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Abstract. We provide the first constructions of identity-based encryp-
tion and hierarchical identity-based encryption based on the hardness
of the (Computational) Diffie-Hellman Problem (without use of groups
with pairings) or Factoring. Our construction achieves the standard
notion of identity-based encryption as considered by Boneh and Franklin
[CRYPTO 2001]. We bypass known impossibility results using garbled
circuits that make a non-black-box use of the underlying cryptographic
primitives.

1 Introduction

Soon after the invention of public-key encryption [20,43], Shamir [44] posed the
problem of constructing a public-key encryption scheme where encryption can
be performed using just the identity of the recipient. In such an identity-based
encryption (IBE) scheme there are four algorithms: (1) Setup generates the global
public parameters and a master secret key, (2) KeyGen uses the master secret
key to generate a secret key for the user with a particular identity, (3) Encrypt
allows for encrypting messages corresponding to an identity, and (4) Decrypt can
be used to decrypt the generated ciphertext using a secret key for the matching
identity.

The ability of IBE to “compress” exponentially many public keys into “small”
global public parameters [11,19] provides a way for simplifying certificate man-
agement in e-mail systems. Specifically, Alice can send an encrypted email to
Bob at bob@iacr.org by just using the string “bob@iacr.org” and the public
parameters generated by a setup authority. In this solution, there is no need for
Alice to obtain Bob’s public key. Bob could decrypt the email using a secret key
corresponding to “bob@iacr.org” that he can obtain from the setup authority.
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The more functional notion of hierarchical IBE (HIBE) [28,32] additionally
allows a user with a secret key for an identity id to generate a secret key for any
identity id‖id′. For instance, in the example above, Bob can use the secret key
corresponding to identity “bob@iacr.org” to obtain a secret key corresponding
to the identity “bob@iacr.org‖2017”. Bob could then give this key to his secre-
tary who could now decrypt all his emails tagged as being sent during the year
2017, while Bob is on vacation.

The first IBE schemes were realized by Boneh and Franklin [11] and
Cocks [19]. Subsequently, significant research effort has been devoted to real-
izing IBE and HIBE schemes. By now, several constructions of IBE are known
based on (i) various assumptions on groups with a bilinear map, e.g. [8,9,11,
16,41,48], (ii) the quadratic residuocity assumption [12,19] (in the random ora-
cle model [6]), or (iii) the learning-with-errors (LWE) assumption [3,17,27]. On
the other hand, HIBE schemes are known based on (i) various assumptions on
groups with a bilinear map [8,10,25,28,32,35,45,47], or (ii) LWE [1,2,17].

On the negative side, Boneh et al. [13] show that IBE cannot be realized
using trapdoor permutations or CCA-secure public-key encryption in a black-
box manner. Furthermore, Papakonstantinou et al. [42] show that black-box use
of a group over which DDH is assumed to be hard is insufficient for realizing IBE.

1.1 Our Results

In this work, we show a fully-secure construction of IBE and a selectively secure
HIBE based just on the Computational Diffie-Hellman (CDH). In the group of
quadratic residues this problem is as hard as the Factoring problem [7,38,46].
Therefore, this implies a solution based on the hardness of factoring as well.

Our constructions bypass the known impossibility results [13,42] by making
a non-black-box use of the underlying cryptographic primitives. However, this
non-black-box use of cryptographic primitives also makes our scheme inefficient.
In Sect. 6, we suggest ideas for reducing the non-black-box of the underlying
primitives thereby improving the efficiency of our scheme. Even with these opti-
mizations, our IBE scheme is prohibitive when compared with the IBE schemes
based on bilinear maps. We leave open the problem of realizing an efficient IBE
scheme from the Diffie-Hellman Assumption.

Subsequent Work. In a followup paper [21] we show how the techniques from
this paper can be used to obtain generic constructions of fully-secure IBE and
selectively-secure HIBE starting with any selectively-secure IBE scheme.

2 Our Techniques

In this section, we give an intuitive explanation of our construction of IBE from
the Decisional Diffie-Hellman (DDH) Assumption. We defer the details on con-
structing HIBE and obtaining the same results based on Computational Diffie-
Hellman to the main body of the paper.

We start by describing a chameleon hash function [34] that supports cer-
tain encryption and decryption procedures. We refer to this new primitive as
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a chameleon encryption scheme.1 Subsequently, we describe how chameleon
encryption along with garbled circuits can be used to realize IBE.

2.1 Chameleon Encryption

As mentioned above, a chameleon encryption scheme is a chameleon hash func-
tion that supports certain encryption and decryption procedures along with.
We start by describing the chameleon hash function and then the associated
encryption and decryption procedures. Recall that a chameleon hash function is
a collision resistant hash function for which the knowledge of a trapdoor enables
collision finding.

Our Chameleon Hash. Given a cyclic group G of prime order p with a gen-
erator g consider the following chameleon hash function:

H(k, x; r) = gr
∏

j∈[n]

gj,xj
,

where k = (g, {gj,0, gj,1}j∈[n]), r ∈ Zp and xj is the jth bit of x ∈ {0, 1}n. It is not
very hard to note that this hash function is (i) collision resistant based on the
hardness of the discrete-log problem, and (ii) chameleon given the trapdoor infor-
mation {dlogg gj,0, dlogg gj,1}j∈[n]—specifically, given any x, r, x′ and the trap-
door information we can efficiently compute r′ such that H(k, x; r) = H(k, x′; r′).

The Associated Encryption—Abstractly. Corresponding to a chameleon
hash function, we require encryption and decryption algorithms such that

1. encryption Enc(k, (h, i, b),m) on input a key k, a hash value h, a location
i ∈ [n], a bit b ∈ {0, 1}, and a message m ∈ {0, 1} outputs a ciphertext ct,
and

2. decryption Dec(k, (x, r), ct) on input a ciphertext ct, x and coins r yields m if

h = H(k, x; r) and xi = b,

where (h, i, b) are the values used in the generation of the ciphertext ct.

In other words, the decryptor can use the knowledge of the preimage of h as the
key to decrypt m as long as the ith bit of the preimage it can supply is equal to
the value b chosen at the time of encryption. Our security requirement roughly
is that

{k, x, r,Enc(k, (h, i, 1 − xi), 0)} c≈ {k, x, r,Enc(k, (h, i, 1 − xi), 1)},

where
c≈ denotes computational indistinguishability.2

1 The notion of chameleon hashing is closely related to the notion of chameleon com-
mitment scheme [15] and we refer the reader to [34] for more discussion on this.

2 The success of decryption is conditioned on certain requirements placed on (x, r).
This restricted decryption capability is reminiscent of the concepts of witness encryp-
tion [22] and extractable witness encryption [4,14].
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The Associated Encryption—Realization. Corresponding to the chamel-
eon hash defined above our encryption procedure Enc(k, (h, i, b),m) proceeds as

follows. Sample a random value ρ
$←− Zp and output the ciphertext ct where

ct = (e, c, c′, {cj,0, cj,1}j∈[n]\{i}) and

c := gρ c′ := hρ,

∀j ∈ [n]\{i}, cj,0 := gρ
j,0 cj,1 := gρ

j,1,

e := m ⊕ gρ
i,b.

It is easy to see that if xi = b then decryption Dec(ct, (x, r)) can just output

e ⊕ c′

cr
∏

j∈[n]\{i} cj,xj

.

However, if xi �= b then the decryptor has access to the value gρ
i,xi

but not gρ
i,b,

and this prevents him from learning the message m. Formalizing this intuition,
we can argue security of this scheme based on the DDH assumption.3 In a bit
more detail, we can use an adversary A breaking the security of the chameleon
encryption scheme to distinguish DDH tuples (g, gu, gv, guv) from random tuples
(g, gu, gv, gs). Fix (adversarially chosen) x ∈ {0, 1}n, index i ∈ [n] and a bit b ∈
{0, 1}. Given a tuple (g, U, V, T ), we can simulate public key k, hash value h, coins

r and ciphertext ct as follows. Choose uniformly random values αj,0, αj,1
$←− Zp

and set gj,0 = gαj,0 and gj,1 = gαj,1 for j ∈ [n]. Now reassign gi,1−xi
= U and

set k := (g, {gj,0, gj,1}j∈[n]). Choose r
$←− Zp uniformly at random and set h :=

H(k, x; r). Finally prepare a challenge ciphertext ct := (e, c, c′, {cj,0, cj,1}j∈[n]\{i})
by choosing

c := V c′ := V r ·
∏

j∈[n]

V αj,xj ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e := m ⊕ T,

where m ∈ {0, 1}. Now, if (g, U, V, T ) = (g, gu, gv, guv), then a routine calculation
shows that k, h, r and ct have the same distribution as in the security experiment,
thus A’s advantage in guessing m remains the same. On the other hand, if T is
chosen uniformly at random and independent of g, U, V , then A’s advantage to
guess m given k, h, r and ct is obviously 0, which concludes this proof-sketch.

2.2 From Chameleon Encryption to Identity-Based Encryption

The public parameters of an IBE scheme need to encode exponentially many
public keys succinctly—one per each identity. Subsequently, corresponding to

3 In Sect. 5, we explain our constructions of chameleon encryption based on the
(Computational) Diffie-Hellman Assumption, or the Factoring Assumption.
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these public parameters the setup authority should be able to provide the secret
key for any of the exponentially many identities. This is in sharp contrast with
public-key encryption schemes for which there is only one trapdoor per public
key, which if revealed leaves no security. This is the intuition behind the black-
box impossibility results for realizing IBE based on trapdoor permutations and
CCA secure encryption [13,42]. At a very high level, we overcome this intuitive
barrier by actually allowing for exponentially many public keys which are some-
how compressed into small public parameters using our chameleon hash function.
We start by describing how these keys are sampled and hashed.

Arrangement of the Keys. We start by describing the arrangement of the
exponentially many keys in our IBE scheme for identities of length n bits. First,
imagine a fresh encryption decryption key pair for any public-key encryption
scheme for each identity in {0, 1}n. We will denote this pair for identity v ∈
{0, 1}n by (ekv, dkv). Next, in order to setup the hash values, we sample n hash
keys — namely, k0, . . . kn−1. Now, consider a tree of depth n and for each node
v ∈ {0, 1}≤n−1 ∪ {ε}4 the hash value hv is set as:

hv =

{
H(ki, ekv‖0‖ekv‖1; rv) v ∈ {0, 1}n−1 where i = |v|
H(ki, hv‖0‖hv‖1; rv) v ∈ {0, 1}<n−1 ∪ {ε} where i = |v| (1)

where rv for each v ∈ {0, 1}<n ∪ {ε} are chosen randomly.

Generating the Tree on Demand. Note that the setup authority cannot
generate and hash these exponentially many hash keys at setup time. Instead,
it generates them implicitly. More specifically, the setup authority computes
each hv as H(k|v|, 0λ;ωv). Then, later on when needed, using the trapdoor t|v|
for the hash key k|v| we can obtain coins rv such that the generated value hv
indeed satisfies Eq. 1. Furthermore, in order to maintain consistency (in the tree
and across different invocations) the randomness ωv used for each v is chosen
using a pseudorandom function. In summary, with this change the entire can be
represented succinctly.

What Are the Public Parameters? Note that the root hash value hε some-
how binds the entire tree of hash values. With this in mind, we sent the public
parameters of the scheme to be the n hash keys and the root hash value, i.e.

k0, . . . kn−1, hε.

Secret-Key for a Particular Identity id. Given the above tree structure the
secret key for some identity id simply consists of the hash values along the path
from the root to the leaf corresponding to id and their siblings along with the

4 We use ε to denote the empty string.
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decryption key dkid.5 Specifically, the secret key skid for identity id consists of
({lkv}v∈V , dkid) where V := {ε, id[1], . . . id[1 . . . n − 1]} and

lkv =

{
(hv, hv‖0, hv‖1, rv) for v ∈ V \{id[1 . . . n − 1]}
(hv, ekv‖0, ekv‖1, rv) for v = id[1 . . . n − 1]

.

Encryption and Decryption. Before providing details of encryption and
decryption, we will briefly discuss how chameleon encryption can be useful in
conjunction with garbled circuits.6 Chameleon encryption allows an encryptor
knowing a key k and a hash value h to encrypt a set of labels {labj,0, labj,1}j such
that a decryptor knowing x and r with H(k, x; r) = h can recover {labj,xj

}j . On
the other hand, security of chameleon encryption guarantees that the receiver
learns nothing about the remaining labels. In summary, using this mechanism,
an the generated ciphertexts enable the decryptor to feed x into a garbled circuit
to be processed further.

To encrypt a message m to an identity id ∈ {0, 1}n, the encryptor will gener-
ate a sequence of n+1 garbled circuits {P̃ 0, . . . P̃n−1, T̃} such that a decryptor in
possession of the identity secret key skid = ({lkv}v∈V , dkid) will be able evaluate
these garbled circuits one after another. Roughly speaking, circuit P i for any
i ∈ {0 . . . n − 1} and v = id[1 . . . i] takes as input a hash value hv and generates
chameleon encryptions of the input labels of the next garbled circuit P̃ i+1 using
a k|v| hardwired inside it and the hash value h given to it as input (in a manner
as described above). The last circuit T will just take as input an encryption key
pkid and output an encryption of the plaintext message m under ekid. Finally,
the encryptor provides input labels for the first garbled circuit P̃ 0 for the input
hε in the ciphertext.

During decryption, for each i ∈ {0 . . . n − 1} and v = id[1 . . . i] the decryptor
will use the local key lkv to decrypt the ciphertexts generated by P̃ i and obtain
the input labels for the garbled circuits P̃ i+1 (or, T if i = n − 1). We will now
explain the first iteration of this construction in more detail, all further iterations
proceed analogously. The encryptor provides garbled input labels corresponding
to input hε for the first garbled circuit P̃ 0 in the ciphertext. Thus the decryptor
can evaluate P̃ 0 and obtain encryptions of input labels {labj,0, labj,1}j∈[λ] for the

circuit P̃ 1, namely:

{Enc(k0, (hε, id[1] · λ + j, 0), labj,0), Enc(k0, (hε, id[1] · λ + j, 1), labj,1)}j∈[λ]

The garbled circuit has id[1] and the input labels {labj,0, labj,1}j∈[λ] hardwired
in it. Given these encryptions the decryptor uses lkε = (hε, h0, h1, rε) to learn
the garbled input labels {labj,hid[1],j }j∈[λ] where hid[1],j is the jth bit of hid[1].

5 We note that our key generation mechanism can be seen as an instantiation of
the Naor and Yung [40] tree-based construction of signature schemes from universal
one-way hash functions and one-time signatures. This connection becomes even more
apparent in the follow up paper [21].

6 For this part of the intuition, we assume familiarity with garbled circuits.
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In other words, the decryptor now possesses input labels for the input hid[1] for
the garbled circuit P̃ 1 and can therefore evaluate P̃ 1. Analogous to the previous
step, the decryptor uses lkid[1] and rid[1] to obtain input labels to P̃ 2 and so on.
The decryptor’s ability to provide the local keys lkv for v ∈ V keeps this process
going ultimately revealing an encryption of the message m under the encryption
key pkid. This final ciphertext can be decrypted using the decryption key dkid.
At a high level, our encryption method (and the use of garbled circuits for it)
has similarities with garbled RAM schemes [18,23,24,26,37]. Full details of the
construction are provided in Sect. 6.

Proof Sketch. The intuition behind the proof of security which follows by a
sequence of hybrid changes is as follows. The first (easy) change is to replace the
pseudorandom function used to generate the local keys by a truly random func-
tion something that should go undetected against a computationally bounded
attacker. Next, via a sequence of hybrids we change the n + 1 garbled circuits
P̃ 0, . . . P̃n−1, T̃ to their simulated versions one by one. Once these changes are
made the simulated circuit T̃ just outputs an encryption of the message m under
the encryption key pkid∗ corresponding challenge identity id∗, which hides m
based on semantic security of the encryption scheme.

The only “tricky” part of the proof is the one that involves changing garbled
circuits to their simulated versions. In this intuitive description, we explain how
the first garbled circuit P̃ 0 is moved to its simulated version. The argument of
the rest of the garbled circuits is analogous. This change involves a sequence of
four hybrid changes.

1. First, we change how hε is generated. As a quick recap, recall that hε is gen-
erated as H(k0, 02λ;ωε) and rε are set to H−1(t0, (02λ, ωε), h0‖h1). We instead
generate hε directly to be equal to the value rε are set to H(k0, h0‖h1, rε)
using fresh coins rε. The trapdoor collision and uniformity properties of the
chameleon encryption scheme ensure that this change does not affect the
distribution of the hε and rε, up to a negligible error.

2. The second change we make is that the garbled circuit P̃ 0 is not gener-
ates in simulated form instead of honestly. Note that at this point the
distribution of this garbled circuit depends only on its output which is
{Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1} where {labj,b}j∈[λ],b∈{0,1} are the input
labels for the garbled circuit P̃ 1.

3. Observe that at this point the trapdoor tε is not being used at all and P̃ 0

is the simulated form. Therefore, based on the security of the chameleon
encryption we have that for all j ∈ [λ],Enc(kε, (hε, j, 1 − hid[1],j), labj,1−hid[1],j )
hides labj,1−hid[1],j . Hence, we can change the hardcoded ciphertexts from

{Enc(kε, (hε, j, b), labj,b)}j∈[λ],b∈{0,1}

to
{Enc(kε, (hε, j, b), labj,hid[1],j )}j∈[λ],b∈{0,1}
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4. Finally, the fourth change we make is that we reverse the first change. In
particular, we generate hε as is done in the real execution.

As a consequence, at this point only the labels {labj,hid[1],j }j∈[λ] are revealed in
an information theoretic sense and the same sequence of hybrids can be repeated
for the next garbled circuit P̃ 1. The only change in this step is that now both
h0 and h1 will be generated (if needed) by first sampling their children. The full
proof of security is provided in Sect. 6.2.

3 Preliminaries

Let λ denote the security parameter. We use the notation [n] to denote the set
{1, . . . , n}. By PPT we mean a probabilistic polynomial time algorithm. For any

set S, we use x
$←− S to mean that x is sampled uniformly at random from the

set S.7 Alternatively, for any distribution D we use x
$←− D to mean that x is

sampled from the distribution D. We use the operator := to represent assignment
and = to denote an equality check.

3.1 Computational Problems

Definition 1 (The Diffie-Hellman (DH) Problem). Let (G, ·) be a cyclic
group of order p with generator g. Let a, b be sampled uniformly at random from
Zp (i.e., a, b

$←− Zp). Given (g, ga, gb), the DH(G) problem asks to compute gab.

Definition 2 (The Factoring Problem). Given a Blum integer N = pq
(p and q are large primes with p = q = 3 mod 4) the FACT problem asks to
compute p and q.

3.2 Identity-Based Encryption

Below we provide the definition of identity-based encryption (IBE).

Definition 3 (Identity-Based Encryption (IBE) [11,44]). An identity-
based encryption scheme consists of four PPT algorithms (Setup,
KeyGen,Encrypt,Decrypt) defined as follows:

– Setup(1λ): given the security parameter, it outputs a master public key mpk
and a master secret key msk.

– KeyGen(msk, id): given the master secret key msk and an identity id ∈ {0, 1}n,
it outputs a decryption key skid.

– Encrypt(mpk, id,m): given the master public key mpk, an identity id ∈ {0, 1}n,
and a message m, it outputs a ciphertext ct.

7 We use this notion only when the sampling can be done by a PPT algorithm and
the sampling algorithm is implicit.
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– Decrypt(skid, ct): given a secret key skid for identity id and a ciphertext ct, it
outputs a string m.

The following completeness and security properties must be satisfied:

– Completeness: For all security parameters λ, identities id ∈ {0, 1}n and
messages m, the following holds:

Decrypt(skid,Encrypt(mpk, id,m)) = m

where skid ← KeyGen(msk, id) and (mpk,msk) ← Setup(1λ).
– Security: For any PPT adversary A = (A1,A2), there exists a negligible

function negl(.) such that the following holds:

Pr[INDIBE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDIBE
A is shown in Fig. 1, and for each key query id that A sends to

the KeyGen oracle, it must hold that id �= id∗.

Experiment INDIBE
A (1λ):

1. (mpk,msk) $←− Setup(1λ).

2. (id∗,m0,m1, st)
$←− AKeyGen(msk,.)

1 (mpk) where |m0| = |m1| and for each
query id by A1 to KeyGen(msk, .) we have that id �= id∗.

3. b
$←− {0, 1}.

4. ct∗ $←− Encrypt(mpk, id∗,mb).

5. b′ $←− AKeyGen(msk,.)
2 (mpk, ct∗, st) where for each query id by A2 to

KeyGen(msk, .) we have that id �= id∗.
6. Output 1 if b = b′ and 0 otherwise.

Fig. 1. The INDIBE
A experiment

Hierarchical Identity-Based Encryption (HIBE). A HIBE scheme is an
IBE scheme except that we set skε := msk and modify the KeyGen algorithm. In
particular, KeyGen takes skid and a string id′ as input and outputs a secret key
skid‖id′ . More formally:

– KeyGen(skid, id′): given the secret key skid and an identity id′ ∈ {0, 1}∗, it
outputs a decryption key skid‖id′ .

Correctness condition for HIBE is same as it was from IBE. Additionally, the
security property is analogous to INDIBE

A (1λ) except that now we only consider
the notion of selective security for HIBE—namely, the adversary A is required
to announce the challenge identity id∗ before it has seen the mpk and has made
any secret key queries. This experiment INDHIBE

A is shown formally in Fig. 2.
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Experiment INDHIBE
A (1λ):

1. (id∗,m0,m1, st)
$←− A1 where |m0| = |m1|.

2. (mpk,msk) $←− Setup(1λ).

3. b
$←− {0, 1}.

4. ct∗ $←− Encrypt(mpk, id∗,mb).

5. b′ $←− AKeyGen(msk,.)
2 (mpk, ct∗, st) where for each query id by A2 to

KeyGen(msk, .) we have that id �= id∗.
6. Output 1 if b = b′ and 0 otherwise.

Fig. 2. The INDHIBE
A experiment

3.3 Garbled Circuits

Garbled circuits were first introduced by Yao [49] (see Lindell and Pinkas [36] and
Bellare et al. [5] for a detailed proof and further discussion). A circuit garbling
scheme is a tuple of PPT algorithms (GCircuit,Eval). Very roughly GCircuit is
the circuit garbling procedure and Eval the corresponding evaluation procedure.
More formally:

– (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
: GCircuit takes as input a secu-

rity parameter λ and a circuit C. This procedure outputs a garbled circuit C̃
and labels {labw,b}w∈inp(C),b∈{0,1} where each labw,b ∈ {0, 1}λ.8

– y := Eval
(
C̃, {labw,xw

}w∈inp(C)

)
: Given a garbled circuit C̃ and a garbled input

represented as a sequence of input labels {labw,xw
}w∈inp(C), Eval outputs an

output y.

Correctness. For correctness, we require that for any circuit C and input
x ∈ {0, 1}m (here m is the input length to C) we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw

}w∈inp(C)

)]
= 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
.

8 Typical definitions of garbled circuits do not require the length of each input label
to be λ bits long. This additional requirement is crucial in our constructions as we
chain garbled circuits. Note that input labels in any garbled circuit construction can
always be shrunk to λ bits using a pseudorandom function.
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Security. For security, we require that there is a PPT simulator Sim such that
for any C, x, we have that

(
C̃, {labw,xw

}w∈inp(C)

)
comp≈ Sim

(
1λ,C(x)

)

where (C̃, {labw,b}w∈inp(C),b∈{0,1})
$←− GCircuit

(
1λ,C

)
.9

4 Chameleon Encryption

In this section, we give the definition of a chameleon encryption scheme.

Definition 4 (Chameleon Encryption). A chameleon encryption scheme
consists of five PPT algorithms Gen, H, H−1, Enc, and Dec with the following
syntax.

– Gen(1λ, n): Takes the security parameter λ and a message-length n (with
n = poly(λ)) as input and outputs a key k and a trapdoor t.

– H(k, x; r): Takes a key k, a message x ∈ {0, 1}n, and coins r and outputs a
hash value h, where h is λ bits.

– H−1(t, (x, r), x′): Takes a trapdoor t, previously used message x ∈ {0, 1}n and
coins r, and a message x′ ∈ {0, 1}n as input and returns r′.

– Enc(k, (h, i, b),m): Takes a key k, a hash value h, an index i ∈ [n], b ∈ {0, 1},
and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct.10

– Dec(k, (x, r), ct): Takes a key k, a message x, coins r and a ciphertext ct, as
input and outputs a value m (or ⊥).

We require the following properties11

– Uniformity: For x, x′ ∈ {0, 1}n we have that the two distributions H(k, x; r)
and H(k, x′; r′) are statistically close (when r, r′ are chosen uniformly at ran-
dom).

– Trapdoor Collisions: For every choice of x, x′ ∈ {0, 1}n and r it holds that

if (k, t) $←− Gen(1λ, n) and r′ := H−1(t, (x, r), x′), then it holds that

H(k, x; r) = H(k, x′; r′),

i.e. H(k, x; r) and H(k, x′; r′) generate the same hash h. Moreover, if r is chosen
uniformly at random, then r′ is also statistically close to uniform.

9 In abuse of notation we assume that Sim knows the (non-private) circuit C. When
C has (private) hardwired inputs, we assume that the labels corresponding to these
are included in the garbled circuit C̃.

10 ct is assumed to contain (h, i, b).
11 Typically, Chameleon Hash functions are defined to also have the collision resilience

property. This property is implied by the semantic security requirement below. How-
ever, we do not need this property directly. Therefore, we do not explicitly define it
here.
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– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and

message m it holds that if (k, t) $←− Gen(1λ, n), h := H(k, x; r), and ct
$←−

Enc(k, (h, i, xi),m) then Dec(k, ct, (x, r)) = m.
– Security: For any PPT adversary A = (A1,A2) there exists a negligible

function negl(·) such that the following holds:

Pr[INDCE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDCE
A is shown in Fig. 3.

Experiment INDCE
A=(A1,A2)(1

λ):

1. (k, t) $←− Gen(1λ, n).

2. (x, r, i ∈ [n], st) $←− A1(k).

3. b
$←− {0, 1}.

4. ct
$←− Enc(k, (H(k, x; r), i, 1 − xi), b).

5. b′ $←− A2(k, ct, (x, r), st).
6. Output 1 if b = b′ and 0 otherwise.

Fig. 3. The INDCE
A experiment

5 Constructions of Chameleon Encryption from CDH

Let (G, ·) be a cyclic group of order p (not necessarily prime) with generator g.
Let Sample(G) be a PPT algorithm such that its output is statistically close to
a uniform element in Zp, where p (not necessarily prime) is the order of G.12

We will now describe a chameleon encryption scheme assuming that the DH(G)
problem is hard.

– Gen(1λ, n): For each j ∈ [n], choose uniformly random values αj,0, αj,1
$←−

Sample(G) and compute gj,0 := gαj,0 and gj,1 := gαj,1 . Output (k, t) where13

k :=
(

g,

(
g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

))
t :=

(
α1,0, α2,0 . . . , αn,0

α1,1, α2,1, . . . , αn,1

)
. (2)

– H(k, x; r): Parse k as in Eq. 2, sample r
$←− Sample(G), set h := gr ·∏j∈[n] gj,xj

and output h

12 We will later provide instantiations of G which are of prime order and composite
order. The use of Sample(G) procedure is done to unify these two instantiations.

13 We also implicitly include the public and secret parameters for the group G in k and
t respectively.
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– H−1(t, (x, r), x′): Parse t as in Eq. 2, compute r′ := r +
∑

j∈[n](αj,xj
− αj,x′

j
)

mod p. Output r′.
– Enc(k, (h, i, b),m): Parse k as in Eq. 2, h ∈ G and m ∈ {0, 1}. Sample ρ

$←−
Sample(G) and proceed as follows:
1. Set c := gρ and c′ := hρ.
2. For every j ∈ [n]\{i}, set cj,0 := gρ

j,0 and cj,1 := gρ
j,1.

3. Set ci,0 := ⊥ and ci,1 := ⊥.
4. Set e := m ⊕ HardCore(gρ

i,b).
14

5. Output ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))
.

– Dec(k, (x, r), ct): Parse ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))

Output e ⊕ HardCore
(

c′
cr·∏j∈[n]\{i} cj,xj

)
.

Multi-bit Encryption. The encryption procedure described above encrypts
single bit messages. Longer messages can be encrypted by encrypting individual
bits.

Lemma 1. Assuming that DH(G) is hard, the construction described above is a
chameleon encryption scheme, i.e. it satisfies Definition 4.

Proof. We need to argue the trapdoor collision property, uniformity property,
correctness of encryption property and semantic security of the scheme above
and we that below.

– Uniformity: Observe that for all k and x, we have that H(k, x; r) = gr ·∏
j∈[n] gj,xj

is statistically close to a uniform element in G. This is because r
is sampled statistically close to uniform in Zp, where p is the order of G.

– Trapdoor Collisions: For any choice of x, x′, r, k, t the value r′ is obtained
as r+

∑
j∈[n](αj,xj

−αj,x′
j
) mod p. It is easy to check that H(k, x′; r′) is equal

to H(k, x; r).
Moreover, as r is statistically close to uniform in Zp, r′ := r +

∑
j∈[n](αj,xj

−
αj,x′

j
) mod p is also statistically close to uniform in Zp.

– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and message

m ∈ {0, 1} if (k, t) $←− Gen(1λ, n), h := H(k, x; r), and ct := Enc(k, (h, i, xi),m)
then we have that Dec (k, (x, r), ct) = e ⊕ HardCore

(
c′

cr·∏j∈[n]\{i} cj,xj

)
which

evaluates to e ⊕ HardCore(gρ
i,xi

). Finally, this value can be seen to be equal
to m.

14 We assume that the HardCore(gab) is a hardcore bit of gab given ga and gb. If a
deterministic hard-core bit for the specific function is not known then we can always
use the Goldreich-Levin [30] construction. We skip the details of that with the goal
of keeping exposition simple.
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– Security: For the sake of contradiction, let us assume that there exists a
PPT adversary A = (A1,A2) and a non-negligible function μ(·) such that

Pr[INDCE
A (1λ) = 1] ≥ 1

2
+ μ(λ).

Now we will provide a PPT reduction RA which on input g, U = gu, V = gv

correctly computes the hardcore bit HardCore(guv) with probability 1
2 + ν(λ)

for some non-negligible function ν. Formally, Reduction RA=(A1,A2)(g, U, V )
proceeds as follows:

1. For each j ∈ [n], sample αj,0, αj,1
$←− Sample(G) and set gj,0 := gαj,0 and

gj,1 := gαj,1 .

2. Sample x
$←− {0, 1} and i∗ $←− [n] and reassign gi∗,x := U . Finally set

k :=
(

g,

(
g1,0, g2,0 . . . , gn,0

g1,1, g2,1, . . . , gn,1

))
.

3. (x, r, i) $←− A1(k).
4. If i �= i∗ or xi = x then skip rest of the steps and output a random bit

b
$←− {0, 1}.

5. Otherwise, set h := H(k, x; r) and ct :=
(

e, c, c′,
(

c1,0, c2,0 . . . , cn,0

c1,1, c2,1, . . . , cn,1

))

where:

c := V c′ := V r+
∑

j∈[n] αi,xi ,

∀j ∈ [n]\{i}, cj,0 := V αj,0 cj,1 := V αj,1 ,

e
$←− {0, 1}.

6. b
$←− A2(k, (x, r), ct).

7. Output b ⊕ e.

Let E be the event that the i = i∗ and xi �= x. Now observe that the distri-
bution of k in Step 3 is statistically close to distribution resulting from Gen.
This implies that (1) the view of the attacker in Step 3 is statistically close
to experiment INDCE

A , and (2) Pr[E] is close to 1
2n up to a negligible addi-

tive term. Furthermore, conditioned on the fact that E occurs we have that
the view of the attacker in Step 3 is statistically close to experiment INDCE

A
where ct is an encryption of e ⊕ HardCore(guv) (where U = gu and V = gv).
Now, if A2 in Step 6 correctly predicts e ⊕ HardCore(guv) then we have that
the output of our reduction R is a correct prediction of HardCore(guv). Thus,
we conclude that R predicts HardCore(guv) correctly with probability at least
1
2 · (

1 − 1
2n

)
+ 1

2n · (
1
2 + μ

)
= 1

2 + μ
2n up to a negligible additive term.
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5.1 Instantiations

Instantiating by Prime Order Groups. Our scheme can be directly instanti-
ated in any prime order group G where DH(G) is assumed to be hard. Candidates
are prime order multiplicative subgroups of finite fields [20] and elliptic curve
groups [33,39].

Corollary 1. Under the assumption that DH(G) is hard over some group G,
there exists a chameleon encryption scheme.

Instantiating by Composite Order Groups and Reduction to the
Factoring Assumption. Consider the group of quadratic residues QRN over
a Blum integer N = PQ (P and Q are large safe primes15 with P = Q = 3
mod 4). Let g be a random generator of G and Sample(G) just outputs a uni-
formly random number from the set [(N −1)/4]. Shmuely [46] and McCurley [38]
proved that the DH(QRN ) problem is at least as hard as FACT (also see [7,31]).

For this instantiation, we assume that the Gen algorithm generates a fresh
Blum integer N = PQ = (2p + 1)(2q + 1), includes N in the public key k and
|G| = |QRN | = φ(N)/4 = pq in the trapdoor t. Notice that only the trapdoor-
collision algorithm H−1 needs to know the group-order |G| = pq, while all other
algorithms use the public sampling algorithm Sample(G).

Hence, using the group QRN in the above described construction yields a
construction of chameleon encryption based on the FACT Assumption.

Corollary 2. Under the assumption that FACT is hard there exists a chameleon
encryption scheme.

6 Construction of Identity-Based Encryption

In this section, we describe our construction of IBE from chameleon encryption.
Let PRF : {0, 1}λ × {0, 1}≤n ∪ {ε} → {0, 1}λ be a pseudorandom function,
(Gen,H,H−1,Enc,Dec) be a chameleon encryption scheme and (G,E,D) be any
semantically secure public-key encryption scheme.16 We let id[i] denote the ith-
bit of id and let id[1 . . . i] denote the first i bits of id. Note that id[1 . . . 0] is the
empty string denoted by ε of length 0.

NodeGen and LeafGen Functions. As explained in the introduction, we need an
exponential sized tree of hash values. The functions NodeGen and LeafGen pro-
vides efficient access to the hash value corresponding to any node in this (expo-
nential sized) tree. We will use these function repeatedly in our construction.
15 A prime number P > 2 is called safe prime if (P − 1)/2 is also prime.
16 The algorithm G takes as input the security parameter 1λ and generates encryption

key and decryption key pair ek and dk respectively, where the encryption key ek
is assumed to be λ bits long. The encryption algorithm E(ek,m) takes as input
an encryption key ek and a message m and outputs a ciphertext ct. Finally, the
decryption algorithm D(dk, ct) takes as input the secret key and the ciphertext and
outputs the encrypted message m.
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NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v):

1. Let i := |v| (length of v) and generate

hv := H(ki, 0
2λ;PRF(s, v)),

hv‖0 := H(ki+1, 0
2λ;PRF(s, v‖0)),

hv‖1 := H(ki+1, 0
2λ;PRF(s, v‖1)).

2. rv := H−1(tv, (0
2λ,PRF(s, v)), hv‖0‖hv‖1).

3. Output (hv, hv‖0, hv‖1, rv).

LeafGen(kn−1, (tn−1, s), v):

1. Generate

hv := H(kn−1, 0
2λ;PRF(s, v))

(ekv‖0, dkv‖0) := G(1λ;PRF(s, v‖0)),

(ekv‖1, dkv‖1) := G(1λ;PRF(s, v‖1)).

2. rv := H−1(tn, (02λ,PRF(s, v)), ekv‖0‖ekv‖1).
3. Output ((hv, ekv‖0, ekv‖1, rv), dkv‖0, dkv‖1).

Fig. 4. Description of NodeGen and LeafGen.

The NodeGen function takes as input the hash keys k0, . . . kn−1 and correspond-
ing trapdoors t0, . . . tn−1, the PRF seed s, and a node v ∈ {0, 1}≤n−2 ∪ {ε}.
On the other hand, the LeafGen function takes as input the hash key kn−1 and
corresponding trapdoor tn−1, the PRF seed s, and a node v ∈ {0, 1}n−1. The
NodeGen and LeafGen functions are described in Fig. 4.

Construction. We describe our IBE scheme (Setup,KeyGen,Encrypt,Decrypt).

– Setup(1λ, 1n): Proceed as17 follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. For each i ∈ {0, . . . n − 1} sample (ki, ti)
$←− Gen(1λ, 2λ).

3. Obtain (hε, h0, h1, rε) := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), ε)
4. Output (mpk,msk) where mpk := (k0, . . . kn−1, hε) and msk :=

(mpk, t0, . . . tn−1, s)
– KeyGen(msk = ((k0, . . . kn−1, hε), t0, . . . tn−1, s), id ∈ {0, 1}n):

V := {ε, id[1], . . . id[1 . . . n − 1]}, where ε is the empty string
For all v ∈ V \{id[1 . . . n − 1]}:

17 The IBE scheme defined in Sect. 3 does not fix the length of identities that it can
be used with. However, in this section we fix the length of identities at setup time
and use appropriately changed definitions. Looking ahead, the HIBE construction
in Sect. 7 works for identities of arbitrary length.
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lkv := NodeGen((k0, . . . kn−1), (t0, . . . tn−1, s), v)
For v = id[1 . . . n − 1], set (lkv, dkv‖0, dkv‖1) := LeafGen(kn−1, (tn−1, s), v)
skid := (id, {lkv}v∈V , dkid)

– Encrypt(mpk = (k0, . . . kn−1, hε), id ∈ {0, 1}n,m): Before describing the
encryption procedure we describe two circuits18 that will be garbled during
the encryption process.

• T[m](ek): Compute and output E(ek,m).
• P[β ∈ {0, 1}, k, lab](h): Compute and output {Enc(k, (h, j + β ·

λ, b), labj,b)}j∈[λ],b∈{0,1}, where lab is short for {labj,b}j∈[λ],b∈{0,1}.
Encryption proceeds as follows:
1. Compute T̃ as:

(T̃ , lab) $←− GCircuit(1λ,T[m]).

2. For i = n − 1, . . . , 0 generate (P̃ i, lab
′
) $←− GCircuit(1λ,P[id[i + 1], ki, lab])

and set lab := lab
′
.

3. Output ct := ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}) where hε,j is the jth bit

of hε.
– Decrypt(ct, skid = (id, {lkv}v∈V ), dkid): Decryption proceeds as follows:

1. Parse ct as ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}).

2. Parse lkv as (hv, hv‖0, hv‖1, rv) for each v ∈ V \{id[1 . . . n − 1]}. (Recall
V = {ε, id[1] . . . id[1 . . . n − 1]}.)

3. And for v = id[1 . . . n − 1], parse lkv as (hv, ekv‖0, pkv‖1, rv).
4. Set y := hε.
5. For each i ∈ {0, . . . n − 1}, set v := id[1 . . . i], and proceed as follows:

(a) {ej,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {labj,yj
}j∈[λ]).

(b) If i = n − 1 then set y := ekid and for each j ∈ [λ], compute

labj,yj
:= Dec(kv, ej,yj

, (ekv‖0‖ekv‖1, rv)).

(c) If i �= n − 1 then set y := hv and for each j ∈ [λ], compute

labj,yj
:= Dec(kv, ej,yj

, (hv‖0‖hv‖1, rv)).

6. Compute f := Eval(T̃ , {labj,yj
}j∈[λ]).

7. Output m := Dec(dkid, f).

A Note on Efficiency. The most computationally intensive part of the con-
struction is the non-black box use of Enc inside garblings of the circuit P and
E inside garbling of the circuit T. However, we note that not all of the com-
putation corresponding to Enc and E needs to be performed inside the garbled
circuit and it might be possible to push some of it outside of the garbled circuits.

18 Random coins used by these circuits are hardwired in them. For simplicity, we do
not mention them explicitly.
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In particular, when Enc is instantiated with the DDH based chameleon encryp-
tion scheme then we can reduce each Enc to a single modular exponentiation
inside the garbled circuit. Similar optimization can be performed for E. In short,
this reduces the number of non-black-box modular exponentiations to 2λ for
every circuit P and 1 for the circuit T. Finally, we note that additional improve-
ments in efficiency might be possible by increasing the arity of the tree from 2 to
a larger value. This would also reduce the depth of the tree and thereby reduce
the number of non-black-box modular exponentiations needed.

6.1 Proof of Correctness

We will first show that our scheme is correct. For any identity id, let V =
{ε, id[1], . . . id[1 . . . n−1]}. Then the secret key skid consists of (id, {lkv}v∈V , dkid).
We will argue that a correctly generated ciphertext on decryption reveals the
original message. Note that by construction (and the trapdoor collision property
of the chameleon encryption scheme for the first equation below) for all nodes
v ∈ V \{id[1 . . . n − 1]} we have that:

H(k|v|, hv‖0‖hv‖1; rv) = hv.

and additionally for v = id[1 . . . n − 1] we have

H(kn−1, ekv‖0‖ekv‖1; rv) = hv.

Next consider a ciphertext ct = ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}). We argue

correctness as each step of decryption is performed. By correctness of garbled
circuits, we have that the evaluation of P̃ 0 yields correctly formed ciphertexts
ej,b which are encryptions of labels of the next garbled circuit P̃ 1. Next, by cor-
rectness of Dec of the chameleon encryption scheme we have that the decrypting
the appropriate ciphertexts yields the correct labels {labj,hid[1],j }j∈[λ] for the next
garbled circuit, namely P̃ 1. Following the same argument we can argue that the
decryption of the appropriate ciphertexts generated by P̃ 1 yields the correct
input labels for P̃ 2. Repeatedly applying this argument allows us to conclude
that the last garbled circuit P̃n−1 outputs labels corresponding to ekid as input
for the circuit T which outputs an encryption of m under ekid. Finally, using
the correctness of the public-key encryption scheme (G,E,D) we have that the
recovered message m is the same as the one encrypted.

6.2 Proof of Security

We are now ready to prove the security of the IBE construction above. For the
sake of contradiction we proceed by assuming that there exists an adversary A
such that Pr[INDIBE

A (1λ) = 1] ≥ 1
2 +ε for a non-negligible ε (in λ), where INDIBE

A
is shown in Fig. 1. Assume further that q is a polynomial upper bound for the
running-time of A, and thus also an upper bound for the number of A’s key
queries. Security follows by a sequence of hybrids. In our hybrids, changes are



Identity-Based Encryption from the Diffie-Hellman Assumption 555

made in how the secret key queries of the adversary A are answered and how
the challenge ciphertext is generated. Furthermore, these changes are intertwined
and need to be done carefully. Our proof consist of a sequence of n + 2 hybrids
H−1,H0,H1, . . . Hn+1. We next describe these hybrids.

– H−1: This hybrid corresponds to the experiment INDIBE
A as shown in Fig. 1.

– H0: In this hybrid, we change how the public parameters are generated and
how the adversary’s requests to the KeyGen oracle are answered. Specifically,
we replace all pseudorandom function calls PRF(s, ·) with a random function.
The only change from H−1 to H0 is that calls to a pseudorandom are replaced
by a random function. Therefore, the indistinguishability between the two
hybrids follows directly from the pseudorandomness property of the pseudo-
random function.

– Hτ for τ ∈ {0 . . . n}: For every τ , this hybrid is identical to the experiment H0

except in how the ciphertext is generated. Recall that the challenge ciphertext
consists of a sequence of n+1 garbled circuits. In hybrid Hτ , we generate the
first τ of these garbled circuits using the simulator provided by the garbled
circuit construction. The outputs hard-coded in the simulated circuits are set
to be consistent with the output that would have resulted from the execution
of honestly generated garbled circuits in there unsimulated versions. More
formally, for the challenge identity id∗ the challenge ciphertext is generated
as follows (modifications with respect to honest ciphertext generation have
been highlighted in red). Even though, the adversary never queries skid, we can
generate it locally. In particular, it contains the values lkv = (hv, hv‖0, hv‖1, rv)
for each v ∈ {ε, . . . id[1 . . . n − 2]}, lkv = (hv, ekv‖0, ekv‖1, rv) for each v =
id[1 . . . n − 1], and dkid∗ .
1. Compute T̃ as:

If τ �= n

(T̃ , lab) $←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1}. Else set y = ekid∗ and generate garbled
circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and set lab := {labj,yj
, labj,yj

}j∈[λ].

2. For i = n − 1, . . . , τ generate (P̃ i, lab
′
) $←− GCircuit(1λ,P[id[i + 1], ki, lab])

and set lab := lab
′
.

3. For i = τ − 1, . . . , 0, set v = id∗[1 . . . i − 1] and generate

P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′
j,hv,j , lab

′
j,hv,j }j∈[λ].

4. Output ct := ({labj,hε,j
}j∈[λ], {P̃ 0, . . . , P̃n−1, T̃}) where hε,j is the jth bit

of hε.
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The computational indistinguishability between hybrids Hτ−1 and Hτ is based
on Lemma 2 which is proved in Sect. 6.3.

Lemma 2. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c≈ Hτ .

– Hn+1: This hybrid is same as Hn except that we change the ciphertext
E(ekid∗ ,m) hardwired in the simulated garbling of the circuit T to be
E(ekid∗ , 0). Note that the adversary A never queries for skid∗ . Therefore, it
is never provided the value dkid∗ . Therefore, we can use an adversary distin-
guishing between Hn and Hn+1 to construct an attacker against the semantic
security of the public-key encryption scheme (G,E,D). This allows us to con-
clude that Hn

c≈ Hn+1.
Finally, note that the hybrid Hn+1 is information theoretically independent
of the plaintext message m.

6.3 Proof of Lemma 2

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,6 where Hτ,0 is same
as Hτ−1 and Hτ,6 is same as Hτ .

– Hτ,0: This hybrid is same as Hτ−1.
– Hτ,1: Skip this hybrid if τ = n. Otherwise, this hybrid is identical to Hτ,0,

except that we change how the values hv and rv for v ∈ {0, 1}τ (if needed to
answer a KeyGen query of the adversary) are generated.

Recall that in hybrid Hτ,0, hv is generated as H(kτ , 02λ;ωv) and then

rv :=

{
H−1(kτ , (02λ, ωv), hv‖0‖hv‖1) if τ < n − 1
H−1(kτ , (02λ, ωv), ekv‖0‖ekv‖1) otherwise

.

In this hybrid, we generate rv first as being chosen uniformly. Next,

hv :=

{
H(kτ , hv‖0‖hv‖1; rv) if τ < n − 1
H(kτ , ekv‖0‖ekv‖1; rv) otherwise

.

Statistical indistinguishability of hybrids Hτ,0 and Hτ,1 follows from the trap-
door collision and uniformity properties of the chameleon encryption scheme.

– Hτ,2: We start with the case when τ < n. For this case, in this hybrid, we
change how the garbled circuit P̃ τ is generated. Let v = id∗[1 . . . τ ] and recall
that

lkv =

{
(hv, ekv‖0, hv‖1, rv) if τ < n − 1
(hv, ekv‖0, ekv‖1, rv) if τ = n − 1

.

In this hybrid, we change the generation process of the garbled circuit P̃ τ

from
(P̃ τ , lab

′
) $←− GCircuit(1λ,P[id[τ + 1], kτ , lab])
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and setting lab := lab
′
to

(P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

and set lab := {lab′
j,hv,j , lab

′
j,hv,j }j∈[λ].

For the case when τ = n, then we change computation of T̃ from

(T̃ , lab) $←− GCircuit(1λ,T[m])

where lab = {labj,b}j∈[λ],b∈{0,1} to setting y = ekid∗ and generating garbled
circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and setting lab := {labj,yj
, labj,yj

}j∈[λ].
For the case when τ < n, computational indistinguishability of hybrids
Hτ,1 and Hτ,2 follows by the security of the garbling scheme and the fact
that {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1} is exactly the output of the circuit
P[id[τ + 1], kτ , lab] on input hv. On the other hand, for the case when τ = n,
then again indistinguishability of hybrids Hn,1 and Hn,2 follows by the secu-
rity of the garbling scheme and the fact that E(ekid∗ ,m) is the output of the
circuit T[m] on input ekid∗ .

– Hτ,3: Skip this hybrid if τ = n. This hybrid is identical to Hτ,2, except that
using v := id[1 . . . τ ] we change

(P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,b)}j∈[λ],b∈{0,1})

to

P̃ i, {lab′
j,hv,j }j∈[λ]) := Sim(1λ, {Enc(kv, (hv, j, b), labj,hid[1...τ+1],j )}j∈[λ],b∈{0,1})

Notice that tv is not used in this experiment. Therefore computational indis-
tinguishability of hybrids Hτ,2 and Hτ,3 follows by λ2 invocations (one invo-
cation for each bit of the λ labels) of the security of the chameleon encryption
scheme. We now provide the reduction for one change below.
More formally, we now describe a reduction to the security of the chameleon
hash function. Specifically, the challenger provides a hash key k∗ and the
attacker needs to submit x∗, r∗. Our reduction achieves this by setting
kτ := k∗. It then submits the x∗ := hv‖0‖hv‖1 and randomly chosen coins
rv := r∗ used in the computation of hv := H(kτ , x∗; r∗) for the node v. Now
we can use the attackers ability to distinguish the encryptions of the provided
labels to break the security of the chameleon encryption scheme.

Remark: We note that the ciphertexts hardwired inside the garbled circuit
only provide the labels {labj,hid[1...τ+1],j}j∈[λ] (in an information theoretical
sense).
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– Hτ,4: Skip this hybrid if τ = n. In this hybrid, we undo the change made in
going from hybrid Hτ,0 to hybrid Hτ,1, i.e. we go back to generating all hv
values using NodeGen and LeafGen.
Computational indistinguishability of hybrids Hτ,3 and Hτ,4 follows from
the trapdoor collision and uniformity properties of the chameleon encryption
scheme. Observe that the hybrid Hτ,4 is the same as hybrid Hτ .

7 Construction of Hierarchical Identity-Based Encryption

In this section, we describe our construction of HIBE from chameleon encryption.
Let (Gen,H,H−1,Enc,Dec) be a chameleon encryption scheme and (G,E,D) be
any semantically secure public-key encryption scheme. We let id[i] denote the
ith-bit of id and id[1 . . . i] denote the first i bits of id (and id[1 . . . 0] = ε).

Notation for the Pseudorandom Function F. Let PRG : {0, 1}λ → {0, 1}3λ

be a length tripling pseudorandom generator and PRG0,PRG1 and PRG2 be the
1 . . . λ, λ+1 . . . 2λ and 2λ+1 . . . 3λ bits of the output of PRG, respectively. Now
define a GGM-type [29] pseudo-random function F : {0, 1}λ×{0, 1, 2}∗ → {0, 1}λ

such that F(s, x) := PRGxn
(PRGxn−1(. . . (PRGx1(s)) . . .)), where n = |x| and for

each i ∈ [n] xi is the ith element (from 0, 1 or 2) of string x.19

NodeGen and NodeGen′ Functions. As explained in the introduction, we need
an exponential sized tree of local-keys. The function NodeGen provides efficient
access to local-keys corresponding to any node in this (exponential sized) tree.
We will use this function repeatedly in our construction. The function takes as
input the hash key kG (a key of the chameleon hash function from 2� + 2λ bits
to λ bits, where � is specified later), a node v ∈ {0, 1}∗ ∪ {ε} (ε denotes the
empty string), and s = (s1, s2, s3) seeds for the pseudo-random function PRF.
This function is explained in the Fig. 5.

We also define a function NodeGen′, which is identical to NodeGen except
that it additionally takes a bit β as input and outputs dkv‖β . More formally,
NodeGen′(kG, v, (s1, s2, s3), β) executes just like NodeGen but in Step 8 it out-
puts dkv‖β .

Construction. We describe our HIBE scheme (Setup,KeyGen,Encrypt,Decrypt).

– Setup(1λ): Proceed as follows:

1. Sample s
$←− {0, 1}λ (seeds for the pseudorandom function PRF).

2. Setup a global hash function (kG, ·) := Gen(1λ, 2�+2λ)20 where � = �′ +λ
and �′ is the length of k generated from Gen(1λ, λ).

3. Obtain (kε, hε, rε, h
′
ε, r

′
ε, k0, h0, k1, h1) := NodeGen(kG, ε, s)

19 F(s, ε) is set to output s.
20 The trapdoor for the global hash function is not needed in the construction or the

proof and is therefore dropped.
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4. Output (mpk,msk) where mpk := (kG, kε, hε) and msk = skε := (ε, ∅, s,⊥)
– KeyGen(skid = (id, {lkv}v∈V , s, dkid), id′ ∈ {0, 1}∗):21

Let n := |id′| and set V ′ := {id‖id′[1 . . . j − 1]}j∈[n]

For all v ∈ V ′:
lkv := NodeGen(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)))

Let v := id‖id′[1 . . . n − 1]
dkid‖id′ := NodeGen′(kG, v, (F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2)), id′[n])

Output skid‖id′ := (id, {lkv}v∈V ∪V ′ ,F(s, id′), dkid‖id′)

NodeGen(kG, v, (s1, s2, s3)):

1. Obtain ω1, ω2, and ω3 be the first, second
and third λ/3 bits of s1, respectively.

2. Generate (kv, tv) := Gen(1λ; ω1) and hv :=
H(kv, 0

λ; ω2).
3. Analogous to the previous two steps gen-

erate kv‖0, hv‖0 using seed s2 and kv‖1, hv‖1
using seed s3.

4. Sample r′
v and generate (ekv‖0, dkv‖0)

$←−
G(1λ) and (ekv‖1, dkv‖1)

$←− G(1λ) using ω3

as random coins.
5. h′

v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′
v).

6. rv := H−1(tv, (0
λ, ω2), h

′
v).

7. lkv := (kv, hv, rv, h
′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

8. Output lkv

λ

h′
v

hv

kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖ekv‖1

kG r′
v

kv rv

2�′ + 4λ

Fig. 5. Explanation on how NodeGen works. Strings ω1, ω2 and ω3 are used as ran-
domness for cryptographic functions and can be sufficiently expanded using a PRG.

Remark: We note that in our construction the secret key for any identity is
unique regardless of many iterations of KeyGen operations were performed to
obtain it.

– Encrypt(mpk = (kG, kε, hε), id ∈ {0, 1}n,m): Before describing the encryption
procedure we describe four circuits that will be garbled during the encryption
process.

• T[m](ek): Compute and output E(ek,m).
• Qlast[β ∈ {0, 1}, kG, tlab](h): Compute and output {Enc(kG, (h, j +β ·λ+

2�, b), tlabj,b)}j∈[λ],b∈{0,1}, where tlab is short for {tlabj,b}j∈[λ],b∈{0,1}.
• Q[β ∈ {0, 1}, kG, plab](h): Compute and output {Enc(kG, (h, j + β ·

�, b), plabj,b)}j∈[	],b∈{0,1}, where plab is short for {plabj,b}j∈[	],b∈{0,1}.

21 HIBE is often defined to have separate KeyGen and Delegate algorithms. For sim-
plicity, we describe our scheme with just one KeyGen algorithm that enables both
the tasks of decryption and delegation. Secret-keys without delegation capabilities
can be obtained by dropping the third entry (the PRG seed) from skid.
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• P[qlab](k, h): Compute and output {Enc(k, (h, j, b), qlabj,b)}j∈[λ],b∈{0,1},
where qlab is short for {qlabj,b}j∈[λ],b∈{0,1}.

Encryption proceeds as follows:
1. Compute T̃ as:

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , 1 generate
(a) If i = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
) $←− GCircuit(1λ,Q[id[i], kG, plab

i+1
]).

(b) (P̃ i, plab
i
) $←− GCircuit(1λ,P[qlab

i
]).

3. Set xε := kε‖hε.
4. Output ct := ({plab1j,xε,j

}j∈[	], {P̃ i, Q̃i}i∈[n], T̃ ) where xε,j is the jth bit
of xε.

– Decrypt(ct, skid = (id, {lkv}v∈V ), s, dkid): Decryption proceeds as follows:
1. Parse ct as ({plab1j,xε,j

}j∈[	], {P̃ i, Q̃i}i∈[n], T̃ ) where xε := kε‖hε and xε,j

is its jth bit.
2. Parse lkv as (hv, rv, h′

v, r
′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1) for each v ∈ V .

(Recall V = {id[1 . . . j − 1]}j∈[n].)
3. For each i ∈ [n], proceed as follows:

(a) Set v := id[1 . . . i − 1], xv := kv‖hv, yv := h′
v, and if i < n then set

zv := kv‖id[i]‖hv‖id[i] else set zv := ekid.22

(b) {ei
j,b}j∈[λ],b∈{0,1} := Eval(P̃ i, {plabi

j,xv,j
}j∈[	]).

(c) For each j ∈ [λ], compute qlabi
j,yv,j

:= Dec(kv, ei
j,yv,j

, (h′
v, rv)).

(d) If i < n then,

{f i
j,b}j∈[	],b∈{0,1} := Eval(Q̃i, qlabi

j,yv,j
)

and for each j ∈ [�]

plabi+1
j,zv,j

:= Dec(kG, f i
j,zv,j

, (kv‖0‖hv‖0‖kv‖1‖hv‖1‖ekv‖0‖pkv‖1, r′
v))

(e) else,

{gj,b}j∈[λ],b∈{0,1} := Eval(Q̃n, qlabn
j,yv,j

)

and for each j ∈ [λ]

tlabj,zv,j := Dec(kG, gj,zv,j , (kv‖0‖hv‖0‖kv‖1‖hv‖1‖pkv‖0‖pkv‖1, r′
v)).

4. Output D(dkid,Eval(T̃ , {tlabj,ekid,j
}j∈[λ])).

22 For i < n, zv will become the xv in next iteration.
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7.1 Proof of Correctness

For any identity id, let V = {id[1 . . . j − 1]}j∈[n] be the set of nodes on the
root-to-leaf path corresponding to identity id. Then the secret key skid consists
of {lkv}v∈V , dkid and a seed of the pseudorandom function F. {lkv}v∈V , dkid
and will be used for decryption and s is used for delegating keys. Note that by
construction (and the trapdoor collision property of the chameleon encryption
scheme for the first equation below) for all nodes v ∈ V we have that:

H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖pkv‖0‖ekv‖1; r′
v) = h′

v,

H(kv, h′
v; rv) = hv.

By correctness of garbled circuits, we have that the evaluation of P̃ 1 yields
correctly formed ciphertexts f1

j,b. Next, by correctness of Dec of the chameleon
encryption scheme we have that the decrypted values qlab1j,yε,j

are the correct
input labels for the next garbled circuit Q̃1. Following the same argument we
can argue that the decryption of ciphertexts generated by Q̃1 yields the correct
input labels for P̃ 2. Repeatedly applying this argument allows us to conclude
that the last garbled circuit Q̃n outputs correct encryptions of input labels of
T̃ . The decryption of appropriate ciphertexts among these and the execution of
the garbled circuit T̃ using the obtained labels yields the ciphertext E(ekid,m)
which can be decrypted using the decryption key dkid. Correctness of the last
steps depends on the correctness of the public-key encryption scheme.

Next, the correctness of delegation follows from the fact that for every
id and id′

KeyGen(skε, id‖id′) = KeyGen(KeyGen(skε, id), id′).

This fact follows directly from the following property of the GGM PRF. Specif-
ically, for every x we have that F(s, id‖x) = F(F(s, id), x).

7.2 Proof of Security

We are now ready to prove the selective security of the HIBE construction above.
For the sake of contradiction we proceed by assuming that there exists an adver-
sary A such that Pr[INDHIBE

A (1λ) = 1] ≥ 1
2 +ε for a non-negligible ε (in λ), where

INDHIBE
A is shown in Fig. 2. Assume further that q is a polynomial upper bound

for the running-time of A, and thus also an upper bound for the number of A’s
key queries. Security follows by a sequence of hybrids. In our hybrids, changes
are made in how the secret key queries of the adversary A are answered and
how the challenge ciphertext is generated. However, unlike the IBE case these
changes are not intertwined with each other. In particular, we will make changes
to the secret keys first and then the ciphertext. We describe our hybrids next.
Our proof consist of a sequence of hybrids H−3,H−2,H−1,H0,H1, . . . Hn+2. We
describe these below. Since we are in the selective the case the adversary declares
the challenge identity id∗ before the public parameters mpk are provided to it.
Also, we let V ∗ be the set {ε, id∗[1] . . . id∗[1 . . . n − 1]}.
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– H−3: This hybrid corresponds to the experiment INDHIBE
A as shown in Fig. 2.

– H−2: In this hybrid, we change how the seed s of generated in Step 1 of Setup

is used. Specifically, we sample s
$←− {0, 1}λ and generate

1. For each i ∈ [n], let ai := F(s, id∗[1 . . . i − 1]‖(1 − id∗[i]).
2. b := F(s, id∗).
3. For each i ∈ {0 . . . n − 1}, let ci := F(s, id∗[1 . . . i]‖2).

Now, through out the execution of the experiment we replace the use of s with
the values ({ai}, b, {ci}). First, observe that (by standard properties of the
GGM pseudorandom function) given these values we can generate F(s, v‖2)
for all v ∈ {0, 1}∗ ∪ {ε}. Also, note that for the execution of the functions
NodeGen and NodeGen′ only F(s, v‖2) needs to be generated. Therefore, all
executions of NodeGen and NodeGen′ remain unaffected.
Secondly, note that the A is only allowed to make KeyGen queries for identities
id �∈ V ∗ ∪ {id∗}. Therefore, in order to answer these queries the experiment
needs to generate F(s, v) for v /∈ V ∗ ∪ {id∗}. Observe that using ({ai}, b) by
standard properties of the GGM pseudorandom function the experiment can
compute F(s, v) for any v �∈ V ∗. Therefore, all of A’s KeyGen queries can be
answered.23

The hybrids H−3 and H−2 are the same distribution and the only change we
have made is syntactic.

– H−1: In this hybrids, we change how each ci is generated. In particular, we
sample each ci uniformly and independently instead of using F.
The indistinguishability between hybrids H−2 and H−1 follows based on the
pseudorandomness of the pseudorandom function F.

– H0: In this hybrid, we change how NodeGen and NodeGen′ behave when com-
puted with an input v ∈ V ∗.24 For all v �∈ V ∗ the behavior of NodeGen and
NodeGen′ remains unchanged. At a high level, the goal is to change the gen-
erating of {lkv}v∈V ∗ such that the trapdoor values tv∈V ∗ are unused and so
that the encryption key ekid∗ is sampled independent of everything else. The
execution of NodeGen and NodeGen′ for every v �∈ V ∗ remain unaffected. In
particular, at Setup time we proceed as follows and fix the values {lkv}v∈V ∗

and {dkv‖0, dkv‖1}v∈V ∗ .25

1. For every v ∈ V ∗:
(a) Generate (kv, tv)

$←− Gen(1λ).

(b) Generate (ekv‖0, dkv‖0)
$←− G(1λ) and (ekv‖1, dkv‖1)

$←− G(1λ).
(c) Sample r′

v, rv.
2. Let S∗ := {id∗[1 . . . i−1]‖(1−id∗[i])}i∈[n]∪{id∗}. (Note that S∗∩V ∗ = ∅.)

23 The experiment can provide F(s, id∗) even though it does not appear in any of the A’s
secret key queries. The reason is that F(s, id∗) allows the capabilities of delegation
but not decryption for ciphertexts to identity id∗.

24 Observe that these are specifically the cases in which one or two of the values s1, s2
and s3 given as input to NodeGen and NodeGen′ depend on the {ci} values.

25 Note that since the adversary never makes a KeyGen query for an identity id that is
a prefix of id∗. Therefore, we have that dkv for v ∈ V ∗ ∪ {id∗} will not be provided
to A.
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3. For all v ∈ S∗ set kv, hv as first two outputs of NodeGen(kG, v,
(F(s, v‖2),F(s, v‖0‖2),F(s, v‖1‖2))).

4. For each i ∈ {n − 1 . . . 0}:
(a) Set v := id∗[1 . . . i]
(b) Generate h′

v := H(kG, kv‖0||hv‖0||kv‖1||hv‖1‖ekv‖0‖ekv‖1; r′
v).

(c) hv := H(kv, h′
v; rv).

(d) lkv := (kv, hv, rv, h′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1).

5. Output {lkv}v∈V ∗ and {dkv‖0, dkv‖1}v∈V ∗ .
Statistical indistinguishability of hybrids Hτ,−1 and Hτ,0 follows from the
trapdoor collision and uniformity properties of the chameleon encryption
scheme. Note that in this hybrid the trapdoor tv for any node v ∈ V ∗ is
no longer being used.

– Hτ for τ ∈ {1 . . . n} : This hybrid is identical to H0 except we change how
the ciphertext is generated. Recall that the challenge ciphertext consists of
a sequence of 2n + 1 garbled circuits. In hybrid Hτ , we generate the first
2τ of these garbled circuits (namely, P̃ 1, Q̃1 . . . P̃ τ , Q̃τ ) using the simulator
provided by the garbled circuit construction. The outputs hard-coded in the
simulated circuits are set to be consistent with the output that would have
resulted from the execution of honestly generated garbled circuits using keys
obtained from invocations of NodeGen. More formally, for the challenge iden-
tity id∗ the challenge ciphertext is generated as follows (modifications with
respect to honest ciphertext generation have been highlighted in red):
1. Compute T̃ as:

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

2. For i = n, . . . , τ + 1 generate
(a) If i = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id[n], kG, tlab]),

else
(Q̃i, qlab

i
) $←− GCircuit(1λ,Q[id[i], kG, plab

i+1
]).

(b) (P̃ i, plab
i
) $←− GCircuit(1λ,P[qlab

i
]).

3. For i = τ, . . . , 1:
(a) Set v = id∗[1 . . . i − 1], xv := kv‖hv, yv := h′

v, and if i < n then
zv := kv‖id∗[i]‖hv‖id∗[i] else zv := ekid∗ .

(b) If i = n then (Q̃n, {qlabn
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j +

id∗[n] · λ + 2�, b), tlabj,zv,j )}j∈[λ],b∈{0,1}) else (Q̃i, {qlabi
j,yv,j

}j∈[λ]) :=
Sim(1λ, {Enc(kG, (h′

v, j + id∗[i] · �, b), plabi+1
j,zv,j

)}j∈[	],b∈{0,1}).

(c) qlab
i
:= {qlabi

j,yv,j
, qlabi

j,yv,j
}j∈[λ].

(d) (P̃ i, {plabi
j,xv,j

}j∈[	]) :=Sim(1λ, {Enc(kv, (hv, j, b), qlabi
j,yv,j

)}j∈[λ],b∈{0,1}).

(e) plab
i
:= {plabi

j,xv,j
, plabi

j,xv,j
}j∈[	].

4. Set xε := kε‖hε.
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5. Output ct := ({plab1j,xε,j
}j∈[λ], {P̃ i, Q̃i}i∈[n], T̃ ) where xε,j is the jth bit

of xε.

The computational indistinguishability between hybrids Hτ−1 and Hτ is based
on Lemma 3 which is proved in Sect. 7.3.

Lemma 3. For each τ ∈ {1 . . . n} it is the case that Hτ−1
c≈ Hτ .

– Hn+1: This hybrid is same as hybrid Hn except that we generate the gar-
bled circuit T̃ to using the garbling simulator. More specifically, instead of
generating T̃ as

(T̃ , tlab) $←− GCircuit(1λ,Qout[kG,m])

we set y = ekid∗ and generate garbled circuit as,

(T̃ , {labj,yj
}j∈[λ])

$←− Sim(1λ,E(y,m))

and set lab := {labj,yj
, labj,yj

}j∈[λ].
Computational indistinguishability between hybrids Hn and Hn+1 follows
directly from the security of the gabled circuits.

– Hn+2: This hybrid is same as Hn except that we change the ciphertext
E(ekid∗ ,m) hardwired in the simulated garbling of the circuit T to be
E(ekid∗ , 0).
Note that the adversary A never queries for skid∗ . Therefore, it is never
provided the value dkid∗ . Therefore, we can use an adversary distinguish-
ing between Hn+1 and Hn+2 to construct an attacker against the semantic
security of the public-key encryption scheme (G,E,D). This allows us to con-
clude that Hn+1

c≈ Hn+2.
Finally, note that the hybrid Hn+2 is information theoretically independent
of the plaintext message m.

7.3 Proof of Lemma 3

The proof follows by a sequence of sub-hybrids Hτ,0 to Hτ,4 where Hτ,0 is same
as Hτ−1 and Hτ,4 is same as Hτ .

– Hτ,0: This hybrid is same as Hτ−1.
– Hτ,1: In this hybrid, we change how the garbled circuit P̃ τ is generated. Let

v = id∗[1 . . . τ − 1] and lkv = (kv, hv, rv, h′
v, r

′
v, kv‖0, hv‖0, kv‖1, hv‖1, ekv‖0, ekv‖1)

and define xv := kv‖hv. The change we make is the following. We generate

(P̃ τ , plab
τ
) $←− GCircuit(1λ,P[qlab

τ
])

now as

(P̃ τ , {plabτ
j,xv,j

}j∈[	])
$←− Sim(1λ, {Enc(kv, (hv, j, b), qlabτ

j,b)}j∈[λ],b∈{0,1})
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where xv,j is the jth bit of xv. Next, we set plab
i
:={plabi

j,xv,j
, plabi

j,xv,j
}j∈[	].

Computational indistinguishability of hybrids Hτ,0 and Hτ,1 follows
by the security of the garbling scheme GCircuit and the fact that
{Enc(kv, (hv, j, b), qlabτ

j,b)}j∈[λ],b∈{0,1} is exactly the output of the circuit
P [qlab

τ
] on input xv.

– Hτ,2: This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we
change

(P̃ τ , {plabτ
j,xv,j

}j∈[	]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτ
j,b)}j∈[λ],b∈{0,1})

to

(P̃ τ , {plabτ
j,xv,j

}j∈[	]) := Sim(1λ, {Enc(kv, (hv, j, b), qlabτ
j,yv,j

)}j∈[λ],b∈{0,1}),

where yv := h′
v.

Notice that node v is generated so that the trapdoor value tv is not used in the
execution of the experiment. Therefore, computational indistinguishability of
hybrids Hτ,1 and Hτ,2 follows by λ2 invocations (one invocation for each
bit of the λ labels) of the security of the chameleon encryption scheme. The
reduction is analogous to the reduction proving indistinguishability of hybrids
Hτ,2 and Hτ,3 in the proof of Lemma 2.
Remark: We note that the ciphertexts hardwired inside the garbled circuit
only provide the labels {qlabτ

j,yv,j
}j∈[λ] (in an information theoretical sense).

– Hτ,3 This hybrid is identical to Hτ,2, except that for v = id∗[1 . . . τ − 1] we
change how Q̃τ is generated. If τ = n then

(Q̃n, qlab
n
) $←− GCircuit(1λ,Qlast[id∗[n], kG, tlab]),

is changed to (Q̃n, {qlabn
j,yv,j

}j∈[λ]) :=Sim(1λ, {Enc(kG, (h′
v, j + id∗[n] · λ + 2�,

b), tlabj,b)}j∈[λ],b∈{0,1}), and qlab
n
:={qlabn

j,yv,j
, qlabn

j,yv,j
}j∈[λ] where yv :=h′

v.
Otherwise, if τ �= n then

(Q̃τ , qlab
τ
) $←− GCircuit(1λ,Q[id∗[τ ], kG, plab

τ+1
])

is changed to (Q̃τ , {qlabτ
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j + id∗[τ ] · �, b),

plabτ+1
j,b )}j∈[	],b∈{0,1}), and qlab

τ
:= {qlabτ

j,yv,j
, qlabτ

j,yv,j
}j∈[λ] where yv := h′

v.
Computational indistinguishability between hybrids Hτ,2 and Hτ,3 fol-
lows by the security of the garbling scheme and the fact that is the
output of the circuit Qlast[id∗[n], kG, tlab] is {Enc(kG, (h′

v, j + id∗[n] · λ +
2�, b), tlabj,b)}j∈[λ],b∈{0,1} and the output of the circuit Q[id∗[τ ], kG, plab

τ+1
]

is {Enc(kG, (h′
v, j + id∗[τ ] · �, b), plabτ+1

j,b )}j∈[	],b∈{0,1}.
– Hτ,4: This hybrid is identical to Hτ,4, except that we change generation of

Q̃τ . Specifically, in the case τ = n then we change the generation process of
Q̃n from (Q̃n, {qlabn

j,yv,j
}j∈[λ]) := Sim(1λ, {Enc(kG, (h′

v, j + id∗[n] · λ + 2�, b),
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tlabj,b)}j∈[λ],b∈{0,1}) to (Q̃n, {qlabn
j,yv,j

}j∈[λ]) := Sim(1λ, {Enc(kG, (h′
v, j +

id∗[n] ·λ+2�, b), tlabj,zv,j )}j∈[λ],b∈{0,1}), where zv := ekid∗ . On the other hand,
when τ �= n then it is changed from (Q̃τ , {qlabτ

j,yv,j
}j∈[λ]) := Sim(1λ, {Enc

(kG, (h′
v, j + id∗[τ ] · �, b), plabτ+1

j,b )}j∈[	],b∈{0,1}) to (Q̃τ , {qlabτ
j,yv,j

}j∈[λ]) :=
Sim(1λ, {Enc(kG, (h′

v, j + id∗[τ ] · �, b), plabτ+1
j,zv,j

)}j∈[	],b∈{0,1}) where zv :=
hv‖id∗[τ ]‖kv‖id∗[τ ].
Notice that since the trapdoor for kG is unavailable (never generated or
used), computational indistinguishability of hybrids Hτ,3 and Hτ,4 follows
by λ2 invocations (one invocation per bit of the λ labels) if τ = n and by �λ
invocations (one invocation per bit of the � labels) otherwise of the security
of the chameleon encryption scheme. And the reduction to the security of
the chameleon encryption scheme is analogous to the reduction described for
indistinguishability between hybrids Hτ,1 and Hτ,2.
Observe that the hybrid Hτ,4 is the same as hybrid Hτ .
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