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Abstract. Secure and highly efficient authenticated encryption (AE)
algorithms which achieve data confidentiality and authenticity in the
symmetric-key setting have existed for well over a decade. By all conven-
tional measures, AES-OCB seems to be the AE algorithm of choice on
any platform with AES-NI: it has a proof showing it is secure assuming
AES is, and it is one of the fastest out of all such algorithms. However,
algorithms such as AES-GCM and ChaCha20+Poly1305 have seen more
widespread adoption, even though they will likely never outperform AES-
OCB on platforms with AES-NI. Given the fact that changing algorithms
is a long and costly process, some have set out to maximize the security
that can be achieved with the already deployed algorithms, without sac-
rificing efficiency: ChaCha20+Poly1305 already improves over GCM in
how it authenticates, GCM-SIV uses GCM’s underlying components to
provide nonce misuse resistance, and TLS1.3 introduces a randomized
nonce in order to improve GCM’s multi-user security. We continue this
line of work by looking more closely at GCM and ChaCha20+Poly1305 to
see what robustness they already provide over algorithms such as OCB,
and whether minor variants of the algorithms can be used for appli-
cations where defense in depth is critical. We formalize and illustrate
how GCM and ChaCha20+Poly1305 offer varying degrees of resilience
to nonce misuse, as they can recover quickly from repeated nonces, as
opposed to OCB, which loses all security. More surprisingly, by intro-
ducing minor tweaks such as an additional XOR, we can create a GCM
variant which provides security even when unverified plaintext is released.

Keywords: Authenticated encryption · Robust · AES · OCB ·
ChaCha20 · Poly1305 GCM · RUP

1 Introduction

Authenticated encryption (AE) is well established within the research commu-
nity as the method to achieve confidentiality and authenticity using symmetric
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keys. Initially introduced as a response to a need in practice [6,7], it has caught
on in recent years. As a result, AE is used in many different environments, each
with their own security and efficiency requirements. For this reason, the ongo-
ing CAESAR competition [20], which aims to identify the next generation of
authenticated encryption schemes, drafted three use cases as guides to what AE
schemes should target: lightweight, high-performance, and defense in depth.

Within the high-performance category, OCB [43,64,65] is one of the most
competitive AE schemes. Over ten years old, it is well known for its speed, and
theoretically achieves the best performance when measured in block cipher calls.
Although OCB has been standardized [1,44], adoption has remained limited, for
which its patents are usually assumed to be the main cause.

Instead, GCM [49] was chosen as the baseline algorithm with which to
compare in the CAESAR competition. GCM is widely adopted and standard-
ized [1,24], and although it remains slower than OCB due to the additional uni-
versal hash on the output, it is getting more competitive as a result of improved
hardware support [30]. ChaCha20+Poly1305 [12,13,56] is a popular alternative
for settings where AES-NI is not implemented.

OCB, GCM, and ChaCha20+Poly1305 all target the high-performance cate-
gory. Other than the fact that GCM and ChaCha20+Poly1305 are already widely
adopted, and setting aside differences between using AES versus ChaCha20,
from a conventional point of view there seems to be little reason to prefer them
over OCB.

1.1 Robust Algorithms

The increased adoption of AE has been accompanied by an improved under-
standing of the limits of AE security within the research community. Even though
OCB, GCM, and ChaCha20+Poly1305 are secure as proved in the conventional
models (relative to their underlying primitives), questions often arise as to how
robust they are once one of the assumptions in those models no longer holds.
Already in 2002, Ferguson [25] pointed out that with a birthday bound attack
on OCB one can mount forgeries, and Joux [42] illustrated with his “forbid-
den attack” how one can similarly construct forgeries for GCM after a repeated
nonce. Furthermore, many have expressed concerns with the improved effective-
ness of multi-key brute-force attacks [14,16,17,21,28] when applied to widely
deployed algorithms.

Given the fact that modifying and deploying algorithms requires significant
effort, and that the longer algorithms are used, the more their components are
optimized, there has been interest in finding minimal modifications to deployed
algorithms so that they are robust to settings which break one of the assumptions
of the conventional security definitions. For example, TLS added extra nonce
randomization to combat easier key-recovery attacks in the multi-key setting,
which was later analyzed by Bellare and Tackmann [11]. The combination of
ChaCha20+Poly1305 is neither a direct application of Encrypt-then-MAC [6]
nor a copy of GCM: the authentication key used for Poly1305 is changed for
every message, thereby preventing attacks which make GCM fragile. Going a
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step further, worries about nonce misuse in GCM have led Gueron and Lindell
to use the components underlying GCM in order to create GCM-SIV [31], an
algorithm that provides best possible security even when nonces are repeated.
The common theme among these modifications is to squeeze as much security
out of the schemes without sacrificing efficiency.

1.2 Release of Unverified Plaintext

Previous modifications have focused on providing additional security in the
multi-key setting, or when nonces are repeated. However, other robust security
properties, such as security with variable-length tags [63], under distinguishable
decryption failures [19], or under release of unverified plaintext [3] are equally
desirable. The CAESAR competition’s use case describing defense in depth lists
authenticity and limited confidentiality damage from release of unverified plain-
texts (RUP) as desirable properties [15].

One of the advantages of schemes secure under release of unverified plain-
text is that they provide another line of defense with faulty implementations: if
an implementation for whatever reason fails to check authenticity, then RUP-
confidentiality guarantees that if the ciphertext did not originate from the
sender or was modified en route, the resulting decrypted plaintext will look like
garbage. Furthermore, there are settings where a RUP-secure AE scheme pro-
vides desirable properties beyond confidentiality and authenticity; in AppendixC
we explain informally how our construction can be used to efficiently prevent the
crypto-tagging attack in Tor, which is an attack on user anonymity.

State-of-the-art research might give the impression that achieving RUP secu-
rity by minimally modifying existing schemes is out of reach: all designs providing
such security either require significant changes, a completely new design, or an
additional pass, making the schemes slower and adding design complexity. This
is because so far the only solutions provided are essentially variable-input-length
(VIL) ciphers [8], which can be viewed as block ciphers that can process arbi-
trarily long messages. However, VIL ciphers are “heavy” constructions, requiring
often three or more passes over the plaintext in order to ensure sufficient mixing,
or relying on subtle design choices to achieve security.

1.3 Contributions

We continue the line of research on robust AE design by exploring properties
and variants of OCB, GCM, and ChaCha20+Poly1305 which go beyond the
conventional view of AE.

Our first contribution focuses on analyzing the difference in nonce robust-
ness provided by OCB, GCM, and ChaCha20+Poly1305, to provide a framework
complementing the work of others [18,25,42,53]. The conventional nonce misuse
models are very black and white about security: GCM and ChaCha20+Poly1305
do not provide security under nonce misuse since an adversary can determine
the XOR of two plaintexts when both are encrypted under the same nonce.
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However, what the conventional security models do not capture is that this inse-
curity affects only the involved plaintexts and does not “spill” onto others. If,
for example, a faulty implementation repeats a nonce for a pair of plaintexts
and then changes it correctly, confidentiality is only compromised for the plain-
texts in the pair, and not for future plaintexts. In some sense, GCM (with 96 bit
nonces) and ChaCha20+Poly1305 allow one to gracefully recover from re-used
nonces by making them unique again, leading us to formalize such a definition,
nonce-misuse resilience: plaintexts encrypted under unique nonces remain com-
partmentalized even when other plaintexts are compromised.

Within this model we establish that OCB is not resilient to nonce misuse,
confirm that GCM with 96 bit nonces only provides confidentiality resilience,
and that ChaCha20+Poly1305 provides both authenticity and confidentiality
resilience, thereby formally showing that ChaCha20+Poly1305’s choice to depart
from both the Encrypt-then-MAC and GCM designs boosts robustness to nonce
misuse. Inspired by this result, one can also tweak GCM to achieve the same level
of nonce misuse resilience by applying Minematsu and Iwata’s composition [53].

Our second, more surprising contribution is a minor modification to GCM
which achieves both RUP confidentiality and authenticity, which neither OCB,
GCM, nor ChaCha20+Poly1305 currently provide. Our design approach is
generic, meaning it can add RUP security to a general class of encryption
schemes. The core idea is to use a digest of the ciphertext to “hide” the nonce
in such a way that recovering it properly requires that no change was made to
the ciphertext. As a result, if a change did occur, it would affect the nonce,
which, when used by the decryption algorithm, would decrypt the ciphertext
into meaningless data.

2 Related Work

Our approach to analyzing nonce misuse differs from the line of research on
online nonce misuse resistance [4,27,36], which seeks to analyze schemes which
are not able to provide the best possible robustness to nonce misuse [66], but
are able to guarantee more than nonce misuse resilience. Böck, Zauner, Devlin,
Somorovsky, and Jovanovic [18] investigate the practical applicability of nonce-
misusing attacks in TLS by searching for servers which repeat nonces with GCM.

Besides nonce misuse, another extension to the basic AE security model con-
siders what happens when decryption algorithms may output multiple decryp-
tion errors [19]. Further research explored the security of known AE schemes
when their decryption algorithms release partially decrypted plaintext before
verification is complete [3], also known as the release of unverified plaintext
(RUP) model. Both the multiple decryption error and RUP models were unified
by Barwell, Page, and Stam [5] in the subtle AE framework, by using a “leak-
age” function which captures information leaked via a side channel. The “leak-
age” function represents any information that can be received through additional
channels. Hoang, Krovetz, and Rogaway introduce the concept of “Robust AE”
(RAE) [35] which formalizes one of the strongest types of security that an AE
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scheme can satisfy. Our use of the term “robust” describes a gradient, in which
RAE represents the most robust form of AE, and conventional definitions the
most basic form.

Imamura, Minematsu, and Iwata [37] show that ChaCha20+Poly1305 main-
tains authenticity in the RUP setting.

We follow Shrimpton and Terashima [71] in taking a modular approach to
the problem of adding RUP security to encryption schemes, by first providing
a solution in the most general form possible, and then providing an instanti-
ation. Furthermore, our construction is similar to the lower half of Shrimpton
and Terashima’s PIV construction. However, their goal is to achieve something
similar to a VIL cipher, which we argue might be overkill in some scenarios. Note
that combining SIV [66] with our construction would result in a solution very
similar to PIV. RIV [2] is another construction which takes a modular approach
in designing a robust AE scheme.

For a survey on ways to construct VIL ciphers, see Shrimpton and
Terashima’s paper [71]. All the previous methods are generic approaches to
designing VIL ciphers, although there are dedicated approaches as well, such
as AEZ [35], which in fact aims for RAE.

Hirose, Sasaki, and Yasuda [33] presented a construction similar to ours.
However, their construction only accounts for changes over the tag, rather than
the entire ciphertext, hence their solution only provides limited robustness and
would, for example, not prevent the Tor crypto-tagging attack described in
AppendixC. In recent work, Hirose, Sasaki, and Yasuda [34] introduce con-
structions which do account for changes over the entire ciphertext, and focus on
formalizing how such AE constructions make verification unskippable.

3 Preliminaries

3.1 Notation

The set of strings of length not greater than xbits is {0, 1}≤x, and the set
of strings of arbitrary length is {0, 1}∗. Unless specified otherwise, all sets are
subsets of {0, 1}∗. If X,Y ∈ {0, 1}∗, then |X| is the length of X, and X ‖ Y and
XY denote the concatenation of X and Y .

Let ε denote the empty string, and let 0n denote the n-bit string consisting
of only zeros. Given a block size n, the function lenn(X) represents the length of
X modulo 2n as an n-bit string, and X0∗n is X padded on the right with 0-bits
to get a string of length a multiple of n. If X ∈ {0, 1}∗, then |X|n = �|X| /n� is
X’s length in n-bit blocks. The operation

X[1]X[2] · · · X[x] n←− X (1)

denotes splitting X into substrings such that |X[i]| = n for i = 1, . . . , x − 1,
0 < |X[x]| ≤ n, and X[1]‖X[2]‖ · · · ‖X[x] = X.

The set of n-bit strings is also viewed as the finite field GF (2n), by mapping
an−1 . . . a1a0 to the polynomial a(x) = an−1 + an−2x+ · · · + a1xn−1 + a0xn−1 ∈
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GF (2)[x], and fixing an irreducible polynomial which defines multiplication in
the field. For n = 128, the irreducible polynomial is 1 + x + x2 + x7 + x128, the
one used for GCM.

The function int(Y ) maps the j bit string Y = aj−1 . . . a1a0 to the integer
i = aj−12j−1 + · · · + a12 + a0, and strj(i) maps the integer i = aj−12j−1 + · · · +
a12 + a0 < 2j to the j bit string aj−1 . . . a1a0. Let incm(X) denote the function
which adds one modulo 2m to X when viewed as an integer:

incm(X) := strm(int(X) + 1 mod 2m) .

Define msbj(X) to be the function that returns the j most significant bits of X,
and lsbj(X) the j least significant bits.

For a keyed function defined on a domain K × X, we write F (K,X) and
FK(X) interchangeably. If the function has three inputs, K × N × X, then the
second input will often be written as a superscript, F (K,N,X) = FN

K (X). If
E : {0, 1}n → {0, 1}m is a function, then the notation

F ← E(C ‖ ·) (2)

defines F to be the function from {0, 1}n−|C| to {0, 1}m which maps an element
X ∈ {0, 1}n−|C| to E(C ‖ X).

The expression a
?= b evaluates to 	 if a equals b, and ⊥ otherwise.

3.2 Adversaries and Advantages

An adversary A is an algorithm which interacts with an oracle O. Let AO = 1
be the event that A outputs 1 when interacting with O, then define

Δ
A

(f ; g) :=
∣
∣
∣P

[

Af = 1
]

− P
[

Ag = 1
]∣
∣
∣ , (3)

which is the advantage of A in distinguishing f from g, where f and g are viewed
as random variables. The notation can be extended to multiple oracles by setting
O = (O1, . . . , O�).

We assume that all keyed functions do not change their output length under
different keys, that is, |FK(X)| is the same for all K ∈ K. Given a keyed function
F , define $F to be the algorithm which, given X as input, outputs a string chosen
uniformly at random from the set of strings of length |FK(X)| for any key K.
When given the same input, $F returns the same output. Often $F is called a
random oracle.

3.3 Authenticated Encryption Schemes

The syntax for conventional authenticated encryption (AE) schemes specifies
an encryption and decryption algorithm, where the decryption algorithm may
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output either plaintext or a single, pre-defined error symbol. Formally, an AE
scheme is a tuple of functions — encryption Enc and decryption Dec — where

Enc : K × N × M → C , (4)
Dec : K × N × C → M ∪ {⊥} , (5)

with K the keys, N the nonces, M the messages, C the ciphertexts, and ⊥ an
error symbol not contained in M, which represents verification failure. It must
be the case that for all K ∈ K, N ∈ N, and M ∈ M,

DecN
K(EncN

K(M)) = M . (6)

AE schemes must provide both chosen-ciphertext confidentiality and authen-
ticity. The AE advantage of adversary A against Π = (Enc,Dec) is

AEΠ(A) := Δ
A

(EncK ,DecK ; $Enc,⊥) , (7)

where A is nonce-respecting, meaning the same nonce is never queried twice to
Enc. Nonces may be repeated with Dec. Furthermore, A cannot use the output
of an ON

1 query as the input to an ON
2 with the same nonce N , otherwise such

queries result in trivial wins.

4 Resilience to Nonce Misuse

Rogaway and Shrimpton [66,67] formalize the best possible security when adver-
saries may re-use nonces. They illustrate how such nonce misuse resistance can
be achieved using the construction SIV, which was later the inspiration for GCM-
SIV [31].

Finding attacks against OCB, GCM, and ChaCha20+Poly1305 which exploit
repeated nonces is relatively straightforward. When nonces are repeated, OCB
is not much better than ECB mode [57] since one can easily identify when
plaintext blocks are repeated across messages in the same block position. In
GCM, keystreams are tied to nonces, hence all messages encrypted with the
same nonce will use the same keystream, allowing one to recover the XOR of
plaintexts; furthermore, authenticity is broken using Joux’s forbidden attack [42].
ChaCha20+Poly1305 suffers from similar attacks as GCM. However, looking
more closely at the nonce misusing attacks, one can see that the three algorithms
behave very differently.

For a description of OCB, GCM, and ChaCha20+Poly1305, and the notation
we use see Appendices A.1, A.2, and A.3, respectively.

4.1 OCB Attacks

OCB computes two intermediate keys L and R, which it uses to mask the
block cipher inputs and outputs. The value L is computed as the output of the
block cipher when given 0n as input, L := EK(0n), and remains fixed per key.
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The value R changes per nonce, and is computed by encrypting L ⊕ N under
the block cipher. Finally, the masks are computed as γi · L ⊕ R.

Ferguson [25] illustrates how to recover the intermediate key L by finding a
collision using a birthday-bound attack, and subsequently shows how to perform
forgeries with L for any nonce. In fact, a chosen-plaintext confidentiality attack
can be performed as well, by XORing the sequence (γ1 ·L, γ2 ·L, . . . , γm ·L) to the
plaintext and ciphertext in order to remove dependence on L. This compromises
OCB’s confidentiality under any nonce N since repeated plaintext blocks in the
same message will encrypt to the same ciphertext block. Below we show how to
recover L using a nonce-repeating attack.

Fig. 1. An illustration of two queries which would form the first step of the OCB
attack. In both cases R = EK(L ⊕ N).

Our attack needs to repeat a particular nonce four times, and works best
when τ = n. First, encrypt an arbitrary full-block message M1 of block length m
under nonce N . Receive the corresponding tag T1 and let S1 denote the checksum
used to generate T1, so that T1 = EK(S1 ⊕ Z[m]), where Z[m] = γmL ⊕ R.
Encrypt another message M2 of length greater than m blocks under the same
nonce N , with the mth block of M2 equal to M2[m] = S1. The two queries are
depicted in Fig. 1. Note that the corresponding ciphertext block C2[m] equals

EK(S1 ⊕ Z[m]) ⊕ Z[m] , (8)

and so
C2[m] ⊕ T1 = Z[m] = γmL ⊕ R . (9)

Encrypt another two messages M ′
1 and M ′

2 under nonce N where M ′
1 has length

m′ = m, performing the same steps as above to receive T ′
1 and C2[m′] such that

C2[m′] ⊕ T ′
1 = Z[m′] = γm′L ⊕ R . (10)
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Then L can be recovered from

C2[m] ⊕ T1 ⊕ C2[m′] ⊕ T ′
1 = (γm ⊕ γm′)L . (11)

4.2 Chosen-Plaintext Confidentiality

Although the above attack against OCB requires a nonce to be repeated four
times, once those repetitions have occurred, OCB can no longer guarantee secu-
rity. As already observed by Joux [42], one cannot apply a similar confidentiality
attack to GCM, since every new nonce generates a new, roughly independent
keystream, and no information can be determined from the plaintext without
knowing anything about the keystream. The intuition that no information about
the plaintext can be determined from other keystreams can be formalized with
the following definition.

Definition 1. Let A be an adversary and (Enc,Dec) an AE scheme, then the
CPA resilience advantage of A against (Enc,Dec) is defined as

Δ
A

(EncK ,EncK ; $Enc,EncK) , (12)

where A may re-use nonces with O2, but it may not re-use nonces with O1, nor
may it use a nonce already queried to O2 for an O1-query and vice versa.

The above definition allows adversaries to perform nonce-reusing attacks with
EncK , but forces the adversary to win by distinguishing EncK from $Enc using
a nonce-respecting attack, thereby capturing the intuition that a scheme which
provides confidentiality resilience to nonce misuse must maintain confidential-
ity for properly generated nonces, even if the attacker is given the power to
re-use other nonces. Note that the form of our definition follows the framework
of Barwell, Page, and Stam [5], by separately providing oracles representing the
adversary’s goal (EncK versus $Enc), as well as oracles representing the adver-
sary’s power (the second EncK).

In order for schemes to be secure according to the above definition, they must
ensure that encryption under one nonce is roughly independent from encryp-
tion under another, even if adversaries may gain information by re-using nonces
with the encryption oracle. Proving that GCM with 96 bit nonces satisfies this
definition up to the birthday bound is straightforward. First note that adver-
saries which only have access to GCM encryption are essentially interacting
with a stream cipher, CTR mode, since unless a nonce is repeated, no two block
cipher calls are ever the same. This fact holds even if EK(0n) is released to the
adversary, since this value is never output by the underlying CTR mode. Then,
after applying a PRP-PRF switch, the keystreams generated by the underlying
CTR mode under different nonces are independent of each other and uniformly
distributed. Therefore interacting with (EncK ,EncK) is indistinguishable from
interacting with ($Enc,EncK). Similar reasoning applies to ChaCha20, assuming
the underlying ChaCha20 block function is a good PRF.
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Furthermore, OCB does not provide security according to the above defini-
tion, because an adversary can make nonce-repeating queries to EncK via its O2

oracle to recover L, and can then perform a confidentiality attack with its other
oracle. Similarly, GCM with non-96 bit nonces does not provide nonce resilient
confidentiality: since adversaries can recover EK(0n) = L (e.g. using Joux’s for-
bidden attack [42]), they can manipulate the counters used in the underlying
CTR mode to perform a confidentiality attack, since GHASHL is applied to the
nonce before using it in CTR mode (see e.g. Fig. 5).

4.3 Authenticity

Unlike confidentiality, if a nonce is repeated with GCM, then attackers can
recover the authentication key, allowing one to construct forgeries for arbitrary
nonces, as illustrated by Joux [42]. Therefore, even though 96-bit-nonce GCM
is resilient to nonce misuse when considering chosen plaintext confidentiality
attacks, it is not resilient with respect to authenticity. Similarly, OCB is not
resilient to nonce misuse with respect to authenticity.

With ChaCha20+Poly1305, authentication keys are changed with every
nonce, hence even if a nonce is repeated and the authentication key recovered, an
adversary will only be able to forge ciphertexts under the compromised nonce.
Such authentication resilience can be formalized as follows.

Definition 2. Let A be an adversary and (Enc,Dec) an AE scheme, then the
authenticity resilience advantage of A against (Enc,Dec) is

Δ
A

(EncK ,DecK ; EncK ,⊥) , (13)

where if a nonce is used twice with O1, then it cannot be used in an O2 query,
and adversaries may not query ON

1 (M) = C followed by ON
2 (C).

Here the EncK oracle is the adversary’s power, since it may repeat nonces
with that oracle. The challenge of the adversary is to distinguish DecK and ⊥,
by constructing a forgery with a nonce which has not been repeated to EncK .

The only difference between the above definition and the conventional defin-
ition of authenticity is in the restrictions on the adversary: in the conventional
definition adversaries must be nonce-respecting, whereas in this definition they
may repeat nonces, but may not use repeated nonces to construct forgeries.

One way for schemes to provide authenticity resilience is to ensure that tags
verified during decryption under one nonce are independent of verification under
another. For example, assuming that the ChaCha20 block function behaves as a
PRF, each keystream generated by ChaCha20 under one nonce is independent of
the keystreams generated under different nonces, since, as was the case with 96-
bit-nonce GCM, no two block function calls are the same. Furthermore, Poly1305
is keyed using the output of the keystream. This means that, after replacing the
ChaCha20 block function by a uniformly random function, each nonce picks a
different, independently distributed instance of ChaCha20+Poly1305. In partic-
ular, tag production and verification under one nonce is independent of other
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nonces. Say that an adversary submits a decryption query (N,C). If N was
never queried to any previous EncK query, then tag verification is independent
of all previous EncK queries, and it is unlikely that a forgery will be successful.
Even if N was queried previously to EncK , then it could have only been queried
once to EncK , and tag verification will be independent of all other EncK queries,
meaning the adversary will have no better chance of attacking the scheme than
if it had been nonce-respecting.

OCB and GCM do not satisfy the above definition because an adversary can
use the EncK oracle to recover intermediate keys, and perform forgeries. However,
there is an easy way for 96-bit-nonce GCM to mimic ChaCha20+Poly1305 such
that it does become resilient to nonce re-use: produce an additional keystream
block with its underlying CTR mode, and use the output of that block as the
authentication key for each nonce. Minematsu and Iwata [53] consider a gen-
eral version of this construction written in terms of a variable-output-length
PRF and a MAC, and by replacing the PRF with CTR mode and the MAC
with GHASH, one can construct a variant of GCM which provides authenticity
resilience under nonce misuse, with security justification following along the lines
of ChaCha20+Poly1305.

4.4 Chosen-Ciphertext Confidentiality

Much like in the conventional settings, schemes which achieve both chosen-
plaintext confidentiality and authenticity resilience, achieve chosen-ciphertext
confidentiality resilience, as defined below.

Definition 3. The CCA confidentiality resilience advantage of A against
(Enc,Dec) is

Δ
A

(EncK ,EncK ,DecK ; $,EncK ,⊥) , (14)

where nonces may not be repeated with queries to O1, a nonce used twice with
O2 cannot be used for an O3 query, a query ON

1 (M) = C or ON
2 (M) = C may

not be followed by ON
3 (C), and finally a nonce N used to query ON

1 may not be
re-used to query ON

2 , and vice versa.

The fact that CPA confidentiality and authenticity resilience imply the above
definition follows from a straightforward application of the triangle inequality:

Δ
A

(EncK ,EncK ,DecK ; $,EncK ,⊥) ≤ Δ
A

(EncK ,EncK ,DecK ; EncK ,EncK ,⊥)

(15)

+ Δ
A

(EncK ,EncK ,⊥ ; $,EncK ,⊥) (16)

The first term on the right hand side can be bounded above by authenticity of
(Enc,Dec), and the second term by confidentiality.
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5 Adding RUP Security to Encryption Schemes

In this section we introduce our generic method of adding RUP security to a
class of encryption schemes. Following Shrimpton and Terashima [71], we take
a modular approach in designing our construction. We start by describing the
generic components from which the construction will be made, namely tweakable
block ciphers and encryption schemes, and the security requirements they must
satisfy, SPRP and SRND [32], respectively. The advantage of this approach is that
the sufficient conditions to achieve security under release of unverified plaintext
are made explicit, and then, depending upon the available primitives, different
instantiations of the construction can be considered without resorting to new
proofs.

Following a discussion of the components, we describe the construction, and
discuss informally why it enhances the security of the underlying encryption
scheme. The generic construction achieves RUPAE, meaning it provides both
authenticity and confidentiality even if unverified plaintext is released. A formal
security argument for the construction is given in AppendixB. Finally we com-
plete the section by discussing an instantiation, GCM-RUP, which uses GCM’s
components to create a scheme which provides RUP-security.

5.1 Definitions

Following the RUP-model [3], we focus on designing separated AE schemes,
where the decryption algorithm is split into plaintext computation and veri-
fication algorithms, to ensure that the decryption algorithm does not “hide”
weaknesses behind the error symbol. Furthermore, our construction will com-
municate nonces in-band, meaning it will encrypt them and consider them as
part of the ciphertext. As a result, the nonce no longer needs to be synchronized
or communicated explicitly, as sufficient information is contained in the value
S. This changes the syntax slightly, since now the decryption and verification
algorithms no longer accept an explicit nonce input.

Formally, a separated AE scheme which communicates nonces in-band is a
triplet of functions — encryption SEnc, decryption SDec, and verification SVer
— where

SEnc : K × N × M → C , (17)
SDec : K × C → M , (18)
SVer : K × C → {⊥,	} . (19)

with K the keys, N the nonces, M the messages, and C the ciphertexts. Recall that
the symbols 	 and ⊥ represent success and failure of verification, respectively,
and we assume that neither are elements of M. It must be the case that for all
K ∈ K, N ∈ N, and M ∈ M,

SDecK(SEncN
K(M)) = M and SVerK(SEncN

K(M)) = 	 . (20)
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From a separated AE scheme (SEnc,SDec,SVer) one can reconstruct the
following conventional AE scheme (AEnc,ADec):

AEncN
K(M) := SEncN

K(M) (21)

ADecK(C) :=

{

SDecK(C) if SVerK(C) = 	
⊥ otherwise ,

(22)

where we assume that the AE scheme communicates nonces in-band as well.
Separated AE schemes must provide both chosen-ciphertext confidentiality

and authenticity. Both of these security aspects are captured in the RUPAE
measure of Barwell, Page, and Stam [5]. We adopt a stronger version of their
definition, by requiring the decryption algorithm to look “random” as well. Let Π
denote a separated AE scheme (SEnc,SDec,SVer), then the RUPAE -advantage
of adversary A against Π is

RUPAEΠ(A) := Δ
A

(SEncK ,SDecK ,SVerK ; $SEnc, $SDec,⊥) , (23)

where A is nonce-respecting, meaning the same nonce is never queried twice to
SEnc. Nonces may be repeated with SDec and SVer. Furthermore, A cannot use
the output of an ON

1 query as the input to an ON
2 or ON

3 query with the same
nonce N , otherwise such queries result in trivial wins.

5.2 Generic Construction

Components. A tweakable block cipher [47] is a pair of functions (E,D), with

E : K × T × X → X (24)
D : K × T × X → X , (25)

where K is the key space, T the tweak space, and X the domain, where X = {0, 1}x

is a set of strings of a particular length. For all K ∈ K and T ∈ T it must be the
case that ET

K is a permutation with DT
K as inverse. We will need to measure the

SPRP quality of the tweakable block cipher, which is defined as

SPRP(A) := Δ
A

(

EK ,DK ; π, π−1
)

, (26)

where K is chosen uniformly at random from K, and (π, π−1) is a family of
independent, uniformly distributed random permutations over X indexed by T.

Although Liskov, Rivest, and Wagner [47] introduced the concept of finite-
tweak-length (FTL) block ciphers, for our construction we need tweakable block
ciphers that can process variable tweak lengths (VTL). Starting from an FTL
block cipher, one can construct a VTL block cipher by compressing the tweak
using a universal hash function, and using the resulting output as the tweak
for the FTL block cipher, as explained by Coron et al. [22]. Minematsu and
Iwata [54] introduce the XTX construction which extends tweak length while
minimizing security loss.
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There are a few dedicated constructions of FTL block ciphers: the hash func-
tion SKEIN [26] contains an underlying tweakable block cipher, the CAESAR
competition candidates Joltik [41] and Deoxys [40] also developed new tweak-
able block ciphers, and the TWEAKEY framework [39] tackles the problem
of designing tweakable block ciphers in general. Besides dedicated construc-
tions, there are also constructions of tweakable block ciphers using regular block
ciphers; see for example Rogaway’s XE and XEX constructions [64], Mine-
matsu’s beyond-birthday bound construction [52], Landecker, Shrimpton, and
Terashima’s CLRW2 construction [45], and Mennink’s beyond-birthday bound
constructions [51].

An encryption scheme (Enc,Dec) is a separated AE scheme without SVer.
The basic security requirement for encryption schemes is chosen-plaintext con-
fidentiality, but this is not sufficient for our purpose. In particular, a mode like
CBC [55] will not work, since during decryption a change in the nonce will only
affect the first decrypted plaintext block. We need encryption schemes where dur-
ing decryption a change in the nonce will result in the entire plaintext changing.
Modes such as CTR [55], OFB [55], and the encryption of OCB [43,64,65] suf-
fice. In particular, it is necessary that both encryption and decryption algorithms
give uniform random output when distinct nonces are input across both encryp-
tion and decryption. For example, with CTR mode, decryption is the same as
encryption, and if nonces are never repeated across both algorithms then its
output will always look uniformly random.

We use Shrimpton and Terashima’s [71] SRND measure for encryption
schemes, which was introduced by Halevi and Rogaway [32]:

SRND(A) := Δ
A

(EncK ,DecK ; $Enc, $Dec) , (27)

where K is chosen uniformly at random from K, and A must use a different
nonce for every query it makes, to both of its oracles.

Description. Let (Enc,Dec) be an encryption scheme with key space K, nonce
space N, message space M, and ciphertext space C. Let (E,D) be a tweakable
block cipher with T = N × C, X = N, and key space K. Let α ∈ {0, 1}τ be some
pre-defined constant. Then define the separated AE scheme (SEnc,SDec,SVer)
as follows. The key space is K2, with keys denoted by (K,L), the nonce space is
N, the message space is M, and the ciphertext space is N × C:

SEncN
K,L(M) :=

(

EC
L (N), C

)

(28)

with C := EncN
K(α ‖ M) (29)

SDecK,L(S,C) := lsb|C|−τ

(

DecN ′
K (C)

)

(30)

with N ′ := DC
L (S) (31)

SVerK,L(S,C) :=
(

msbτ

(

DecN ′
K (C)

)
?= α

)

. (32)
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Fig. 2. Adding RUP security to an existing encryption scheme. The circles indicate
duplication of the value.

The construction is depicted in Fig. 2.
The construction adds robustness to the encryption scheme (Enc,Dec) by

compressing the ciphertext via the tweak of the tweakable block cipher, and
using that information to encrypt the nonce. As a result, during decryption,
if any bit of the ciphertext is modified, then the ciphertext will result in a
different tweak with essentially probability one, and the tweakable block cipher
will decrypt the nonce into some random value, which is used as the new nonce
for Dec. By assumption, Dec will output garbage, or more precisely, plaintext
which is unrelated to any other plaintext queried.

Similarly, if the ciphertext is kept the same, and the encrypted nonce, S,
is modified, then the tweakable block cipher will be queried on an input for
which it has not been queried on before with the given tweak computed from
the ciphertext. As a result, the decryption of S will be random, and Dec’s output
will look random as well.

With respect to authenticity, our construction follows the encode-then-
encipher paradigm [9], which uses redundancy in the plaintext in order to guar-
antee authenticity. The level of authenticity is determined by the length of the
constant α: if verification can be removed, then α’s length is set to zero. How-
ever, the only requirement from α is to be known to both sides, and users may
use any predictable bits already present in the plaintext.

5.3 GCM-RUP

We illustrate an instantiation of the construction using familiar primitives,
namely those used to construct GCM [49,50]. The resulting instantiation uses
three independent keys, but only makes three minor modifications to AES-GCM
in order to achieve RUP security:
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1. the plaintext is prepended by a string of zero bits of length τ ,
2. the nonce N instead of GHASH(ε,N) is used to generate the mask for the

polynomial hash, and
3. the output of GHASH is XORed with the nonce before it is encrypted.

See Fig. 3 for an illustration.

N

GHL
ε /96

/32 inc32 inc32 inc32 inc32

EK1 EK1 EK1 EK1

msbτ+|M|

+

M0τ

EncK1

GHK2EK3

+

+

S

A

C
EK2,K3

Fig. 3. Instantiation of our construction using GCM’s components. Changes from GCM
are indicated using a dashed pattern, and the dotted boxes point out the underlying
encryption scheme and tweakable block cipher. Filled circles indicate duplication of the
values. GH is GHASH, and /m indicates the number of bits on a wire. The value L is
EK1(0

n), and A represents associated data.

Appendix A.2 contains a description of the GCM components that we
use to describe the instantiation, including the function GHASH, defined in
Algorithm 3, and CTR mode, defined in Algorithm4. Note that our formaliza-
tion above did not include associated data, whereas GCM-RUP does, however it
is straightforward to extend the definitions and generic construction to include
it.

Since the generic construction’s security relies on generating random nonce
input during decryption, in order to maintain security up to the birthday bound
on the block size, as is the case with GCM, the nonce size in the instantiation
is fixed to be the same as the block size. The encryption scheme underlying the
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Algorithm 1. GCM-RUPK1K2K3(A,M)

Input: K1K2K3 ∈ {0, 1}3n, A ∈ {0, 1}≤n232 , M ∈ {0, 1}≤n232

Output: (S, C) ∈ {0, 1}n × {0, 1}τ+|M|

1 M ← 0τ ‖ M
2 L ← EK1(0

n)
3 I ← GHASHL(ε, N)
4 m ← |M |n
5 F ← EK1(msb96(I) ‖ ·)
6 S ← CTR[F ](inc32(lsb32(I)), m)
7 C ← M ⊕ msb|M|(S)
8 T ← GHASHK2(N‖A, C)
9 S ← EK3(I ⊕ T ) ⊕ T

10 return (S, C)

instantiation, (Enc,Dec), is the same as GCM without authentication, or in other
words CTR mode, therefore Enc and Dec are identical, and so the SRND quality
of (Enc,Dec) can be measured by looking only at Enc-queries. This allows us to
use the GCM confidentiality result of Niwa et al. [58,59], which gives (Enc,Dec)
an SRND-bound of

0.5(σ + q + d + 1)2

2n
+

64 · q(σ + q + d)
2n

, (33)

where σ is the total number of blocks queried, q the number of Enc queries, d
the number of Dec queries, and the nonce length is n bits, which is the block
size as well.

Security of the underlying tweakable block cipher follows from the XTX
construction of Minematsu and Iwata [54], where we extend the tweak space of
a block cipher to arbitrary tweak size by XORing GHASH to both the input and
output of the block cipher. Hence the SPRP-quality of the underlying tweakable
block cipher is

q2(	 + 1)
2n

, (34)

where q is the total number of queries made to the tweakable block cipher, and
	 is the maximal tweak length, or in other words, the maximal ciphertext and
associated data length in blocks.

Putting together the results along with the result of AppendixB, we get the
following bound for the instantiation.

Theorem 1. Let A be a RUPAE-adversary against the instantiation making at
most q SEnc queries, and v SDec and SVer queries. Say that at most σ blocks
are queried, with 	 the maximum ciphertext and associated data block length of
any query, then A’s advantage is at most

0.5(σ + q + v + 1)2

2n
+

64 · q(σ + q + v)
2n

+

(q + v)2(	 + 1)
2n

+ 2
v(q + v + 1)
2n − q − v

. (35)
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If q + v ≤ 2n−1, then since q + v ≤ σ, the bound can be simplified to

3 · 64 · σ2

2n
+

σ2(	 + 1)
2n

, (36)

which is similar to GCM’s security bounds [38,58].
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A Algorithm Descriptions

In this section we provide descriptions of OCB, GCM, and ChaCha20+Poly1305.
The descriptions are only given to the level of detail sufficient for the paper. The
notation is borrowed various sources: the description of OCB by Rogaway, Bellare,
and Black [65], the description of GCM by Iwata, Ohashi, and Minematsu [38], and
the documents by Procter analyzing ChaCha20+Poly1305 [61,62].

A.1 OCB

In this section we describe the OCB mode of operation [43,64,65]. We focus
on OCB version 1 [65], however our results extend to all versions of OCB. We
do not include associated data as we do not need it for the OCB attacks. The
reference used for the figure, pseudocode, and notation below is from [65]. Let
E : K × {0, 1}n → {0, 1}n be a block cipher and let τ denote the tag length,
which is an integer between 0 and n. Let γ1, γ2, . . . be constants, whose values
depend on the version of OCB used; for example, in OCB1 [65] these are Gray
codes. Then Algorithm 2 gives pseudocode describing OCB encryption, and Fig. 4
provides an accompanying diagram.

A.2 GCM

In this section we describe the GCM mode of operation [49,50] with nonces
of 128 bit length. We let E : {0, 1}128 × {0, 1}128 → {0, 1}128 denote a block
cipher. The function GHASH is defined in Algorithm 3. Algorithm 5 provides
pseudocode for GCM encryption, which also uses the keystream generator CTR
mode in Algorithm 4. See Fig. 5 for an illustration.
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Algorithm 2. OCBK(N,M)
Input: K ∈ {0, 1}n, M ∈ {0, 1}∗

Output: C ∈ {0, 1}∗

1 M [1]M [2] · · · M [m]
n←− M

2 L ← EK(0n)
3 R ← EK(N ⊕ L)
4 for i = 1 to m do
5 Z[i] = γi · L ⊕ R
6 end
7 for i = 1 to m do
8 C[i] ← EK(M [i] ⊕ Z[i]) ⊕ Z[i]
9 end

10 X[m] ← lenn(M [m]) ⊕ L · x−1 ⊕ Z[m]
11 Y [m] ← EK(X[m])
12 C[m] ← Y [m] ⊕ M [m]
13 Checksum← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m]0∗n ⊕ Y [m]

14 T ← msbτ

(
EK(Checksum ⊕ Z[m])

)

15 return C[1] · · · C[m]T

Algorithm 3. GHASHL(A,C)

Input: L ∈ {0, 1}n, A ∈ {0, 1}≤n(2n/2−1), C ∈ {0, 1}≤n(2n/2−1)

Output: Y ∈ {0, 1}n

1 X ← A0∗n ‖ C0∗n ‖ strn/2(|A|) ‖ strn/2(|C|)
2 X[1]X[2] · · · X[x]

n←− X
3 Y ← 0n

4 for j = 1 to x do
5 Y ← L · (Y ⊕ X[j])
6 end
7 return Y

Algorithm 4. CTR[F ](X,m)
Input: F : {0, 1}x → {0, 1}n , X ∈ {0, 1}x, m ∈ N

Output: S ∈ {0, 1}mn

1 I ← X
2 for j = 1 to m do
3 S[j] ← F (I)
4 I ← incx(I)

5 end
6 S ← S[1]S[2] · · · S[m]
7 return S
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N

+ L

EK

R

EK EK EK EK

+ + + +

+ + +

Z[1] Z[2] Z[3]′ Z[3]

Z[1] Z[2]

lenn

τ

M [1] M [2] M [3]

Checksum

C[1] C[2] C[3] T

Fig. 4. The OCB mode of operation applied to a plaintext of length at most three
blocks. The value L is EK(0n) and Z[3]′ = Z[3] ⊕ L · x−1.

N

GHL
ε

inc32/32 inc32 inc32 inc32

/96

EK EK EK EK

msb|M|

+

M

GHL

EK

+

T

A

C

Fig. 5. The GCM mode of operation with 128 bit nonces. GH is GHASH and /m

indicates the number of bits on a wire. The value L is EK(strn(0)).
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Algorithm 5. GCMK(N,A,M)

Input: K ∈ {0, 1}128, N ∈ {0, 1}128, A ∈ {0, 1}≤128·232 , M ∈ {0, 1}≤128·232

Output: (C, T ) ∈ {0, 1}≤128·232 × {0, 1}128

1 L ← EK(str128(0))
2 I ← GHASHL(ε, N)
3 m ← |M |128
4 F ← EK

(
msb96(I) ‖ ·

)

5 C ← M ⊕ msb|M|
(
CTR[F ] (inc32(lsb32(I)), m)

)

6 T ← EK(I) ⊕ GHASHL(A, C)
7 return (C, T )

A.3 ChaCha20+Poly1305

Our description of ChaCha20+Poly1305 is taken from the RFC [56] describing
it, as well as Procter’s analysis [61,62]. The combination of ChaCha20 [13] and
Poly1305 [12] is similar to that of GCM, with the main differences being the fact
that block cipher calls are replaced by ChaCha20’s block function calls, and the
key for Poly1305 is generated differently.

The ChaCha20 block function is denoted by

CC : {0, 1}256 × {0, 1}32 × {0, 1}96 → {0, 1}512 , (37)

which operates on keys of length 256 bits, a block number of length 32 bits,
a nonce of length 96 bits, and with an output of size 512 bits. The Poly1305
universal hash function is denoted by

Poly : {0, 1}128 × {0, 1}∗ → {0, 1}128 . (38)

The description of ChaCha20+Poly1305 encryption is given in Algorithm6.

Algorithm 6. CC&PolyK(N,A,M)

Input: K ∈ {0, 1}256, N ∈ {0, 1}96, A ∈ {0, 1}≤8·(264−1), M ∈ {0, 1}≤512·(232−1)

Output: (C, T ) ∈ {0, 1}|M| × {0, 1}128

1 F ← CCK(· , N)

2 C ← M ⊕ msb|M|
(
CTR[F ]

(
str32(1), |M |512

) )

3 L ← msb256 (F (str32(0)))

4 T ← lsb128(L) ⊕ Polymsb128(L)

(
A0∗128‖C0∗128‖str64(|A|8)‖str64(|C|8)

)

5 return (C, T )
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B Formal Security Argument For The Generic
Construction

We start by defining two reductions which use an adversary A playing the RUPAE
game against the construction S = (SEnc,SDec,SVer). Let B = (E,D) denote the
tweakable block cipher and E = (Enc,Dec) the encryption scheme. Furthermore,
let $S = ($SEnc, $SDec,⊥), $B := (π, π−1), where (π, π−1) is from the definition of
SPRP security in Eq. (26), and $E := ($Enc, $Dec). Then we define the following
two reductions:

1. A reduction B〈A〉 to the SPRP quality of the tweakable block cipher B, mean-
ing B〈A〉 will attempt to distinguish B from $B, using A, an algorithm which
is expecting either S or $S. The reduction B generates a key K indepen-
dently, and uses K to simulate the encryption scheme E. Then, B runs A,
and responds to A’s queries by reconstructing S using its own oracles, either
B or $B, and the simulated E.

2. A reduction C〈A〉 to the SRND quality of the encryption scheme E. In con-
trast with B, the reduction C simulates $B instead of B. Then using its own
oracles, either E or $E, and $B, C reconstructs S.

Theorem 2. The advantage of any nonce-respecting RUPAE adversary A
attempting to distinguish S from $S, making at most q SEnc queries, and at
most v SDec and SVer queries, is bounded above by

2
v(q + v)

|N| − q − v
+

v

2τ
+ SPRPB(B〈A〉) + SRNDE(C〈A〉) . (39)

Proof. Let S[Π,Σ] denote S using Π as tweakable block cipher and Σ as encryp-
tion scheme. By definition, we seek to bound

RUPAE(A) = Δ
A

(S[B,E] ; $S) . (40)

Applying the triangle inequality, we get

Δ
A

(S[B,E] ; $S) ≤ Δ
A

(S[B,E] ; S[$B,E]) + Δ
A

(S[$B,E] ; $S) (41)

Using reduction B〈A〉, we know that

Δ
A

(S[B,E] ; S[$B,E]) ≤ Δ
B〈A〉

(B ; $B) . (42)

Therefore we can focus on
Δ
A

(S[$B,E] ; $S) (43)

which in turn is bounded above by

Δ
A

(S[$B,E] ; S[$B, $E]) + Δ
A

(S[$B, $E] ; $S) . (44)
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The analysis of these two remaining terms relies on computing the probability
that A makes a query which results in a nonce collision during a decryption
query, thereby violating the SRND game’s requirement. In the analysis below,
we find that the probability of such an occurence is at most

ε :=
v(q + v)

|N| − q − v
. (45)

Therefore, using the reduction C〈A〉 we know that the first term of Eq. (44) is
bounded by

ε + Δ
C〈A〉

(E ; $E) , (46)

and the bound for
Δ
A

(S[$B, $E] ; $S) (47)

is given below.
Say that A generates SEnc inputs (N1,M1), (N2,M2), . . . , (Nq,Mq), and

SDec and SVer inputs (S1, C1), (S2, C2), . . . , (Sv, Cv), where (Si, Ci) could be
the input to either an SDec or SVer query. Let N∗

i denote the nonce input to
$Dec resulting from the query (Si, Ci), that is

N∗
i = π−1,Ci(Si) . (48)

Similarly, define M∗
i and α∗

i such that

α∗
i ‖M∗

i = $N∗
i

Dec(Ci) . (49)

We call N∗
i , M∗

i , and α∗
i the “decrypted” nonces, plaintexts, and constants,

respectively.
If the nonces Ni and N∗

j are distinct from each other then the SRND game’s
requirement is respected, hence $E will always give uniformly distributed and
independent output. Let event denote the event that either Ni = Nj for 1 ≤
i < j ≤ q, or N∗

i = N∗
j for 1 ≤ i < j ≤ v, or Ni = N∗

j for 1 ≤ i ≤ q and
1 ≤ j ≤ v. Then, by the fundamental lemma of game playing [10], Eq. (47) can
be bounded by

P
[

event
]

+ P
[

∃ i s.t. α∗
i = α

∣
∣
∣ event

]

, (50)

where event is the negation of event. Given event, the nonce input to $Dec will
always be distinct, hence the α∗

i are independent and uniformly distributed,
which means the quantity on the right is bounded above by v/2τ .

Therefore we focus on the probability of event, i.e. that there is a collision
in the Ni and N∗

j . By hypothesis, A is nonce-respecting, hence we know that
Ni = Nj for 1 ≤ i < j ≤ q. Therefore we focus on the case that a decrypted
nonce collides with some Ni, or another decrypted nonce.

Consider the query (Si, Ci) associated to the ith decrypted nonce N∗
i , and

say that event has not yet been triggered. Let (Nj ,Mj) be a previous SEnc
query, and (Sj , Cj) its corresponding output. By hypothesis, (Sj , Cj) = (Si, Ci).
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If Cj = Ci, then the tweak input to (π, π−1) will be different for the SEnc and
SDec or SVer queries, hence the probability that N∗

i collides with Nj is at most
1/ |N|. If Cj = Ci, then Sj = Si, which means that (π, π−1) is queried under the
same tweak for both the SEnc and SDec or SVer queries. However, the probability
that

Nj = π−1,Cj (Sj) = π−1,Ci(Si) = N∗
i (51)

is at most 1/(|N| − q − v).
Now consider the probability that an SEnc query (Ni,Mi) is such that Ni

equals N∗
j for some previous SDec or SVer query. Since the adversary’s view is

independent of N∗
j , it can guess N∗

j with probability at most 1/(|N| − q − v).
Therefore, the probability that a decrypted nonce collides with some nonce Nj

is at most
qv

|N| − q − v
. (52)

Given that no decrypted nonces collide with any nonce Nj , we are left with
the event that two decrypted nonces collide with each other. However, similar
reasoning as above shows that this probability is bounded above by

v2

|N| − q − v
, (53)

Putting the above computations together, if A makes q SEnc queries, and v
SDec and SVer queries, then Eq. (47) is bounded above by

v(q + v)
|N| − q − v

+
v

2τ
. (54)

��

C Application to Tor

The advantage in coming up with new, robust AE schemes is that they can then
be used for applications which go beyond the traditional goals of ensuring data
confidentiality and authenticity between two communicating parties. Consider
for example Tor [23], which uses CTR mode [55] to ensure anonymity. CTR
mode is a basic encryption scheme which provides data confidentiality, and no
authenticity. In particular, its decryption algorithm provides no robustness to
changes in its ciphertext: a change in the ith bit of ciphertext will result in
the same change to the ith bit of the resulting plaintext. This property enables
the crypto-tagging attack [73] against Tor, which breaches anonymity. Using
an RAE [35] or encode-then-encipher [9,71] scheme prevents the crypto-tagging
attack, and potentially introduces a new level of robustness to Tor’s anonymity.
Hence, the Tor community has initiated a search for replacements for CTR
mode [48].

However, replacing CTR mode with known robust solutions not only comes
at an efficiency cost, but also increased design, and hence implementation, com-
plexity. This is because so far the only solutions provided for full robustness are
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essentially variable-input-length (VIL) ciphers [8], which can be viewed as block
ciphers that can process arbitrarily long messages. However, VIL ciphers are
“heavy” constructions, requiring often three or more passes over the plaintext in
order to ensure sufficient mixing, or relying on subtle design choices to achieve
security.

We now outline how our construction can be used in Tor to avoid the crypto-
tagging attack [73]. Our intention is not to provide a detailed description, but
to give a high-level overview.

C.1 Tor

Tor [23] is a circuit-based low-latency anonymous communication service. The
core idea underlying Tor is onion routing, a distributed overlay network designed
to anonymize TCP-based applications, presented by Syverson, Reed and Gold-
schlag in [72].

Generally speaking, Tor communication is encrypted and relayed by nodes
in the Tor-network via circuits. When building circuits, clients exchange keys
with several nodes, usually 3, where each node only knows its predecessor and
successor.

Clients prepare messages using multiple layers of encryption. First, the mes-
sage is encrypted using the key and nonce shared with the circuit’s last node.
The resulting ciphertext is then encrypted again with the keys and nonce of
the one-before-last node. This process is repeated for each node, until the first
node’s key is used.

The output of the multi-layered encryption is then sent from the client to the
first node, which decrypts one layer, and forwards the result to the next node.
In every step, another layer of encryption is removed, and the message is passed
forward, until it reaches the last node. The last node authenticates and forwards
the message to the intended recipient outside of the Tor network.

C.2 The Crypto-tagging Attack

By design, the Tor protocol offers an end-to-end integrity check, which the exit
node does by computing a SHA-1 digest of the decrypted message. Such a check
prevents e.g., attacks by rogue nodes which “tag” the encrypted message, and
then search outbound communication for the corresponding corrupted traffic.

In 2012, an anonymous email was sent to the Tor developers mailing list
describing the crypto-tagging attack [73]. In this attack, two nodes, the entry
and exit nodes, collude by tagging and untagging messages upon entry and exit
to the network, respectively, thereby making the changes transparent to all other
parties.1 Due to the mode of operation used for encryption, CTR mode, the
location of corrupt bits introduced at the entry to the network are maintained

1 Tagging can be done in several ways. We mention here only one: the entry node
XORs an identifing string to the message they are passing. Untagging is done by
XORing the same identifier by the exit node.
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through all decryptions, and can be removed by the exit node by just knowing
their location. Furthermore, since the integrity check is only performed by the
exit node, the corruption cannot be detected by intermediate nodes in the circuit.
Moreover, the attack is amplified by the fact that if only one of the nodes (i.e.,
either the entry node or the exit node) is malicious, the tagged message cannot
be verified, and the circuit is destroyed. Any new circuit where only one of the
nodes is malicious will also be destroyed, thus biasing the set of possible circuits
towards compromised ones.

An obvious solution to this problem is to add an authentication tag to each
layer of the encryption, allowing intermediate nodes to verify the data passed
through them and act according to some policy. However, in the discussion fol-
lowing the attack, such a solution was ruled out due to two main problems: (i)
by adding authentication tags, the available bandwidth for sending messages is
reduced, and (ii) the circuit’s length could be revealed, an undesirable property
in such systems.

C.3 Avoiding the Attack

We propose a different approach allowing intermediate nodes to release unverified
plaintext, using the generic construction proposed in Sect. 5. The only change
from the above procedure for preparing the message is how the nonces are chosen.

As before, clients start by encrypting the plaintext with the key and nonce of
the last node using CTR mode. Then, the ciphertext is compressed and used as
a tweak for the encryption of the nonce as per Fig. 2. Afterwards, the encrypted
nonce, S, is used as the nonce for the next layer of encryption, i.e., with the
keys of the one-before last node. This is repeated for each node of the circuit
all the way to the first one. The result is a multi-layered application of our
construction where the first layer receives the nonce and the plaintext as input,
and each subsequent layer receives the previous layer’s output. The new RUP
secure layered encryption mode of operation is presented in Fig. 6, where each
layer can be realized using e.g., the robust version of GCM presented in Sect. 5.3
with |α| = 0.

When the message is ready, the client sends the ciphertext, along with the
3-times encrypted nonce to the first node. The first node uses the decryption
algorithm as per Fig. 2 to remove the outermost encryption, and forwards the
result, as well as the now 2-times encrypted nonce, to the next node. After the
last layer of encryption has been removed by the last node, it authenticates the
message and sends it to the intended recipient.

The security against an adversary trying to mount the crypto-tagging attack
comes from the fact that any change to the ciphertext will affect the entire
message, effectively decrypting it to garbage. In other words, once decrypted by
a non-colluding node, the crypto-tag corrupts the nonce, which will then be used
to decrypt the message into garbage. Using the Tor terminology, by the time the
message reaches the exit node, the crypto-tag can no longer be removed and
the message is unrecognizable and should thus be dropped and the circuit is
torn down.
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Fig. 6. A RUP secure 3-node layered encryption. The three layers are distinguished by
their keys: (K1, L1), (K2, L2), and (K3, L3).

For example, consider a circuit with three nodes, and say that (S1, C1),
(S2, C2), and (S3, C3) are the outputs of the first, second, and third layers of
encryption, respectively. In particular, the client uses (N,P ) to produce (S1, C1),
then (S1, C1) to produce (S2, C2), and (S2, C2) to produce (S3, C3). Finally,
(S3, C3) is sent to the first node. Say that the first node is malicious, namely it
decrypts (S3, C3) and obtains (S2, C2), then proceeds to tag (S2, C2) and passes
(S′

2, C
′
2) instead of (S2, C2) as it is supposed to do. Then, assuming the second

node is honest, it will follow the protocol and decrypt (S′
2, C

′
2). However, by the

properties of our construction, we know that the decryption will be random since
(S2, C2) = (S′

2, C
′
2), and in particular, the first node will not be able to predict

anything about (S′
1, C

′
1), i.e., the decryption of (S′

2, C
′
2). As a result, the second

node will pass (S′
1, C

′
1) to the third node, and the third node will not be able

to conclude anything, regardless of whether it shares information with the first
node or not. In particular, it would not be able to conclude the source and the
destination of the message.

The disadvantage to our approach is that 16 extra bytes must be expropriated
to send the encrypted nonce S. However, unlike adding per-hop authentication
tags, the reduction in available bandwidth to send messages is fixed, and does
not change according to the circuit length. Furthermore, the solution can be
built efficiently using familiar components, and is simple enough to allow for
fast deployment.
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