈ ADv(k), and R is
a (μ2, v, ρ)-r-source. Fix functions μ1, μ2, v : N → N where μ2(k) ∈ ω(log k). We
call A a (μ1, v)-mm-adversary if its queries are well-defined and its LR queries
consist of distinct (μ1, v)-mm-sources. We say that PKEAD is MM-CCA secure
with respect to distinct (μ1, v)-mm-sources and (μ2, v, ρ)-r-sources if for every
PT (μ1, v)-mm-adversary A and for every PT (μ2, v, ρ)-r-source R, the function
Advmm-cca

PKEAD,R (A, ·) is negligible. Again, we let Expmm-cpa
PKEAD,R (A, k) be the experiment

associated to PKEAD, A, k, and randomness source R, which is identical to
Expmm-cca

PKEAD,R (A, k), but the adversary has no Dec oracle. MM-CPA security is
defined analogously to MM-CCA security.

Non-adaptive to Adaptive MM “for free”. Unlike in the MMR attack
setting, in the MM-CCA game, the adversary is given the public key. This is
achievable because the coin source may not be adaptively corrupted to depend
upon it. It follows that one does get adaptivity “for free” in this setting, via a
standard hybrid argument.

Theorem 2 (MM1-CCA =⇒ MM-CCA). Let μ1, μ2, v : N → N be func-
tions where μ2(k) ∈ ω(log k). Let R be a (μ2, v, ρ)-r-source and A be a (μ1, v)-
mm-adversary who makes q queries to its LR oracle. There exists a (μ1, v)-mm-
adversary B who makes one query to its LR oracle such that

Advmm-cca
PKEAD,R (A, k) ≤ q · Advmm-cca

PKEAD,R (B, k) ,

and B has the same runtime as A, making as many decryption queries.

Min-entropy requirements. As in the MMR setting, achieving MM secu-
rity demands restrictions upon the sources. Minimally, we will need to require
that μ1(k)+μ2(k) ∈ ω(log k), where μ1(·) is the min-entropy of the mm-sources
specified by the adversary and μ2(·) is the min-entropy of the r-source parame-
terizing the experiment. In fact, we need a bit more. As an illustration, suppose
that μ1(k) ∈ ω(log k) and μ2(k) = 0. This means that the randomness source
always outputs the same sequence of coins. This allows the adversary to mount
the key-dependent distribution attack identified by [5] when the adversary is
given the public key. (Indeed, this kind of attack is effective whenever the ran-
domness source has low min-entropy. Therefore, it is crucial in the MM setting
that the entropy of the randomness source μ2 be of order ω(log k).

5 Relations Among the Notions

We summarize the min-entropy requirements of each notion as follows: IND
requires uniform random coins, MMR requires that the joint distribution on
messages and coins have high min-entropy, and MM requires that the coins
have high min-entropy. MMR tolerates bad randomness, but only if the mes-
sage has high entropy. On the other hand, MM fails if the randomness is low
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Result Shown By

MMR-CPA (resp. MM-CPA) �=⇒ ANON-CPA: CE1

ANON-CPA �=⇒ MMR-CPA (resp. MM-CPA): CE2

MM-CPA �=⇒ MMR-CPA: CE3

IND-CPA �=⇒ MM-CPA (resp. MMR-CPA): CE4

MMR1+ANON-CCA =⇒ MMR-CCA Theorem 1

MM1-CCA =⇒ MM-CCA Theorem 2

MMR1+ANON-CCA =⇒ MM1-CCA Theorem 3

MM-CCA =⇒ IND-CCA where μ1(k) ∈ O(log k) Theorem 4

Fig. 4. Summary of relations. Top: separations using CE1: EncH
pk(M ; r) =

EH
pk(M ; r) ‖H(pk), where E is {MM,MMR}-CPA and H a random oracle; CE2:

EncH
pk(M ; r) = M ; CE3: EME-OAEP (see Sect. 6.1); CE4: EncH

pk(M ; r ‖ b) =
EH
pk(M ; r) ‖ (b ⊕ M [1]), where E is IND-CPA. We note that the corresponding CCA

separations are implied by the CPA separations. Bottom: implications, where we note
that the corresponding CPA implications are implied by the CCA implications.

min-entropy. Thus, the MM setting captures systems that are pretty good at
gathering entropy, but not perfect. This is a realistic scenario, as evidenced by
the analysis of the entropy-gathering mechanisms in the Linux kernel in [27].
Catastrophic failures, on the other hand, such as the infamous OpenSSL bug in
the Debian distribution, which resulted in the PRNG seed having only 15 bits
of entropy on many systems [31], or the “boot-time entropy hole” described in
[27], are out of scope. With these distinctions in mind, we study the relationships
between IND, MMR, and MM attack settings. Our results are summarized in
Fig. 4.

Relationship between MMR and MM attacks. Intuitively, the
MMR attack captures a stronger setting, since the adversary can adaptively
corrupt the coins. The notions are incomparable, however, since the adversary
has the public key in the MM attack setting. Nevertheless, we are able to show
that a scheme that is both MMR- and ANON-CCA secure is MM-CCA secure.

Theorem 3 (MMR1+ANON-CCA =⇒ MM1-CCA). Let PKEAD be
an encryption scheme with randomness length ρ(·). Let μ1, μ2, v : N → N be
functions, where μ2(k) ∈ ω(log k). Let R be a (μ2, v, ρ)-r-source and A be a
(μ1, v)-mm-adversary who makes one query to its LR oracle. There exist a
(μ1 + μ2, v, ρ)-mmr-adversary B who makes one query to its LR oracle and
a (μ1 + μ2, v, ρ)-mr adversary D such that

Advmm-cca
PKEAD,R (A, k) ≤ Advmm-cca

PKEAD (B, k) + 4 · Advanon-cca
PKEAD (D, k),

where and B and D have the same runtime as A. Each makes as many decryption
queries as A and one query to its LR oracle.

Roughly speaking, our argument is that if the scheme is key anonymous, then the
public key provides the adversary with negligible advantage in the MM-CCA set-
ting. Therefore, we can give the adversary a public key different from the one
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used to answer its queries with it being none the wiser. The full proof can be
found in the full version of this paper [14].

Finally, we exhibit a scheme that is MM-CPA, but not MMR-CPA in
Sect. 6.1, thus concluding that MMR+ANON-CCA is a properly stronger notion
than MM-CCA.

Relationship between MM and IND attacks. Let Π = (K, E ,D) be an
encryption scheme. Define PKEAD as (K,Enc,Dec) where EncH

pk(M ; r ‖ b) =
EH
pk(M ; r) ‖ (b ⊕ M [1]) and DecH

sk(C ‖ z) = DH
sk(C). (Note that if Π has ran-

domness length ρ(·), then PKEAD has randomness length ρ(k) + 1 for all k.)
Then PKEAD is IND-CPA secure as long as Π is. But PKEAD is not MM-CPA
secure, since bit b might be fixed by the randomness source. It follows that IND-
CPA security does not imply MM-CPA security in general. (A similar argument
holds for MMR-CPA.) But what about the converse?

Recall that our notions are parameterized by the min-entropy and output
length of the source(s). We may also consider finer-grained notions of security.
Let Πmmr-cca

μ,v denote the set of PKE schemes MMR-CCA secure with respect
to distinct (μ, v, ρ)-mmr-sources, where ρ(·) is the randomness length of the
scheme. Similarly, let Πmm-cca

μ1,μ2,v denote the set of PKE schemes MM-CCA secure
with respect to distinct (μ1, v)-mm-sources and (μ2, v, ρ)-r-sources. Finally, let
Πind-cca denote the set of IND-CCA secure schemes. First, we observe that if
ϕ,ψ, v : N → N are functions and ϕ(k) ∈ O(ψ(k)), then Πmmr-cca

ϕ,v ⊆ Πmmr-cca
ψ,v .

This means that if a scheme is secure with respect to the lowest min-
entropy requirement (of order ω(log k)), then it is also secure with respect
to sources with more entropy. Analogously, we have that Πmm-cca

ϕ1,ϕ2,v ⊆ Πmm-cca
ψ1,ψ2,v

where ϕ1, ϕ2, ψ1, ψ2, v : N → N are functions such that ϕ1(k) ∈ O(ψ1(k)) and
ϕ2(k) ∈ O(ψ2(k)).

As a special case, we have that Πmm-cca
0,ϕ,1 ⊆ ind-cca for every ϕ(k) ∈ ω(log k).

More generally, we can show that for certain classes of functions μ1, μ2, v : N →
N, it holds that Πmm-cca

μ1,μ2,v ⊆ Πind-cca. First, we observe the following:

Lemma 1. Let PKEAD be an encryption scheme with randomness length ρ(·).
Let μ1, v : N → N be functions. Let A be an adversary who makes one query to
its LR oracle, and U be the (ρ, v, ρ)-r-source defined by: r ←$ ({0, 1}ρ(k))v(k);
return r. There exists a (μ1, v)-mm-adversary B who makes one query to
its LR oracle such that Advind-cca

PKEAD (A, k) ≤ v(k)2μ1(k) ·Advmm-cca
PKEAD,U (B, k), where

timeB(k) = timeA(k) + O(v(k)2μ1(k)).

Proof. Fix k ∈ N and let μ1 = μ1(k), ρ = ρ(k), and v = v(k). Assume that A’s
query to its LR oracle is (H,M0,M1) where H ∈ AD and M0 and M1 are distinct,
equal-length strings. This is without loss of generality, since otherwise LR would
reject. Let n = |M0| = |M1|. We construct adversary B from A. On input (1k, pk)
and with oracles LR and Dec, adversary B executes b′ ←$ ALR′,Dec(1k, pk) and
returns b′, where LR′ is defined below.

Let M be the following mm-source: on input 1k, first construct a set S ⊆
({0, 1}n)2 such that: (1) |S| = v2μ1 ; (2) (M0,M1) ∈ S; and (3) for every distinct
(X0,X1) and (Y0, Y1) in S, it holds that X0 �= Y0 and X1 �= Y1. Next, for
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each i ∈ [v], sample a pair (X,Y ) uniformly and without replacement from S,
and let M0[i] = X and M1[i] = Y . Finally, output (M0,M1). Sampling each
(M0[i],M1[i]) without replacement means M is distinct. Since |S| = v2μ1 , for
each X ∈ {0, 1}n, b ∈ {0, 1}, and i ∈ [v], it holds that

Pr
[
(M0,M1) ←$ M(1k) : M b[i] = X

] ≤ 1 − v2μ1 − 1
v2μ1

· v2μ1 − 2
v2μ1 − 1

· · ·

=
v

v2μ1
=

1
2μ1

.

It follows that M is a distinct (μ1, v)-mm-source. Returning now to answer-
ing A’s LR queries: on input (H,M0,M1), oracle LR′ first lets H[i] = H for each
i ∈ [v]. It then executes C ←$ LR(H,M), samples j ←$ [v], and returns C[j]
to A.

Adversary B’s simulation of A’s LR query (and subsequent Dec queries) is
perfect as long as M0[j] = M0 and M1[j] = M1. Let good denote this event.
This occurs with probability 1/v2μ1 . Then

Pr
[
Expmm-cca

PKEAD,U (B, k)
]

= Pr
[
Expmm-cca

PKEAD,U (B, k) | good ]
Pr[ good ]

+ Pr
[
Expmm-cca

PKEAD,U (B, k) | good ]
Pr

[
good

]

≥ 1
v2μ1

· Pr
[
Expind-cca

PKEAD (A, k)
]

,

which yields the bound. To complete the proof, we need only to comment on the
runtime of B. Constructing the set S requires time O(v2μ1). Since this dominates
the time to simulate A’s LR query, it follows that the runtime B is timeA(k) +
O(v2μ1). ��
This yields, almost immediately, the following corollary:

Theorem 4. Let μ1, μ2, v : N → N be functions such that μ1(k) ∈ O(log k),
μ2(k) ∈ ω(log k), and v(k) is polynomial in k. Then Πmm-cca

μ1,μ2,v ⊆ Πind-cca.

Proof. Let PKEAD ∈ Πmm-cca
μ1,μ2,v have randomness length ρ(·). By definition, we

have that PKEAD ∈ Πmm-cca
μ1,ρ,v . By Lemma 1, for every PT adversary A, there is

a PT (μ1, v)-mm-adversary B such that

Advind-cca
PKEAD (A, k) ≤ v(k)2μ1(k) · Advmm-cca

PKEAD,U (B, k).

Hence, PKEAD ∈ Πind-cca. ��

6 Constructions

In this section we present several constructions of hedged PKEAD schemes. To
begin, we give a result showing that EME-OAEP (the version of RSA-OAEP
that is implemented in OpenSSL) is not MMR-CPA, but is provably MM-CCA
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in the ROM, under a standard assumption on RSA. This gives the first positive
result for RSA-OAEP in the presence of imperfect randomness, and is callable
via the high-level APIs exposed by all major libraries.

To achieve MMR+IND-CCA, we give a hybrid-encryption PKEAD scheme.
This, too, can be realized by high-level API calls in modern libraries, using RSA
as the trapdoor function, and available hash function and symmetric authenti-
cated encryption functionalities.

We then revisit the generic compositions RtD and PtD from Bellare et al. [5].
We show that if the deterministic scheme is instantiated specifically by RSA-
DOAEP [4], which can be done via high-level API calls to hash functions and
RSA, then PtD achieves MM+IND-CCA, and RtD achieves MM+IND-CPA. We
also suggest specific conditions under which RtD would be MMR+IND-CCA,
extending prior work [5].

Trapdoor permutations. Some of our constructions make use of trapdoor
permutations, so we recall this primitive and its security here. Let k ∈ N. A
trapdoor permutation generator is a probabilistic algorithm F with associated
input length5 n(·) that on input 1k outputs the encoding of a pair of func-
tions f, f−1 : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}n(k), it holds that
f−1(f(x)) = x. We say that F is OWF secure if for every PT adversary A, the
quantity

Advowf
F (A, k) = Pr

[
(f, f−1) ←$ F (1k);x ←$ {0, 1}n(k) : A(1k, f, f(x)) ⇒ x

]

is a negligible function of k.
We will also use the stronger security notion of partial-domain one-wayness

formalized by Fujisaki et al. [25], which asserts that it is difficult to partially
invert a value in the range of the trapdoor permutation. Let F be a trapdoor
permutation generator with input length n(·) and let m(·) be a function such
that m(k) ≤ n(k) for every k ∈ N. We say that F is m-POWF secure if for every
PT adversary A, the following function is negligible in k:

Advpowf
F,m (A, k) = Pr

[
(f, f−1) ←$ F (1k);x ←$ {0, 1}n(k) :

A(1k, f, f(x)) ⇒ x[1..m(k)]
]
.

6.1 EME-OAEP

We first look at RSA-OAEP [9], the only provably-secure PKE scheme available
in OpenSSL, and indeed most libraries.6 It is known to be IND-CCA secure
assuming that the underlying trapdoor permutation is POWF secure, or under
the RSA assumption [25,36].

5 For example, the input length might be the number of modulus bits in RSA.
6 Some implement ElGamal or hybrid encryption schemes as well.
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Kgen(1k)

(f, f−1) ←$ F (1k)
return (〈f〉, 〈f−1〉)

Enc
H
pk(M)

〈f〉 ← pk; PM ← pad(M)
if PM = ⊥ then return ⊥
X0 ← PM ‖H1(H)
Y0 ←$ {0, 1}ρ

X1 ← X0 ⊕ G(Y0)
Y1 ← Y0 ⊕ H2(X1)
P ← X1 ‖ Y1 ‖ [0 ]
return f(P )

Dec
H
sk(C)

〈f−1〉 ← sk; P ← f−1(C)
if |P | �= n then return ⊥
X1 ‖ Y1 ‖ [z] ← P # |Y1| = ρ
Y0 ← Y1 ⊕ H2(X1)
X0 ← X1 ⊕ G(Y0)
PM ‖ T ← X0 # |T | = τ
if H1(H) �= T then return ⊥
return unpad(PM)

Fig. 5. Specification of F -EME-OAEP encryption (RFC 8017) where F is a trapdoor
permutation generator with input length n(·). Let τ(·) and ρ(·) be functions where
for every k ∈ N, it holds that ρ(k) + τ(k) + 16 ≤ n(k). Fix k ∈ N and let n = n(k),
τ = τ(k), ρ = ρ(k), and m = n − ρ − 8. The syntax [i] denotes integer i, where
0 ≤ i ≤ 255, encoded as a byte. Let H1 : {0, 1}∗ → {0, 1}τ , G : {0, 1}∗ → {0, 1}m,
and H2 : {0, 1}∗ → {0, 1}ρ be functions. Define pad : {0, 1}∗ → {0, 1}m−τ ∪ {⊥} by
pad(M) = M ‖ [1 ] ‖ [0 ] · · · [0 ] if |M | is less than or equal to m− τ −8 and is a multiple
of 8, and pad(M) = ⊥ otherwise. Define its inverse unpad : {0, 1}m−τ → {0, 1}∗ ∪ {⊥}
in the natural way.

We specify the EME-OAEP variant standardized in PKCS #1 version 2.2
(RFC 8017). Let F be a trapdoor permutation generator. Refer to the encryption
scheme F -EME-OAEP specified in Fig. 5. This scheme resembles standard OAEP
except that a hash of the associated data (called a label in RFC 8017) is appended
to the message.7 Instead of checking for a string of zero-bytes, the decrypting
party checks that the hash of the associated data matches. In addition, a zero-
byte is appended to the pad before applying the trapdoor.8

F -EME-OAEP is not MMR-CPA. This scheme is not MMR-CPA secure, due to
an attack by Brown [15] on RSA-OAEP with exponent e = 3. The attack exploits
low entropy coins. An adversary who knows (or is able to guess) the coins can
recover the entire plaintext, meaning the attack is effective even if the message
has high min-entropy. Since this attack does not exploit the tag used to check
if the ciphertext is valid during decryption, it is equally effective in breaking
RSA-EME-OAEP.

F -eme-oaep is MM-CCA. We prove the scheme does achieve our new notion.
The standard cites the result of [25] to establish the IND-CCA security of this
scheme, but this result makes no formal claim for the security of the associated
data. Moreover, no security guarantee is known in case randomness is not per-
fect. We extend their analysis to account for associated data and imperfect ran-
domness and prove, in the random oracle model, that F -EME-OAEP is MM-CCA
secure with respect to high min-entropy coins sources, assuming that F is POWF

7 Interestingly, no API we surveyed exposes AD as a parameter, although the standard
supports AD.

8 The zero-byte is intended to ensure that the message is in Z
∗
N in the case of RSA.
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secure. By [25, Lemma 4.2], instantiating the trapdoor with RSA is secure assum-
ing only that RSA is OWF secure.

Theorem 5 (F -EME-OAEP is MM-CCA). Let F be a length n(·) trapdoor
permutation generator. Let μ1, μ2, v, τ, ρ : N → N be functions where μ2(k) ∈
ω(log k) and ρ(k)+τ(k)+16 ≤ n(k) for every k ∈ N. Let m(k) = n(k)−ρ(k)−8.
Let PKEAD=F -EME-OAEP as defined in Fig. 5, where H1, H2, and G are modeled
as random oracles. Let A be a (μ1, v)-mm-adversary who makes qe queries to LR,
qd queries to Dec, and q1, q2, and qG queries to H1, H2, and G respectively. Let R
be a (μ2, v, ρ)-r-source. There exists an adversary B such that

Advmm-cca
PKEAD,R (A, k) ≤ 512qeq2v(k) · Advpowf

F,m (B, k)+

qe(q1 + qd)2

2τ(k)−1
+

qe(qG + qd)2

2ρ(k)−1
+

qev(k)(qG + qd)
2μ2(k)−1

,

where timeB(k) = timeA(k) + O(qdq1qGq2).

The proof appears in the full version [14]. Note that the security bound does
not depend on the min-entropy of the message source, but only on the min-
entropy of the randomness source. This is undesirable from a concrete security
standpoint, since any entropy in the messages is thrown away. In Sect. 6.3, we
show that adding an additional Feistel round is sufficient to establish a concrete
security bound that depends on the message entropy. Note that the loss of 28 in
the bound is the result of fixing the most significant byte as [0].

In real-world terms, this result suggests that it is safe to use RSA-EME-OAEP

barring catastrophic failure of the (P)RNG. If the adversary is able to guess the
coins used, then there is an attack [15], and so the Dual EC DRBG attack [18],
for example, completely breaks the security of RSA-EME-OAEP. Even cases where
the coins still have some entropy [31] we consider insecure in an asymptotic sense,
since an adversary can guess the coins with non-negligible probability.

MMR does not imply MM security. Since F -EME-OAEP is not MMR-CPA,
we conclude that MMR-CPA does not imply MM-CPA in general.

6.2 Hybrid Encryption Construction

Next, we present a novel scheme that is MMR-CCA in the random oracle model,
and at the same time can be implemented using most high-level APIs, including
OpenSSL. The scheme is a hybrid construction combining a trapdoor permuta-
tion, an authenticated encryption scheme with authenticated data (AEAD, now
a standard notion in crypto libraries), and hash functions modeled as random
oracles. We recall the notion of AEAD and then proceed to define the PKEAD
scheme.

Authenticated Encryption with Associated Data (AEAD). An AEAD
scheme consists of three algorithms AEAD = (Kgen,Enc,Dec). The randomized
key generation algorithm Kgen samples a key K from a finite, non-empty set K
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Kgen(1k):

(f, f−1) ←$ F (1k)
R ←$ {0, 1}r

return (f ‖ R, f−1)

Encpk(M, H)

X ←$ {0, 1}ρ(k)

KP ← H1(〈f ‖ R, H, M, X〉)
C1 ← f(KP )
K ← H2(〈f ‖ R, H, KP 〉)
H̃ ← 〈H, C1〉
N ← extract(H̃)
C2 ← AEAD.Enc(K, N, H̃, M)
return C1 ‖ C2

Decsk(H, C1 ‖ C2)

KP ← f−1(C1)
K ← H2(〈f ‖ R, H, KP 〉)
H̃ ← 〈H, C1〉
N ← extract(H̃)
M ← AEAD.Dec(K, N, H̃, C2)
return M

Fig. 6. Hybrid encryption construction HE[F,AEAD] with randomness length ρ(·)
and additional parameters n, λ, kP ∈ N. Let F be a length n(·) trapdoor permuta-
tion generator, such that n(k) ≥ kP for sufficiently large k, and let AEAD be an
AEAD scheme with key space {0, 1}λ, nonce space {0, 1}n, and associated-data space
{0, 1}∗. Let H1 : {0, 1}∗ → {0, 1}kP and H2 : {0, 1}∗ → {0, 1}λ be functions. Let
extract : {0, 1}∗ → {0, 1}n be a function that on input H̃ returns the n-bit nonce.

called the key space. The deterministic encryption algorithm Enc : K×N ×AD×
{0, 1}∗ → {0, 1}∗ ∪ {⊥} takes as input a key K, a nonce N ∈ N , associated
data H ∈ AD, and a message M ∈ {0, 1}∗, and it returns a ciphertext C ∈
{0, 1}∗ or the distinguished symbol ⊥. We sometimes write C ← Enc

H,N
K (M) as

a shorthand for C ← Enc(K,N,H,M). The deterministic decryption algorithm
Dec : K × N × AD × {0, 1}∗ → {0, 1}∗ ∪ {⊥} takes as input a key K, a nonce
N ∈ N , associated data H ∈ AD, and ciphertext C ∈ {0, 1}∗, and outputs either
the plaintext M or ⊥. We sometimes write M ← Dec

H,N
K (C) as shorthand for

M ← Dec(K,N,H,C). For correctness, it is required that for all K ∈ K, H ∈ AD,
N ∈ N and M ∈ {0, 1}∗, we have Enc

H,N
K (M) �= ⊥ =⇒ Dec

H,N
K (EncH,N

K (M)) =
M.

Message privacy. To define message privacy, let A be an adversary and con-
sider the experiment Expind-cpa

AEAD (A). The experiment first generates the key
K ←$ Kgen and samples a bit b ←$ {0, 1}. The adversary has access to the encryp-
tion oracle Enc(K, ·, ·,LR(·, ·, b)), where LR(·, ·, b) on inputs M0,M1 ∈ {0, 1}∗

with |M0| = |M1| returns Mb. We say that A is nonce-respecting if it never
repeats N in its oracle queries. (Hereafter, we assume the IND-CPA attacker
is nonce-respecting.) Finally, adversary A outputs a bit b′. The outcome of the
game is the predicate (b = b′). We define A’s advantage as Advind-cpa

AEAD (A) =
2 · Pr[Expind-cpa

AEAD (A)] − 1.

Authenticity. To define message authenticity, let A be an adversary and con-
sider the experiment Expauth

AEAD (A). It first generates a key K ←$ Kgen, then pro-
vides A access to oracle Enc(K, ·, ·, ·). (Note that the AUTH adversary need not
be nonce-respecting.) The adversary can also query a special decryption oracle
on triples (N,H,C). This oracle returns 1 if Dec

H,IV
K (C) �= ⊥, and 0 otherwise.

The game outputs true if and only if the special decryption oracle returns 1 on
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some query (N,H,C) and A never queried (N,H,M) for some M ∈ {0, 1}∗ and
got C in response. Let Advauth

AEAD (A) = Pr[Expauth
AEAD (A)].

Hybrid PKEAD from a TDP and AEAD. We propose a PKEAD scheme
that uses a trapdoor permutation and an AEAD symmetric encryption scheme.
Its algorithms can be implemented using the library calls to RSA function with
no padding and to any AEAD scheme such as AES-GCM. The scheme is defined
in Fig. 6. The functions H1 and H2 are realized using cryptographic hash func-
tions, but are modeled as random oracles in the analysis. We assume that there
is an efficient function extract that on input associated data H̃ returns the n-bit
nonce for AEAD scheme. The goal of extract is to make sure that the outputs
do not repeat. If H contains a counter, or some other non-repeating string, then
that could be used as an extracted nonce. Alternatively, C1 or its part could
be used as a nonce. (In the analysis we take into account that the asymmetric
parts of ciphertexts do not repeat with overwhelming probability.) We leave the
particular instantiation of extract to the applications.

HE[F,AEAD] is MMR+IND-CCA. The following theorem establishes MMR- and
IND-CCA security of our hybrid construction.

Theorem 6. Let F be a trapdoor permutation generator, AEAD be an AEAD
scheme, and PKEAD = HE[F,AEAD] as defined in Fig. 6, where H1 and H2 are
modeled as random oracles.

– (MMR-CCA) Let μ, v : N → N be functions such that μ(k) ∈ ω(log k). Let
A be a (μ, v, ρ)-mmr-adversary attacking PKEAD and making q queries to
its LR oracle, qd queries to its Dec oracle, and qH1 and qH2 queries to H1 and
H2 respectively. Then there exist adversary B attacking F and adversaries C
and D attacking AEAD, such that

Advmmr-cca
PKEAD (A, k) ≤ qH1 + qd

2r−1
+

(qH1 + q2v(k))
2μ(k)−1

+
qd + q2v2(k)

2kP −1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)

.

– (IND-CCA) Let A be an adversary attacking PKEAD and making q queries to
its LR oracle, qd queries to its Dec oracle, and qH1 and qH2 queries to H1 and
H2. Then there exist an adversary B attacking F and adversaries C and D
attacking AEAD, such that

Advind-cca
PKEAD (A, k) ≤ qH1

2ρ(k)−1
+

qd

2kP −1

+2v(k)q ·
(
Advowf

F (B, k) + Advind-cpa
AEAD (C, k) + Advauth

AEAD (D, k)
)

.

In both cases, we have that timeB(k), timeC(k), timeD(k) ≈ timeA(k), C makes at
most v(k)q queries to its encryption oracle, and D makes v(k)q queries to its
encryption oracle, and qd queries to its decryption oracle.
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The proof is in the full version of this paper [14]. Here we sketch the more chal-
lenging proof of MMR-CCA security. We consider a sequence of games that starts
with the MMR-CCA experiment and ends with the one where random messages
are encrypted with the AEAD.Enc under random keys, which are independent
from the asymmetric ciphertexts. The view of the adversary in the last game is
independent of the challenge bit. As we move between games, we consider a series
of “bad” events. The first bad event happens if the H1 oracle is queried on the
values colliding with those output by the mmr-source during encryption compu-
tation. We can bound such an event by relying on the entropy of the mmr-source,
if the collision occurs after the public key is revealed, or using the fact that the
adversary does not know the public key and cannot guess its randomizer value if
the collision happens before the public key is revealed. If this “bad” event never
happens, then Kp values used to compute the asymmetric parts of the challenge
ciphertexts can be chosen at random. Another bad event is set when a H2 oracle
query is made so it contains the Kp that was used as input to f during encryp-
tion. If this does not happen, we can use random symmetric keys for AEAD.Enc.
If this bad event does happen, we can construct the OWF adversary for trapdoor
permutation generator F . Once we are in a game where random symmetric keys
are used, we can use the IND-CPA security of AEAD. Here we have to make
sure that the IND-CPA adversary is nonce-respecting. This follows from the fact
that the asymmetric parts of the challenge ciphertexts, from which nonces are
derived, do not repeat with overwhelming probability.

Care is needed to ensure that the adversary does not get information about
the public key from the decryption queries and that the adversaries we con-
struct can answer the decryption oracle queries. If the adversary makes a valid
decryption oracle query, so that the asymmetric part is the same as that of some
challenge ciphertext, then we can construct an adversary breaking authenticity
of the AEAD scheme. If the asymmetric part of the ciphertext in the decryption
oracle query is new, i.e., it is different from those of all challenge ciphertexts, and
no corresponding H2 query was made, the ciphertext can be rejected, as it can
be valid only with negligible probability. Before the public key is revealed, such a
hash query can only be made by the adversary with negligible probability. If the
public key has been revealed, than such a ciphertext can be decrypted without
the knowledge of the secret key.

6.3 Generic Constructions

We describe two black-box constructions of [5], which compose generic random-
ized and deterministic encryption schemes. Appealing to the security proper-
ties of their constituents, these constructions are shown to be MMR+IND-CPA
secure in the standard model. We consider lifting these results to the CCA set-
ting, and consider security against MM attacks. First, we specify deterministic
encryption and briefly describe its associated security notions. It will be conve-
nient formulate the syntax without associated data.

Deterministic encryption. A deterministic PKE scheme Π is a triple of
algorithms (K, E ,D). On input 1k, algorithm K probabilistically outputs a key
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pair (pk, sk). Encryption deterministically maps the public key pk and a string M
to an element of {0, 1}∗ ∪ {⊥}. Decryption deterministically maps the secret
key sk and a string C to an element of {0, 1}∗ ∪ {⊥}. The scheme is correct if
for every k ∈ N, (pk, sk) ∈ [K(1k)], and M ∈ {0, 1}∗, it holds that Epk(M) �=
⊥ implies Dsk(Epk(M)) = M . It will be helpful to assume that deterministic
schemes are defined on all strings of a particular length. We say Π has input
length n(·) if encryption is defined for all strings of length n(k) and all k.

We consider both MMR-CPA and -CCA security of deterministic schemes
against (μ, v, 0)-mmr adversaries for functions μ, v : N → N, where μ(k) ∈
ω(log k). In order to instantiate a deterministic scheme in the game, we allow
encryption to take coins as input, but these are simply ignored. Similarly, we
allow encryption and decryption to take associated data as input, but this is
ignored. Note that it does not make sense to consider MM-CPA or -CCA secu-
rity of deterministic schemes, since we cannot defend against key-dependent
distribution attacks in this setting. Security of deterministic encryption was first
formalized by [4]. Their CPA notion, PRIV, is equivalent to MMR1-CPA secu-
rity. However, their CCA notion, PRIV-CCA, is not equivalent to MMR1-CCA.
In our notion, the message source specified by the adversary is allowed to depend
on prior decryption queries, whereas in the PRIV-CCA game, the adversary
makes decryption queries only after it gets its challenge.

Block-sources. Recall the notion of an mβrγ-source given in Sect. 4. In the
standard model, we consider security with respect to mβrγ-block-sources, where
the outputs have high conditional min-entropy. Intuitively, this means that, from
the adversary’s perspective, each output of a block-source has high min-entropy
even having seen the prior elements of the vector. (See [5] for a precise definition.)

Lossy and all-but-one trapdoor functions. LTDFs were first described
by Peikert and Waters [33]. Informally, an LTDF generator F is a probabilis-
tic algorithm that on input 1k and b ∈ {0, 1} outputs a pair of strings (s, t)
such that s encodes a function f . If b = 1, then function f is injective, and t
encodes a function f−1 giving its inverse; otherwise, the image of f is signifi-
cantly smaller than the injective mode (i.e., b = 1). The generator is secure if
no reasonable adversary, given s, can distinguish injective mode from the lossy
mode (i.e., b = 0). We call F universal-inducing if the lossy mode is a uni-
versal hash function. Motivated by the goal of instantiating IND-CCA secure
probabilistic encryption, [33] introduce ABO (“all-but-one”) TDFs as a richer
abstraction. Instead of having an injective and lossy mode, an ABO TDF has
a set of modes, one of which is lossy. Here, security demands that every pair
of modes are computationally indistinguishable. Both primitives have been con-
structed from a number of hardness assumptions: For example, the Φ-hiding
assumption for RSA [29] and LWE (“learning with errors”) for lattices [33]. A
universal LTDF is given by Boldyreva, Fehr, and O’Neill [13] based on the DDH
assumption.

Pad-then-Deterministic. The transformation of a deterministic encryption
scheme into a probabilistic one via a randomized padding scheme is defined in the
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PtD[Πd].Kgen(1k)

(pk, sk) ←$ Kd(1k)
return (pk, sk)

PtD[Πd].EncHpk(M)

if |H| �= k0 then return ⊥
r ←$ {0, 1}ρ

PM ← padn−k0(〈M, r〉)
return Ed(pk, H ‖PM)

PtD[Πd].Dec
H
sk(C)

H ′ ‖PM ← Dd(sk, C) # |H ′| = k0

if H ′ �= H then return ⊥
〈M, r〉 ← unpadn−k0(PM)
return M

RtD[Πr, Πd].Kgen(1k)

(pkr, skr) ←$ Kr(1
k)

(pkd, skd) ←$ Kd(1k)
return (〈pkr, pkd〉, 〈skr, skd〉)

RtD[Πr, Πd].EncHpk(M)

〈pkr, pkd〉 ← pk
C′ ←$ Er(pkr, H, M)
return Ed(pkd, padn(C′))

RtD[Πr, Πd].Dec
H
sk(C)

〈skr, skd〉 ← sk
X ← Dd(skd, C)
C′ ← unpadn(X)
return Dr(skr, H, C′)

F -DOAEP.K(1k)

(f, f−1) ←$ F (1k)
return (〈f〉, 〈f−1〉)

F -DOAEP.Epk(X)

if |X| �= n then return ⊥
〈f〉 ← pk
X� ← X[1..k0]
Xr ← X[k0 + 1..|X|]
S0 ← H1(pk ‖ Xr) ⊕ X�

T0 ← G(pk ‖ S0) ⊕ Xr

S1 ← H2(pk ‖ T0) ⊕ S0

Y� ‖ Yr ← S1 ‖ T0 # |Yr| = k1

return Y� ‖ f(Yr)

F -DOAEP.Dsk(Y )

if |Y | < n − k1 then return ⊥
〈f−1〉 ← sk
Y� ← Y [1..a]
Yr ← f−1(Y [a + 1..|Y |])
S1 ‖ T0 ← Y� ‖ Yri # |S1| = k0

S0 ← H2(pk ‖ T0) ⊕ S1

Xr ← G(pk ‖ S0) ⊕ T0

X� ← H1(pk ‖ Xr) ⊕ S0

return X� ‖ Xr

Fig. 7. Generic constructions. Let k0, k1, n, ρ : N → N be such that k0(k)+ρ(k) ≤ n(k)
for all k. Let Πd = (Kd, Ed, Dd) be a deterministic scheme with input length n(·)
and let Πr = (Kr, Er, Dr) be a randomized encryption scheme. Let F be a trapdoor
permutation generator with input length k1(·). Let pad� : {0, 1}∗ → {0, 1}� ∪ {⊥} be
an invertible encoding scheme with unpad� : {0, 1}∗ → {0, 1}∗ ∪ {⊥} as its inverse. Fix
k ∈ N and let k0 = k0(k), k1 = k1(k), n = n(k), ρ = ρ(k), and a = max{0, n − k1}.
If Y is a string and a ≤ 0, then let Y [1..a] = ε. Let H1,H2 : {0, 1}∗ → {0, 1}k0 and
G : {0, 1}∗ → {0, 1}n−k0 be functions.

top panel of Fig. 7. This is the same as the construction proposed by [5], except
we account for associated data. the message space of PtD[Π] is determined by Π.
The associated data is restricted to bit strings of the length k0(·). We first review
the results known for PtD in the standard model, then consider its extension to
the MMR- and MM-CCA settings.

Let Π be a deterministic scheme and PtD[Π] be as defined in Fig. 7. Bellare
et al. [5, Theorem 6.3] prove this construction is MMR-CPA if Π is MMR-CPA,
and IND-CPA if Π is a u-LTDF. 9 By Theorem 1, any scheme that is both
MMR1- and ANON-CPA secure is also MMR-CPA secure. If Π is a u-LTDF,
then it is MMR1-CPA secure for block-sources [13, Theorem 5.1], and ANON-
CPA secure for block-sources [5, Theorem 5.3]. Thus, the scheme PtD[Π] is MMR-
hedged secure (for block-sources) against chosen-distribution attacks as long

9 Note that a family of trapdoor permutations is syntactically the same as a deter-
ministic encryption scheme.
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as Π is a u-LTDF. Note that universal-inducing property is not essential; see [5,
Sect. 6.2] for details.

Unfortunately, this property of the base scheme does not suffice for security in
the CCA setting. Nevertheless, a similar construction gets us a step in the right
direction. Peikert and Waters [33] suggest the composition of an LTDF generator,
an ABO TDF generator, and a strongly unforgeable one-time signature scheme to
achieve IND-CCA. Boldyreva, Fehr, and O’Neill [13] give a similar construction
(with the signature scheme replaced by a target-collision resistant hash function)
that achieves PRIV-CCA for block-sources.

As pointed out above, this result does not lift generically to MMR1-CCA. Of
course, it is possible that one or both of these constructions satisfy our stronger
notion, but this requires a fresh proof.10 It remains open to instantiate MMR-
CCA in the standard model, but prior work suggests that LTDFs and ABO
LTDFs are a promising approach.

PtD[F -DOAEP] is MM+IND-CCA. Security against MM attacks is achievable
with a scheme that is both MMR1- and ANON-CCA via Theorem 3. Here
we show that, under certain restrictions, instantiating the base scheme with
F -DOAEP is MM-CCA assuming only that F is OWF secure.

Theorem 7 (PtD[F -DOAEP] is MM+IND-CCA). Let PKEAD be defined by
PtD[F -DOAEP] with parameters n, k0, k1, ρ : N → N in Fig. 7, where functions
H1, H2, and G are modeled as random oracles. Suppose that n(k) ≥ k0(k)+k1(k)
for all k. There exists an adversary B such that the following conditions hold:

– (MM-CCA) Let μ1, μ2, v : N → N be functions where μ2(k) ∈ ω(log k). Let A
be a (μ1, v)-mm-adversary and R be a (μ2, v, ρ)-r-source. Suppose that A
makes exactly qe queries to its LR oracle, qd queries to its Dec oracle, and
q1, q2, and qG to oracles H1, H2, and G respectively. Then

Advmm-cca
PKEAD,R (A, k) ≤ 2qev(k) · Advowf

F (B, k) +
5qev(k)(q1 + qd)
2μ1(k)+μ2(k)−1

+
3qev(k)(qG + qd) + v(k)(q2 + qd) + 2qd

2k0(k)−1
+

qe(q1 + qd)2

2ρ(k)−1
.

– (IND-CCA) Let A be an adversary, which makes qe queries to its LR oracle,
qd queries to its Dec oracle, and q1, q2, and qG to oracles H1, H2, and G
respectively. Then

Advind-cca
PKEAD,R(A, k) ≤ 2qe · Advowf

F (B, k)

+
6qeqd + 3qeqG + qeq2

2k0(k)−1
+

6qe(q1 + qd)2

2ρ(k)−1
.

In each case, we have timeB(k) = timeA(k) + O(qdq1qGq2).

10 In another direction, [34] consider novel notions of LTDFs for their adaptive CCA
setting.
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Let us explain this claim a bit. (The proof is in the full version [14].) First, we only
consider the case where n ≥ k0 +k1. The designers of F -DOAEP give two bounds
for its PRIV security [4, Theorem 5.2]: one for inputs of length less than k0 + k1

and another for inputs of length greater than k0 +k1. The distinction arises from
the fact that, in the former case, A’s random oracle queries consist of strings
less than k1 bits in length. The problem is that B is looking for the preimage
under f of its input y, which is a k1-bit string. The solution is a lemma that
relates the OWF advantage of B to the advantage of another inverter adversary
whose task is to return a substring of the preimage rather than the whole string
[4, Lemma A.1]. (This is closely related to the POWF notion of [25].) We focus
on the n ≥ k0 + k1 case for simplicity.

Second, restricting the associated data space to strings of length k0 ensures
that the entropy contained in the message and the random padding is encoded
by the right side of the input. This restriction is not strictly necessary to achieve
security, but it allows us to appeal directly to the OWF security of the trap-
door permutation in the analysis. It is worth noting that the associated data is
encrypted along with the message and randomizer, and that this is undesirable
if the associated data is a long string. In practice, the associated data might
actually be a hash of the associated data, but we emphasize that security is
achieved only for the hash and not the associated data itself.

Remark. In Sect. 6.1, we showed that F -EME-OAEP, a variant of F -OAEP, is
secure against MM attacks, but that its concrete security depends only on the
entropy in the coins. Here we see that adding an additional Feistel round yields
improved concrete security against MM attacks, since we are able to prove a
bound for F -DOAEP that does take the message entropy into account. This
would be the case even without restricting the messages and associated data as
we have.

Randomized-then-Deterministic. The composition of a randomized and a
deterministic encryption scheme suggested by Bellare et al. is defined in Fig. 7.
The idea is to first encrypt the message and associated data using a randomized
scheme, then encrypt the result using a deterministic scheme. Security appeals to
the randomized scheme when the coins are uniform and appeals to the determin-
istic scheme when the message-coins are only high min-entropy. The RtD[Πr,Πd]
composition has message space determined by both Πr and Πd; the associated
data is the same as for Πr.

RtD[Πr,Πd] is MMR+IND-CCA. Let PKEAD = RtD[Πr,Πd]. It is clearly IND-
CPA if Πr is IND-CPA. Bellare et al. show that PKEAD, under certain conditions,
is MMR-CPA if Πd is MMR-CPA [5, theorem 6.2]. Their argument easily extends
to the CCA setting, as shown below. In order to prove this composition works, it
is necessary that the output of the randomized scheme Πr has as much entropy
as its inputs. The following property, formalized by [5], suffices for entropy-
preserving encryption.
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Injective encryption. A PKEAD scheme PKEAD with associated data space
AD and randomness length ρ(·) is said to be injective if for every k ∈ N, (pk, sk) ∈
[PKEAD.Kgen(1k)], H ∈ AD, and (M, r), (M ′, r′) ∈ {0, 1}∗×{0, 1}ρ(k), if (M, r) �=
(M ′, r′), then PKEAD.EncH

pk(M ; r) �= PKEAD.EncH
pk(M

′ ; r′). This gives us two
useful properties: one, if the equality pattern of M and r is distinct, then so is
the equality pattern of EncH

pk(M ; r); two, if 〈M, r〉 has min-entropy μ(·), then
C = EncH

pk(M ; r) has min-entropy μ(·). Many schemes possess this property,
including ElGamal [23] and OAEP [9].

Theorem 8 (RtD[Πr,Πd] is MMR+IND-CCA). Let Πr be an injective and
randomized PKEAD scheme with associated data space AD and randomness
length ρ(·), let Πd be a deterministic PKE scheme, and let PKEAD = RtD[Πr,Πd]
as defined in Fig. 7.

– (MMR-CCA) Let μ, v : N → N be functions where μ(k) ∈ ω(log k). Let A be
a (μ, v, ρ)-mmr adversary. There exists a (μ, v, 0)-mmr adversary B such that
for every k, it holds that Advmmr-cca

PKEAD (A, k) = Advmmr-cca
Πd

(B, k), where B has
the same runtime as A.

– (IND-CCA) Let A be an adversary. There exists an adversary B such that
for every k, it holds that Advind-cca

PKEAD (A, k) = Advind-cca
Πr

(B, k), where B has
the same runtime as A.

The proof is by a simple extension of [5, Theorem 6.2]; The details appear in
the full version of this paper [14]. This result gives us a simple way to securely
realize MMR+IND-CCA encryption, but we need to show how to instantiate the
deterministic scheme Πd. The same result we have for PtD applies here; if Πd

is a u-LTDF, then RtD[Πr,Πd,] is MMR-CPA for block-sources. Again, securely
instantiating MMR-CCA in the standard model remains open.

RtD[Πr, F -DOAEP] is MM+IND-CPA. As before, we consider security against
MM attacks when the deterministic scheme is F -DOAEP. MMR-CCA security is
out of reach for this particular composition, as evidenced by an attack against
the PRIV-CCA-security of RSA-DOAEP pointed out by [4]. (Their attack can be
carried out in the MM-CCA game.) Nonetheless, we show the following:

Theorem 9 (RtD[Πr, F -DOAEP] is MMR+IND-CPA). Let F be a trapdoor
permutation generator with randomness length k1(·). Let F -DOAEP be the deter-
ministic scheme defined in Fig. 7 with parameters k0, k1, n : N → N. Let Π
be an injective PKEAD scheme with associated data space AD and randomness
length ρ(·). Let PKEAD = RtD[Π, F -DOAEP] as defined in Fig. 7, where H1, H2,
and G are random oracles.

– (MM-CPA) Let μ1, μ2, v : N → N be functions where μ2(k) ∈ ω(log k). Let A
be a (μ1, v)-mm-adversary and R be a (μ2, v, ρ)-r-source. Suppose that A
makes qe queries to its LR oracle and q1, q2, and qG to oracles H1, H2,
and G respectively. Suppose that n(k) < k0(k) + k1(k) for all k. Then there
exists an adversary B such that
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Advmm-cpa
PKEAD,R (A, k) ≤ qev(k)qG ·

√
δ2(k) + Advowf

F (B, k)

+ qeδ1(k) +
4qev(k) · q1qG

2μ1(k)+μ2(k)
+

4qev(k)(qG + q2)
2k0(k)

,

where δc(k) = 2ck1(k)−2c(n(k)−k0(k))+5 and timeB(k) = timeA(k)+O(log v(k)+
q2 log q2 + k1(k)3). Suppose that n(k) ≥ k0(k) + k1(k) for all k. Then there
exists an adversary B such that

Advmm-cpa
PKEAD,R (A, k) ≤ qev(k) · Advowf

F (B, k)

+
4qev(k) · q1qG

2μ1(k)+μ2(k)
+

4qev(k)(qG + q2)
2k0(k)

and timeB(k) = timeA(k) + O(log v(k) + q2 log q2).
– (IND-CPA) Let A be an IND-CPA adversary. There exists an IND-CPA

adversary B such that Advind-cpa
PKEAD (A, k) = Advind-cpa

Π (B, k) and B has the
same run time as A.

The first part of the claim follows from an argument built upon the proof that
RSA-DOAEP is PRIV secure [4, Theorem 5.2]. Our results differ from theirs in
the following way. In the PRIV experiment, the adversary is given the public key
only after it submits its LR query. This means that the public key has entropy
from the perspective of the adversary at this point in the game. This fact is
used to bound the advantage A gets from its random oracle queries before it
queries LR. This is why the inputs to the RO in the DOAEP construction are
prepended with the public key (See Fig. 7). Because the adversary is given the
public key in our setting, we must find another way to bound this advantage.
Once we have done this, however, we can use their argument directly to obtain
the claim. We refer the reader to the full version of this paper for the proof [14].
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