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Abstract. A software watermarking scheme allows one to embed a
“mark” into a program without significantly altering the behavior of
the program. Moreover, it should be difficult to remove the watermark
without destroying the functionality of the program. Recently, Cohen et
al. (STOC 2016) and Boneh et al. (PKC 2017) showed how to watermark
cryptographic functions such as PRFs using indistinguishability obfusca-
tion. Notably, in their constructions, the watermark remains intact even
against arbitrary removal strategies. A natural question is whether we
can build watermarking schemes from standard assumptions that achieve
this strong mark-unremovability property.

We give the first construction of a watermarkable family of PRFs
that satisfy this strong mark-unremovability property from standard lat-
tice assumptions (namely, the learning with errors (LWE) and the one-
dimensional short integer solution (SIS) problems). As part of our con-
struction, we introduce a new cryptographic primitive called a translu-
cent PRF. Next, we give a concrete construction of a translucent PRF
family from standard lattice assumptions. Finally, we show that using our
new lattice-based translucent PRFs, we obtain the first watermarkable
family of PRFs with strong unremovability against arbitrary strategies
from standard assumptions.

1 Introduction

A software watermarking scheme enables one to embed a “mark” into a program
such that the marked program behaves almost identically to the original pro-
gram. At the same time, it should be difficult for someone to remove the mark
without significantly altering the behavior of the program. Watermarking is a
powerful notion that has many applications for digital rights management, such
as tracing information leaks or resolving ownership disputes. Although the con-
cept itself is quite natural, and in spite of its numerous potential applications, a
rigorous theoretical treatment of the notion was given only recently [6,7,31].

Constructing software watermarking with strong security guarantees has
proven difficult. Early works on cryptographic watermarking [35,36,40] could
only achieve mark-unremovability against adversaries who can only make
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a restricted set of modifications to the marked program. The more recent
works [12,21] that achieve the strongest notion of unremovability against arbi-
trary adversarial strategies all rely on heavy cryptographic tools, namely, indis-
tinguishability obfuscation [6,23]. In this paper, we focus on constructions that
achieve the stronger notion of mark-unremovability against arbitrary removal
strategies.

Existing constructions of software watermarking [12,21,35,36,40] with for-
mal security guarantees focus primarily on watermarking cryptographic func-
tions. Following [12,21], we consider watermarking for PRFs. In this work, we
give the first watermarkable family of PRFs from standard assumptions that
provides mark-unremovability against arbitrary adversarial strategies. All previ-
ous watermarking constructions [12,21] that could achieve this notion relied on
indistinguishability obfuscation. As we discuss in Sect. 1.2, this notion of soft-
ware watermarking shares some similarities with program obfuscation, so it is
not entirely surprising that existing constructions rely on indistinguishability
obfuscation.

To construct our watermarkable family of PRFs, we first introduce a new
cryptographic primitive we call translucent constrained PRFs. We then show
how to use translucent constrained PRFs to build a watermarkable family of
PRFs. Finally, we leverage a number of lattice techniques (outlined in Sect. 2)
to construct a translucent PRF. Putting these pieces together, we obtain the
first watermarkable family of PRFs with strong mark-unremovability guaran-
tees from standard assumptions. Thus, this work broadens our abilities to con-
struct software watermarking, and we believe that by leveraging and extending
our techniques, we will see many new constructions of cryptographically-strong
watermarking for new functionalities (from standard assumptions) in the future.

1.1 Background

The mathematical foundations of digital watermarking were first introduced by
Barak et al. [6,7] in their seminal work on cryptographic obfuscation. Unfortu-
nately, their results were largely negative, for they showed that assuming indis-
tinguishability obfuscation, then certain forms of software watermarking cannot
exist. Central to their impossibility result is the assumption that the underly-
ing watermarking scheme is perfect functionality-preserving. This requirement
stipulates that the input/output behavior of the watermarked program is iden-
tical to the original unmarked program on all input points. By relaxing this
requirement to allow the watermarked program to differ from the original pro-
gram on a small number (i.e., a negligible fraction) of the points in the domain,
Cohen et al. [21] gave the first construction of an approximate functionality-
preserving watermarking scheme for a family of pseudorandom functions (PRFs)
using indistinguishability obfuscation.

Watermarking Circuits. A watermarking scheme for circuits consists of two
algorithms: a marking algorithm and a verification algorithm. The marking algo-
rithm is a keyed algorithm takes as input a circuit C and outputs a new circuit
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C ′ such that on almost all inputs x, C ′(x) = C(x). In other words, the water-
marked program preserves the functionality of the original program on almost
all inputs. The verification algorithm then takes as input a circuit C ′ and either
outputs “marked” or “unmarked.” The correctness requirement is that any cir-
cuit output by the marking algorithm should be regarded as “marked” by the
verification algorithm. A watermarking scheme is said to be publicly-verifiable if
anyone can test whether a circuit is watermarked or not, and secretly-verifiable
if only the holder of the watermarking key is able to test whether a program is
watermarked.

The primary security property a software watermarking scheme must satisfy
is unremovability, which roughly says that given a watermarked circuit C, the
adversary cannot produce a new circuit C̃ whose functionality is similar to C,
and yet is not considered to be marked from the perspective of the verification
algorithm. The definition can be strengthened by also allowing the adversary
to obtain marked circuits of its choosing. A key source of difficulty in achiev-
ing unremovability is that we allow the adversary complete freedom in crafting
its circuit C̃. All existing constructions of watermarking from standard assump-
tions [35,36,40] constrain the output or power of the adversary (e.g., the adver-
sary’s output must consist of a tuple of group elements). In contrast, the works
of Cohen et al. [21], Boneh et al. [12], and this work protect against arbitrary
removal strategies.

A complementary security property to unremovability is unforgeability, which
says that an adversary who does not possess the watermarking secret key is
unable to construct a new program (i.e., one sufficiently different from any
watermarked programs the adversary might have seen) that is deemed to be
watermarked (from the perspective of the verification algorithm). As noted by
Cohen et al. [21], unforgeability and unremovability are oftentimes conflicting
requirements, and depending on the precise definitions, may not be simultane-
ously satisfiable. In this work, we consider a natural setting where both condi-
tions are simultaneously satisfiable (and in fact, our construction achieves exactly
that).

Watermarking PRFs. Following Cohen et al. [21] and Boneh et al. [12], we
focus on watermarking cryptographic functions, specifically PRFs, in this work.
Previously, Cohen et al. [21] demonstrated that many natural classes of func-
tions, such as any efficiently learnable class of functions, cannot be watermarked.
A canonical and fairly natural class of non-learnable functionalities are crypto-
graphic ones. Moreover, watermarking PRFs already suffices for a number of
interesting applications; we refer to [21] for the full details.

Building Software Watermarking. We begin by describing the high-level
blueprint introduced by Cohen et al. [21] for constructing watermarkable PRFs.1

To watermark a PRF F with key k, the marking algorithm first evaluates the
PRF on several (secret) points h1, . . . , hd to obtain values t1, . . . , td. Then, the

1 There are numerous technicalities in the actual construction, but these are not essen-
tial to understanding the main intuition.
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marking algorithm uses the values (t1, . . . , td) to derive a (pseudorandom) pair
(x∗, y∗). The watermarked program is a circuit C that on all inputs x �= x∗, out-
puts F (k, x), while on input x∗, it outputs the special value y∗. To test whether
a program C ′ is marked or not, the verification algorithm first evaluates C ′ on
the secret points h1, . . . , hd. It uses the function evaluations to derive the test
pair (x∗, y∗). Finally, it evaluates the program at x∗ and outputs “marked” if
C ′(x∗) = y∗; otherwise, it outputs “unmarked.” For this scheme to be secure
against arbitrary removing strategies, it must be the case that the watermarked
circuit C hides the marked point x∗ from the adversary. Moreover, the value y∗

at the “reprogrammed” point should not be easily identifiable. Otherwise, an
adversary can trivially defeat the watermarking scheme by simply producing a
circuit that behaves just like C, but outputs ⊥ whenever it is queried on the
special point x∗. In some sense, security requires that the point x∗ is carefully
embedded within the description of the watermarked program such that no effi-
cient adversary is able to identify it (or even learn partial information about it).
This apparent need to embed a secret within a piece of code is reminiscent of
program obfuscation, so not surprisingly, the existing constructions of software
watermarking all rely on indistinguishability obfuscation.

Puncturable and Programmable PRFs. The starting point of our con-
struction is the recent watermarking construction by Boneh et al. [12] (which
follows the Cohen et al. [21] blueprint sketched above). In their work, they first
introduce the notion of a private puncturable PRF. In a regular puncturable
PRF [14,15,33], the holder of the PRF key can issue a “punctured” key skx∗

such that skx∗ can be used to evaluate the PRF everywhere except at a sin-
gle point x∗. In a private puncturable PRF, the punctured key skx∗ also hides
the punctured point x∗. Intuitively, private puncturing seems to get us partway
to the goal of constructing a watermarkable family of PRFs according to the
above blueprint. After all, a private puncturable PRF allows issuing keys that
agree with the real PRF almost everywhere, and yet, the holder of the punctured
key cannot tell which point was punctured. Unfortunately, standard puncturable
PRFs do not provide an efficient algorithm for testing whether a particular point
is punctured or not, and thus, we do not have a way to determine (given just
oracle access to the program) whether the program is marked or not.

To bridge the gap between private puncturable PRFs and watermarkable
PRFs, Boneh et al. introduced a stronger notion called a private programmable
PRF, which allows for arbitrary reprogramming of the PRF value at the punc-
tured point. This modification allows them to instantiate the Cohen et al. blue-
print for watermarking. However, private programmable PRFs seem more diffi-
cult to construct than a private puncturable PRF, and the construction in [12]
relies on indistinguishability obfuscation. In contrast, Boneh et al. [10] as well
as Canetti and Chen [19] have recently showed how to construct private punc-
turable PRFs (and in the case of [19], private constrained PRFs for NC1) from
standard lattice assumptions.
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1.2 Our Contributions

While the high-level framework of Cohen et al. [21] provides an elegant app-
roach for building watermarkable PRFs (and by extension, other cryptographic
functionalities), realizing it without relying on some form of obfuscation is chal-
lenging. Our primary contribution in this work is showing that it is possible
to construct a watermarkable family of PRFs (in the secret-key setting) while
only relying on standard lattice assumptions (namely, on the subexponential
hardness of LWE and 1D-SIS). Thus, this work gives the first construction of
a mathematically-sound watermarking construction for a nontrivial family of
cryptographic primitives from standard assumptions. In this section, we give a
brief overview of our main construction and results. Then, in Sect. 2, we give a
more detailed technical overview of our lattice-based watermarking construction.

Relaxing Programmability. The work of Boneh et al. [12] introduces two
closely-related notions: private puncturable PRFs and private programmable
PRFs. Despite their similarities, private programmable PRFs give a direct con-
struction of watermarking while private puncturable PRFs do not seem suffi-
cient. In this work, we take a “meet-in-the-middle” approach. First, we identify
an intermediate notion that interpolates between private puncturable PRFs and
private programmable PRFs. For reasons described below, we refer to our new
primitive as a private translucent PRF. The advantages to defining this new
notion are twofold. First, we show how to augment and extend the Boneh et
al. [10] private puncturable PRF to obtain a private translucent PRF from stan-
dard lattice assumptions. Second, we show that private translucent PRFs still
suffice to instantiate the rough blueprint in [21] for building cryptographic water-
marking schemes. Together, these ingredients yield the first (secretly-verifiable)
watermarkable family of PRFs from standard assumptions.2

Private Translucent PRFs. The key cryptographic primitive we introduce in
this work is the notion of a translucent puncturable PRF. To keep the description
simple, we refer to it as a “translucent PRF” in this section. As described above,
private translucent PRFs interpolate between private puncturable PRFs and pri-
vate programmable PRFs. We begin by describing the notion of a (non-private)
translucent PRF. A translucent PRF consists of a set of public parameters pp
and a secret testing key tk. Unlike standard puncturable and programmable
PRFs, each translucent PRF (specified by (pp, tk)) defines an entire family of
puncturable PRFs over a domain X and range Y, and which share a common set
of public parameters. More precisely, translucent PRFs implement a SampleKey
algorithm which, on input the public parameters pp, samples a PRF key k from
the underlying puncturable PRF family. The underlying PRF family associated
with pp is puncturable, so all of the keys k output by SampleKey can be punc-
tured.

2 Another approach for building a watermarkable family of PRFs is to directly con-
struct a private programmable PRF (from standard assumptions) and then invoke
the construction in [12]. We discuss this approach at the end of this section.
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The defining property of a translucent PRF is that when a punctured key skx∗

(derived from some PRF key k output by SampleKey) is used to evaluate the PRF
at the punctured point x∗, the resulting value lies in a specific subset S ⊂ Y.
Moreover, when the punctured key skx∗ is used to evaluate at any non-punctured
point x �= x∗, the resulting value lies in Y \ S with high probability. The partic-
ular subset S is global to all PRFs in the punctured PRF family, and moreover,
is uniquely determined by the public parameters of the overall translucent PRF.
The second requirement we require of a translucent PRF is that the secret testing
key tk can be used to test whether a particular value y ∈ Y lies in the subset S
or not. In other words, given only the evaluation output of a punctured key skx∗

on some input x, the holder of the testing key can efficiently tell whether x = x∗

(without any knowledge of skx∗ or its associated PRF key k).
In a private translucent PRF, we impose the additional requirement that

the underlying puncturable PRF family is privately puncturable (that is, the
punctured keys also hide the punctured point). An immediate consequence of
the privacy requirement is that whenever a punctured key is used to evaluate
the PRF at a punctured point, the output value (contained in S) should look
indistinguishable from a random value in the range Y. If elements in S are
easily distinguishable from elements in Y \ S (without tk), then an adversary
can efficiently test whether a punctured key is punctured at a particular point
x, thus breaking privacy. In particular, this means that S must be a sparse
hidden subset of Y such that anyone who does not possess the testing key tk
cannot distinguish elements in S from elements in Y. Anyone who possesses
the testing key, however, should be able to tell whether a particular element is
contained in S or not. Moreover, all of these properties should hold even though
it is easy to publicly sample elements from S (the adversary can always sample a
PRF key k using SampleKey, puncture k at any point x∗, and then evaluate the
punctured key at x∗). Sets S ⊂ Y that satisfy these properties were referred to
as “translucent sets” in the work of Canetti et al. [20] on constructing deniable
encryption. In our setting, the outputs of the punctured PRF keys in a private
translucent PRF precisely implement a translucent set system, hence the name
“translucent PRF.”

From Private Translucency to Watermarking. Once we have a private
translucent PRF, it is fairly straightforward to obtain from it a family of
watermarkable PRFs. Our construction roughly follows the high-level blueprint
described in [21]. Take any private translucent PRF with public parameters pp
and testing key tk. We now describe a (secretly-verifiable) watermarking scheme
for the family of private puncturable PRFs associated with pp. The watermark-
ing secret key consists of several randomly chosen domain elements h1, . . . , hd ∈ X
and the testing key tk for the private translucent PRF. To watermark a PRF key
k (output by SampleKey), the marking algorithm evaluates the PRF on h1, . . . , hd

and uses the outputs to derive a special point x∗ ∈ X . The watermarked key skx∗

is the key k punctured at the point x∗. By definition, this means that if the water-
marked key skx∗ is used to evaluate the PRF at x∗, then the resulting value lies
in the hidden sparse subset S ⊆ Y specific to the private translucent PRF.
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To test whether a particular program (i.e., circuit) is marked, the verification
algorithm first evaluates the circuit at h1, . . . , hd. Then, it uses the evaluations
to derive the special point x∗. Finally, the verification algorithm evaluates the
program at x∗ to obtain a value y∗. Using the testing key tk, the verification
algorithm checks to see if y∗ lies in the hidden set S associated with the public
parameters of the private translucent PRF. Correctness follows from the fact that
the punctured key is functionality-preserving (i.e., computes the PRF correctly
at all but the punctured point). Security of the watermarking scheme follows
from the fact that the watermarked key hides the special point x∗. Furthermore,
the adversary cannot distinguish the elements of the hidden set S from random
elements in the range Y. Intuitively then, the only effective way for the adversary
to remove the watermark is to change the behavior of the marked program on
many points (i.e., at least one of h1, . . . , hd, x

∗). But to do so, we show that such
an adversary necessarily corrupts the functionality on a noticeable fraction of
the domain. In Sect. 6, we formalize these notions and show that every private
translucent PRF gives rise to a watermarkable family of PRFs. In fact, we show
that starting from private translucent PRFs, we obtain a watermarkable family of
PRFs satisfying a stronger notion of mark-unremovability security compared to
the construction in [12]. We discuss this in greater detail in Sect. 6 (Remark 6.8).

Message-Embedding via t-Puncturing. Previous watermarking constructions [12,
21] also supported a stronger notion of watermarking called “message-
embedding” watermarking. In a message-embedding scheme, the marking algo-
rithm also takes as input a message m ∈ {0, 1}t and outputs a watermarked
program with the message m embedded within it. The verification algorithm
is replaced with an extraction algorithm that takes as input a watermarked
program (and in the secret-key setting, the watermarking secret key), and
either outputs “unmarked” or the embedded message. The unremovability prop-
erty is strengthened to say that given a program with an embedded message
m, the adversary cannot produce a similar program on which the extraction
algorithm outputs something other than m. Existing watermarking construc-
tions [12,21] leverage reprogrammability to obtain a message-embedding water-
marking scheme—that is, the program’s outputs on certain special inputs are
modified to contain a (blinded) version of m (which the verification algorithm
can then extract).

A natural question is whether our construction based on private translucent
PRFs can be extended to support message-embedding. The key barrier seems
to be the fact that private translucent PRFs do not allow much flexibility in
programming the actual value to which a punctured key evaluates on a punctured
point. We can only ensure that it lies in some translucent set S. To achieve
message-embedding watermarking, we require a different method of embedding
the message. Our solution contains two key ingredients:

– First, we introduce a notion of private t-puncturable PRFs, which is a nat-
ural extension of puncturing where the punctured keys are punctured on
a set of exactly t points in the domain rather than a single point. Fortu-
nately, for small values of t (i.e., polynomial in the security parameter), our
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private translucent PRF construction (Sect. 5) can be modified to support
keys punctured at t points rather than a single point. The other properties
of translucent PRFs remain intact (i.e., whenever a t-punctured key is used
to evaluate at any one of the t punctured points, the result of the evaluation
lies in the translucent subset S ⊂ Y).

– To embed a message m ∈ {0, 1}t, we follow the same blueprint as before, but
instead of deriving a single special point x∗, the marking algorithm instead
derives 2 · t (pseudorandom) points x

(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t . The watermarked

key is a t-punctured key, where the t points are chosen based on the bits
of the message. Specifically, to embed a message m ∈ {0, 1}t into a PRF
key k, the marking algorithm punctures k at the points x

(m1)
1 , . . . , x

(mt)
t . The

extraction procedure works similarly to the verification procedure in the basic
construction. It first evaluates the program on the set of (hidden) inputs, and
uses the program outputs to derive the values x

(b)
i for all i = 1, . . . , t and

b ∈ {0, 1}. For each index i = 1, . . . , t, the extraction algorithm tests whether
the program’s output at x

(0)
i or x

(1)
i lies within the translucent set S. In this

way, the extraction algorithm is able to extract the bits of the message.

Thus, without much additional overhead (i.e., proportional to the bit-length of
the embedded messages), we obtain a message-embedding watermarking scheme
from standard lattice assumption.

Constructing Translucent PRFs. Another technical contribution in this
work is a new construction of a private translucent PRF (that supports
t-puncturing) from standard lattice assumptions. The starting point of our pri-
vate translucent PRF construction is the private puncturable PRF construction
of Boneh et al. [10]. We provide a detailed technical overview of our algebraic
construction in Sect. 2, and the concrete details of the construction in Sect. 5.
Here, we provide some intuition on how we construct a private translucent PRF
(for the simpler case of puncturing). Recall first that the construction of Boneh et
al. gives rise to a PRF with output space Z

m
p . In our private translucent PRF

construction, the translucent set is chosen to be a random noisy 1-dimensional
subspace within Z

m
p . By carefully exploiting the specific algebraic structure of

the Boneh et al. PRF, we ensure that whenever an (honestly-generated) punc-
tured key is used to evaluate on a punctured point, the evaluation outputs a
vector in this random subspace (with high probability). The testing key simply
consists of a vector that is essentially orthogonal to the hidden subspace. Of
course, it is critical here that the hidden subspace is noisy. Otherwise, since the
adversary is able to obtain arbitrary samples from this subspace (by generating
and puncturing keys of its own), it can trivially learn the subspace, and thus,
efficiently decide whether a vector lies in the subspace or not. Using a noisy sub-
space enables us to appeal to the hardness of LWE and 1D-SIS to argue security
of the overall construction. We refer to the technical overview in Sect. 2 and the
concrete description in Sect. 5 for the full details.

An Alternative Approach. An alternative method for constructing a water-
markable family of PRFs is to construct a private programmable PRF from
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standard assumptions and apply the construction in [12]. For instance, suppose
we had a private puncturable PRF with the property that the value obtained
when using a punctured key to evaluate at a punctured point varies depend-
ing on the randomness used in the puncturing algorithm. This property can be
used to construct a private programmable PRF with a single-bit output. Specif-
ically, one can apply rejection sampling when puncturing the PRF to obtain a
key with the desired value at the punctured point. To extend to multiple out-
put bits, one can concatenate the outputs of several single-bit programmable
PRFs. In conjunction with the construction in [12], this gives another approach
for constructing a watermarkable family of PRFs (though satisfying a weaker
security definition as we explain below). The existing constructions of private
puncturable PRFs [10,19], however, do not naturally satisfy this property. While
the puncturing algorithms in [10,19] are both randomized, the value obtained
when using the punctured key to evaluate at the punctured point is independent
of the randomness used during puncturing. Thus, this rejection sampling app-
roach does not directly yield a private programmable PRF, but may provide an
alternative starting point for future constructions.

In this paper, our starting point is the Boneh et al. [10] private puncturable
PRF, and one of our main contributions is showing how the “matrix-embedding-
based” constrained PRFs in [10,17] (and described in Sect. 2) can be used to
construct watermarking.3 One advantage of our approach is that our private
translucent PRF satisfies key-injectivity (a property that seems non-trivial to
achieve using the basic construction of private programmable PRFs described
above). This property enables us to achieve a stronger notion of security for
watermarking compared to that in [12]. We refer to Sect. 4 (Definition 4.14) and
Remark 6.8 for a more thorough discussion. A similar notion of key-injectivity
was also needed in [21] to argue full security of their watermarking construc-
tion. Moreover, the translucent PRFs we support allow (limited) programming
at polynomially-many points, while the rejection-sampling approach described
above supports programming of at most logarithmically-many points. Although
this distinction is not important for watermarking, it may enable future applica-
tions of translucent PRFs. Finally, we note that our translucent PRF construc-
tion can also be viewed as a way to randomize the constraining algorithm of the
PRF construction in [10,17], and thus, can be combined with rejection sampling
to obtain a programmable PRF.

Open Problems. Our work gives a construction of secretly-verifiable water-
markable family of PRFs from standard assumptions. Can we construct a
publicly-verifiable watermarkable family of PRFs from standard assumptions? A
first step might be to construct a secretly-verifiable watermarking scheme that
gives the adversary access to an “extraction” oracle. The only watermarking
schemes (with security against arbitrary removal strategies) that satisfy either
one of these goals are due to Cohen et al. [21] and rely on indistinguishability
obfuscation. Another direction is to explore additional applications of private
3 In contrast, the Canetti-Chen constrained PRF construction [19] builds on secure

modes of operation of the Gentry et al. multilinear map [26].
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translucent PRFs and private programmable PRFs. Can these primitives be
used to base other cryptographic objects on standard assumptions?

1.3 Additional Related Work

Much of the early (and ongoing) work on digital watermarking have focused
on watermarking digital media, such as images or video. These constructions
tend to be ad hoc, and lack a firm theoretical foundation. We refer to [22]
and the references therein for a comprehensive survey of the field. The work
of Hopper et al. [31] gives the first formal and rigorous definitions for a digital
watermarking scheme, but they do not provide any concrete constructions. In the
same work, Hopper et al. also introduce the formal notion of secretly-verifiable
watermarking, which is the focus of this work.

Early works on cryptographic watermarking [35,36,40] gave construc-
tions that achieved mark-unremovability against adversaries who could only
make a restricted set of modifications to the marked program. The work of
Nishimaki [36] showed how to obtain message-embedding watermarking using
a bit-by-bit embedding of the message within a dual-pairing vector space (spe-
cific to his particular construction). Our message-embedding construction in this
paper also takes a bit-by-bit approach, but our technique is more general: we
show that any translucent t-puncturable PRF suffices for constructing a water-
markable family of PRFs that supports embedding t-bit messages.

In a recent work, Nishimaki et al. [37] show how to construct a traitor tracing
scheme where arbitrary data can be embedded within a decryption key (which
can be recovered by a tracing algorithm). While the notion of message-embedding
traitor tracing is conceptually similar to software watermarking, the notions are
incomparable. In a traitor-tracing scheme, there is a single decryption key and
a central authority who issues the marked keys. Conversely, in a watermark-
ing scheme, the keys can be chosen by the user, and moreover, different keys
(implementing different functions) can be watermarked.

PRFs from LWE. The first PRF construction from LWE was due to Baner-
jee et al. [5]. Subsequently, [4,11] gave the first lattice-based key-homomorphic
PRFs. These constructions were then generalized to the setting of constrained
PRFs in [3,10,17]. Recently, Canetti and Chen [19] showed how certain secure
modes of operation of the multilinear map by Gentry et al. [26] can be used
to construct a private constrained PRF for the class of NC1 constraints (with
hardness reducing to the LWE assumption).

ABE and PE from LWE. The techniques used in this work build on a series of
works in the areas of attribute-based encryption [39] and predicate encryption [13,
32] from LWE. These include the attribute-based encryption constructions of
[1,9,16,18,28,30], and predicate encryption constructions of [2,24,29].4

4 We note that the LWE-based predicate encryption constructions satisfy a weaker
security property (compared to [13,32]) sometimes referred to as weak attribute-
hiding.



Watermarking Cryptographic Functionalities 513

2 Construction Overview

In this section, we give a technical overview of our private translucent
t-puncturable PRF from standard lattice assumptions. As described in Sect. 1,
this directly implies a watermarkable family of PRFs from standard lattice
assumptions. The formal definitions, constructions and accompanying proofs of
security are given in Sects. 4 and 5. The watermarking construction is given in
Sect. 6.

The LWE Assumption. The learning with errors (LWE) assumption [38],
parameterized by n,m, q, χ, states that for a uniformly random vector s ∈ Z

n
q

and a uniformly random matrix A ∈ Z
n×m
q , the distribution (A, sTA + eT ) is

computationally indistinguishable from the uniform distribution over Z
n×m
q ×

Z
m
q , where e is sampled from a (low-norm) error distribution χ. To simplify the

presentation in this section, we will ignore the precise generation and evolution
of the error term e and just refer to it as “noise.”

Matrix Embeddings. The starting point of our construction is the recent pri-
vately puncturable PRF of Boneh, Kim, and Montgomery [10], which itself builds
on the constrained PRF construction of Brakerski and Vaikuntanathan [17]. Both
of these constructions rely on the matrix embedding mechanism introduced by
Boneh et al. [9] for constructing attribute-based encryption. In [9], an input
x ∈ {0, 1}ρ is embedded as the vector

sT
(
A1 + x1 · G | · · · | Aρ + xρ · G)

+ noise ∈ Z
mρ
q , (2.1)

where A1, . . . ,Aρ ∈ Z
n×m
q are uniformly random matrices, s ∈ Z

n
q is a uniformly

random vector, and G ∈ Z
n×m
q is a special fixed matrix (called the “gadget

matrix”). Embedding the inputs in this way enables homomorphic operations on
the inputs while keeping the noise small. In particular, given an input x ∈ {0, 1}ρ

and any polynomial-size circuit C : {0, 1}ρ → {0, 1}, there is a public operation
that allows computing the following vector from Eq. (2.1):

sT
(
AC + C(x) · G)

+ noise ∈ Z
m
q , (2.2)

where the matrix AC ∈ Z
n×m
q depends only on the circuit C, and not on the

underlying input x. Thus, we can define a homomorphic operation Evalpk on the
matrices A1, . . . ,Aρ where on input a sequence of matrices A1, . . . ,Aρ and a
circuit C, Evalpk(C,A1, . . . ,Aρ) → AC .

A Puncturable PRF from LWE. Brakerski and Vaikuntanathan [17] showed
how the homomorphic properties in [9] can be leveraged to construct a (single-
key) constrained PRF for general constraints. Here, we provide a high-level
description of their construction specialized to the case of puncturing. First,
let eq be the equality circuit where eq(x∗, x) = 1 if x∗ = x and 0 otherwise. The
public parameters5 of the scheme in [17] consist of randomly generated matrices

5 Since a constrained PRF is a secret-key primitive, we can always include the public
parameters as part of the secret key. However, in the lattice-based constrained PRF
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A0,A1 ∈ Z
n×m
q for encoding the PRF input x and matrices B1, . . .Bρ ∈ Z

n×m
q

for encoding the punctured point x∗. The secret key for the PRF is a vector
s ∈ Z

n
q . Then, on input a point x ∈ {0, 1}ρ, the PRF value at x is defined to be

PRF(s, x) := �sT · Aeq,x�p where Aeq,x := Evalpk(eq,B1, . . . ,Bρ,Ax1 , . . . ,Axρ),

where A0,A1,B1, . . . ,Bρ ∈ Z
n×m
q are the matrices in the public parameters,

and �·	p is the component-wise rounding operation that maps an element in Zq

to an element in Zp where p < q. By construction, Aeq,x is a function of x.
To puncture the key s at a point x∗ ∈ {0, 1}ρ, the construction in [17] gives

out the vector

sT · (A0 + 0 · G | A1 + 1 · G | B1 + x∗
1 · G | · · · | Bρ + x∗

ρ · G)
+ noise. (2.3)

To evaluate the PRF at a point x ∈ {0, 1}ρ using a punctured key, the user first
homomorphically evaluates the equality circuit eq on input (x∗, x) to obtain the
vector sT

(
Aeq,x + eq(x∗, x) · G)

+ noise. Rounding down this vector yields the
correct PRF value whenever eq(x∗, x) = 0, or equivalently, whenever x �= x∗,
as required for puncturing. As shown in [17], this construction yields a secure
(though non-private) puncturable PRF from LWE with some added modifica-
tions.

Private Puncturing. The reason the Brakerski-Vaikuntanathan puncturable
PRF described here does not provide privacy (that is, hide the punctured point)
is because in order to operate on the embedded vectors, the evaluator needs
to know the underlying inputs. In other words, to homomorphically compute
the equality circuit eq on the input (x∗, x), the evaluator needs to know both x
and x∗. However, the punctured point x∗ is precisely the information we need
to hide. Using an idea inspired by the predicate encryption scheme of Gorbunov
et al. [29], the construction of Boneh et al. [10] hides the point x∗ by first
encrypting it using a fully homomorphic encryption (FHE) scheme [25] before
applying the matrix embeddings of [9]. Specifically, in [10], the punctured key
has the following form:

sT · (A0 + 0 · G | A1 + 1 · G | B1 + ct1 · G | · · · | Bz + ctz · G
| C1 + sk1 · G | · · · | Cτ + skτ · G)

+ noise,

where ct1, . . . , ctz are the bits of an FHE encryption ct of the punctured point x∗,
and sk1, . . . , skτ are the bits of the FHE secret key sk. Given the ciphertext ct,
the evaluator can homomorphically evaluate the equality circuit eq and obtain an
FHE encryption of eq(x∗, x). Next, by leveraging an “asymmetric multiplication
property” of the matrix encodings, the evaluator is able to compute the inner

constructions [3,10,17], the public parameters can be sampled once and shared across
multiple independent secret keys. Our construction of translucent PRFs will rely on
choosing the public parameter matrices to have a certain structure that is shared
across multiple secret keys.
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product between the encrypted result with the decryption key sk.6 Recall that
for lattice-based FHE schemes (e.g. [27]), decryption consists of evaluating a
rounded inner product of the ciphertext with the decryption key. Specifically, the
inner product between the ciphertext and the decryption key results in q

2+e ∈ Zq

for some “small” error term e.
Thus, it remains to show how to perform the rounding step in the FHE

decryption. Simply computing the inner product between the ciphertext and the
secret key results in a vector

sT
(
AFHE,eq,x +

(q

2
· eq(x∗, x) + e

)
· G

)
+ noise,

where e is the FHE noise (for simplicity, by FHE, we always refer to the spe-
cific construction of [27] and its variants hereafter). Even though the error e is
small, neither s nor G are low-norm and therefore, the noise does not simply
round away. The observation made in [10], however, is that the gadget matrix G
contains some low-norm column vectors, namely the identity matrix I as a sub-
matrix. By restricting the PRF evaluation to just these columns and sampling
the secret key s from the low-norm noise distribution, they show that the FHE
error term sT · e · I can be rounded away. Thus, by defining the PRF evaluation
to only take these specific column positions of

PRF(s, x) := �sTAFHE,eq,x	p,

it is possible to recover the PRF evaluation from the punctured key if and only
if eq(x∗, x) = 0.7

Trapdoor at Punctured Key Evaluations. We now describe how we extend
the private puncturing construction in [10] to obtain a private translucent punc-
turable PRF where a secret key can be used to test whether a value is the result
of using a punctured key to evaluate at a punctured point. We begin by describ-
ing an alternative way to perform the rounding step of the FHE decryption in the
construction of [10]. First, consider modifying the PRF evaluation at x ∈ {0, 1}ρ

to be
PRF(s, x) := �sTAFHE,eq,x · G−1(D)	p,

6 Normally, multiplication of two inputs requires knowledge of both of the underlying
inputs. The “asymmetry” in the embedding scheme of [9] enables multiplications to
be done even if only one of the values to be multiplied is known to the evaluator. In
the case of computing an inner product between the FHE ciphertext and the FHE
secret key, the evaluator knows the bits of the ciphertext, but not the FHE secret
key. Thus, the asymmetry enables the evaluator to homomorphically evaluate the
inner product without knowledge of the FHE secret key.

7 To actually show that the challenge PRF evaluation is pseudorandom at the punc-
tured point, additional modifications must be made such as introducing extra ran-
domizing terms and collapsing the final PRF evaluation to be field elements instead
of vectors. We refer to [10] for the full details.
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where D ∈ Z
n×m
q is a public binary matrix and G−1 is the component-wise bit-

decomposition operator on matrices in Z
n×m
q .8 The gadget matrix G is defined

so that for any matrix A ∈ Z
n×m
q , G · G−1(A) = A. Then, if we evaluate the

PRF using the punctured key and multiply the result by G−1(D), we obtain the
following:

(
sT
(
AFHE,eq,x +

(q

2
· eq(x∗, x) + e

)
· G

)
+ noise

)
G−1(D)

= sT
(
AFHE,eq,xG−1(D) +

(q

2
· eq(x∗, x) + e

)
· D

)

︸ ︷︷ ︸
ÃFHE,eq,x

+noise′

= sT ÃFHE,eq,x + noise′

Since D is a low-norm (in fact, binary) matrix, the FHE error component sT ·
e · D is short, and thus, will disappear when we round. Therefore, whenever
eq(x∗, x) = 0, we obtain the real PRF evaluation.

The key observation we make is that the algebraic structure of the PRF
evaluation allows us to “program” the matrix ÃFHE,eq,x whenever eq(x∗, x) = 1
(namely, when the punctured key is used to evaluate at the punctured point).
As described here, the FHE ciphertext decrypts to q/2+e when the message is 1
and e when the message is 0 (where e is a small error term). In the FHE scheme
of [27] (and its variants), it is possible to encrypt scalar elements in Zq, and more-
over, to modify the decryption operation so that it outputs the encrypted scalar
element (with some error). In other words, decrypting a ciphertext encrypting
w ∈ Zq would yield a value w + e for some small error term e. Then, in the PRF
construction, instead of encrypting the punctured point x∗, we encrypt a tuple
(x∗, w) where w ∈ Zq is used to program the matrix ÃFHE,eq,x.9 Next, we replace
the basic equality function eq in the construction with a “scaled” equality func-
tion that on input (x, (x∗, w)), outputs w if x = x∗, and 0 otherwise. With these
changes, evaluating the punctured PRF at a point x now yields:10

sT
(
AFHE,eq,xG−1(D) + (w · eq(x∗, x) + e) · D)

+ noise.

Since w can be chosen arbitrarily when the punctured key is constructed,
a natural question to ask is whether there exists a w such that the matrix
AFHE,eq,xG−1(D) + w · D has a particular structure. This is not possible if w is
a scalar, but if there are multiple w’s, this becomes possible.

8 Multiplying by the matrix G−1(D) can be viewed as an alternative way to restrict
the PRF to the column positions corresponding to the identity submatrix in G.

9 A similar construction is used in [10] to show security. In their construction, they
sample and encrypt a random set of w’s and use them to blind the real PRF value
at the punctured point.

10 To reduce notational clutter, we redefine the matrix AFHE,eq,x here to be the matrix
associated with homomorphic evaluation of the scaled equality-check circuit.
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To support programming of the matrix ÃFHE,eq,x, we first take N = m · n
(public) binary matrices D� ∈ {0, 1}n×m where the collection {D�}�∈[N ] is
a basis for the module Z

n×m
q (over Zq). This means that any matrix in

Z
n×m
q can be expressed as a unique linear combination

∑
�∈[N ] w�D� where

w = (w1, . . . , wN ) ∈ Z
N
q are the coefficients. Then, instead of encrypting a

single element w in each FHE ciphertext, we encrypt a vector w of coefficients.
The PRF output is then a sum of N different PRF evaluations:

PRF(s, x) :=

⎢
⎢
⎢
⎣
∑

�∈[N ]

sTAFHE,eq�,xG−1(D�)

⎤

⎥
⎥
⎥

p

,

where the �th PRF evaluation is with respect to the circuit eq� that takes as
input a pair (x, (x∗,w)) and outputs w� if x = x∗ and 0 otherwise. If we now
consider the corresponding computation using the punctured key, evaluation at
x yields the vector

∑

�∈[N ]

sT
(
AFHE,eq�,xG−1(D�) + (w� · eq(x∗, x) + e) · D�

)
+ noise (2.4)

The key observation is that for any matrix W ∈ Z
n×m
q , the puncturing algorithm

can choose the coefficients w ∈ Z
N
q so that

W =

⎛

⎝
∑

�∈[N ]

AFHE,eq�,x∗G−1(D�)

⎞

⎠ +
∑

�∈[N ]

w� · D�. (2.5)

Next, we choose W to be a lattice trapdoor matrix with associated trapdoor
z (i.e., Wz = 0 mod q). From Eqs. (2.4) and (2.5), we have that whenever a
punctured key is used to evaluate the PRF at the punctured point, the result is
a vector of the form

⌊
sTW

⌉
p

∈ Z
m
p . Testing whether a vector y is of this form

can be done by computing the inner product of y with the trapdoor vector z
and checking if the result is small. In particular, when y = �sTW	p, we have
that 〈�sTW	p, z

〉 ≈ �sTWz	p = 0.

In our construction, the trapdoor matrix W is chosen independently of the PRF
key s, and included as part of the public parameters. To puncture a key s,
the puncturing algorithm chooses the coefficients w such that Eq. (2.5) holds.
This allows us to program punctured keys associated with different secret keys
si to the same trapdoor matrix W. The underlying “translucent set” then is
the set of vectors of the form �sT

i W	p. Under the LWE assumption, this set is
indistinguishable from random. However, as shown above, using a trapdoor for
W, it is easy to determine if a vector lies in this set. Thus, we are able to embed
a noisy hidden subspace within the public parameters of the translucent PRF.

We note here that our construction is not expressive enough to give a pro-
grammable PRF in the sense of [12], because we do not have full control of
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the value y ∈ Z
m
p obtained when using the punctured key to evaluate at the

punctured point. We only ensure that y lies in a hidden (but efficiently testable)
subspace of Z

m
p . As we show in Sect. 6, this notion suffices for watermarking.

Puncturing at Multiple Points. The construction described above yields a
translucent puncturable PRF. As noted in Sect. 1, for message-embedding water-
marking, we require a translucent t-puncturable PRF. While we can trivially
build a t-puncturable PRF from t instances of a puncturable PRF by xoring the
outputs of t independent puncturable PRF instances, this construction does not
preserve translucency. Notably, we can no longer detect whether a punctured key
was used to evaluate the PRF at one of the punctured points. Instead, to pre-
serve the translucency structure, we construct a translucent t-puncturable PRF
by defining it to be the sum of multiple independent PRFs with different (pub-
lic) parameter matrices, but sharing the same secret key. Then, to puncture at t
different points we first encrypt each of the t punctured points x∗

1, . . . , x
∗
t , each

with its own set of coefficient vectors w1, . . . ,wt to obtain t FHE ciphertexts
ct1, . . . , ctt. The constrained key then contains the following components:

sT · (A0 + 0 · G | A1 + 1 · G | B1,1 + ct1,1 · G | · · · | Bt,z + ctt,z · G
| C1 + sk1 · G | · · · | Cτ + skτ · G)

+ noise.

To evaluate the PRF at a point x ∈ {0, 1}ρ using the constrained key, one
evaluates the PRF on each of the t instances, that is, for all i ∈ [t],

sT

⎛

⎝
∑

�∈[N ]

AFHE,eq�,i,xG−1(D�) + eq(x∗
i , x) ·

∑

�∈[N ]

wi,� · D�

⎞

⎠ + noise′.

The output of the PRF is the (rounded) sum of these evaluations:

sT

⎛

⎜
⎜
⎝

∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,xG−1(D�)

)
+
∑

i∈[t]

⎛

⎝eq(x∗
i , x) ·

∑

�∈[N ]

wi,� · D�

⎞

⎠

⎞

⎟
⎟
⎠ + noise′.

Similarly, the real value of the PRF is the (rounded) sum of the t independent
PRF evaluations:

PRF(s, x) :=

⎢
⎢
⎢
⎢
⎢
⎣s

T
∑

i∈[t]
�∈[N ]

AFHE,eq�,i,xG−1(D�)

⎤

⎥
⎥
⎥
⎥
⎥

p

.

If the point x is not one of the punctured points, then eq(x∗
i , x) = 0 for all i ∈ [t]

and one recovers the real PRF evaluation at x. If x is one of the punctured points
(i.e., x = x∗

i for some i ∈ [t]), then the PRF evaluation using the punctured key
yields the vector
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sT

⎛

⎜
⎜
⎝

∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,xG−1(D�)

)
+ eq(x∗

i , x) ·
∑

�∈[N ]

wi,� · D�

⎞

⎟
⎟
⎠ + noise′.

and as before, we can embed trapdoor matrices Wi∗ for all i∗ ∈ [t] by choosing
the coefficient vectors wi∗ = (wi∗,1, . . . , wi∗,N ) ∈ Z

N
q accordingly:11

Wi∗ =
∑

i∈[t]
�∈[N ]

(
AFHE,eq�,i,x∗

i∗G
−1(D�)

)
+

∑

�∈[N ]

wi∗,� · D�.

A Technical Detail. In the actual construction in Sect. 5.1, we include an
additional “auxiliary matrix” Â in the public parameters and define the PRF
evaluation as the vector

PRF(s, x) :=

⎢
⎢
⎢
⎢
⎢
⎣s

T

⎛

⎜
⎜
⎝Â +

∑

i∈[t]
�∈[N ]

AFHE,eq�,i,xG−1(D�)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥

p

.

The presence of the additional matrix Â does not affect pseudorandomness, but
facilitates the argument for some of our other security properties. We give the
formal description of our scheme as well as the security analysis in Sect. 5.

3 Preliminaries

We begin by introducing some of the notation we use in this work. For an integer
n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution D,
we write x ← D to denote that x is sampled from D; for a finite set S, we write
x

r← S to denote that x is sampled uniformly from S. We write Funs[X ,Y] to
denote the set of all functions mapping from a domain X to a range Y. For a
finite set S, we write 2S to denote the power set of S, namely the set of all
subsets of S.

Unless specified otherwise, we use λ to denote the security parameter. We
say a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc)
for all c ∈ N. We say that an event happens with overwhelming probability
if its complement happens with negligible probability. We say an algorithm is
efficient if it runs in probabilistic polynomial time in the length of its input. We
use poly(λ) to denote a quantity whose value is bounded by a fixed polynomial
in λ, and polylog(λ) to denote a quantity whose value is bounded by a fixed
polynomial in log λ (that is, a function of the form logc λ for some c ∈ N). We
say that a family of distributions D = {Dλ}λ∈N is B-bounded if the support of

11 For the punctured keys to hide the set of punctured points, we need a different
trapdoor matrix for each punctured point. We provide the full details in Sect. 5.
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D is {−B, . . . , B − 1, B} with probability 1. For two families of distributions
D1 and D2, we write D1

c≈ D2 if the two distributions are computationally
indistinguishable (that is, no efficient algorithm can distinguish D1 from D2,
except with negligible probability). We write D1

s≈ D2 if the two distributions
are statistically indistinguishable (that is, the statistical distance between D1

and D2 is negligible).

Vectors and Matrices. We use bold lowercase letters (e.g., v,w) to denote
vectors and bold uppercase letter (e.g., A,B) to denote matrices. For two vectors
v,w, we write IP(v,w) = 〈v,w〉 to denote the inner product of v and w. For a
vector s or a matrix A, we use sT and AT to denote their transposes, respectively.
For an integer p ≤ q, we define the modular “rounding” function

�·	p : Zq → Zp that maps x → �(p/q) · x	
and extend it coordinate-wise to matrices and vectors over Zq. Here, the opera-
tion �·	 is the rounding operation over the real numbers.

In the full version of this paper [34], we also review the definition of a pseudo-
random function and provide some background on the lattice-based techniques
that we use in this work.

4 Translucent Constrained PRFs

In this section, we formally define our notion of a translucent constrained PRFs.
Recall first that in a constrained PRF [14], the holder of the master secret key
for the PRF can issue constrained keys which enable PRF evaluation on only the
points that satisfy the constraint. Now, each translucent constrained PRF actu-
ally defines an entire family of constrained PRFs (see the discussion in Sect. 1.2
and Remark 4.2 for more details). Moreover, this family of constrained PRFs
has the special property that the constraining algorithm embeds a hidden sub-
set. Notably, this hidden subset is shared across all PRF keys in the constrained
PRF family; the hidden subset is specific to the constrained PRF family, and is
determined wholly by the parameters of the particular translucent constrained
PRF. This means that whenever an (honestly-generated) constrained key is used
to evaluate at a point that does not satisfy the constraint, the evaluation lies
within this hidden subset. Furthermore, the holder of the constrained key is
unable to tell whether a particular output value lies in the hidden subset or not.
However, anyone who possesses a secret testing key (specific to the translucent
constrained PRF) is able to identify whether a particular value lies in the hidden
subset or not. In essence then, the set of outputs of all of the constrained keys
in a translucent constrained PRF system defines a translucent set in the sense
of [20]. We now give our formal definitions.

Definition 4.1 (Translucent Constrained PRF). Let λ be a security
parameter. A translucent constrained PRF with domain X and range Y is
a tuple of algorithms ΠTPRF = (TPRF.Setup,TPRF.SampleKey,TPRF.Eval,
TPRF.Constrain,TPRF.ConstrainEval,TPRF.Test) with the following properties:
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– TPRF.Setup(1λ) → (pp, tk): On input a security parameter λ, the setup algo-
rithm outputs the public parameters pp and a testing key tk.

– TPRF.SampleKey(pp) → msk: On input the public parameter pp, the key sam-
pling algorithm outputs a master PRF key msk.

– TPRF.Eval(pp,msk, x) → y: On input the public parameters pp, a master PRF
key msk and a point in the domain x ∈ X , the PRF evaluation algorithm
outputs an element in the range y ∈ Y.

– TPRF.Constrain(pp,msk, S) → skS: On input the public parameters pp, a mas-
ter PRF key msk and a set of points S ⊆ X , the constraining algorithm
outputs a constrained key skS.

– TPRF.ConstrainEval(pp, skS , x) → y: On input the public parameters pp, a
constrained key skS, and a point in the domain x ∈ X , the constrained eval-
uation algorithm outputs an element in the range y ∈ Y.

– TPRF.Test(pp, tk, y′) → {0, 1}: On input the public parameters pp, a testing
key tk, and a point in the range y′ ∈ Y, the testing algorithm either accepts
(with output 1) or rejects (with output 0).

Remark 4.2 (Relation to Constrained PRFs). Every translucent constrained
PRF defines an entire family of constrained PRFs. In other words, every set of
parameters (pp, tk) output by the setup function TPRF.Setup of a translucent
constrained PRF induces a constrained PRF family (in the sense of [14, Sect. 3.1])
for the same class of constraints. Specifically, the key-generation algorithm
for the constrained PRF family corresponds to running TPRF.SampleKey(pp).
The constrain, evaluation, and constrained-evaluation algorithms for the con-
strained PRF family correspond to TPRF.Constrain(pp, ·), TPRF.Eval(pp, ·, ·),
and TPRF.ConstrainEval(pp, ·, ·), respectively.

Correctness. We now define two notions of correctness for a translucent con-
strained PRF: evaluation correctness and verification correctness. Intuitively,
evaluation correctness states that a constrained key behaves the same as the
master PRF key (from which it is derived) on the allowed points. Verification
correctness states that the testing algorithm can correctly identify whether a
constrained key was used to evaluate the PRF at an allowed point (in which
case the verification algorithm outputs 0) or at a restricted point (in which case
the verification algorithm outputs 1). Like the constrained PRF constructions
of [10,17], we present definitions for the computational relaxations of both of
these properties.

Definition 4.3 (Correctness Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF (Definition 4.1) with domain X and
range Y. Let A = (A1,A2) be an adversary and let S ⊆ 2X be a set system. The
(computational) correctness experiment ExptΠTPRF,A,S is defined as follows:
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Experiment ExptΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. msk ← TPRF.SampleKey(pp)
3. (S, stA) ← A1(1

λ, pp) where S ∈ S
4. Output (x, S) where x ← A2(stA, sk) and sk ← TPRF.Constrain(pp,msk, S)

Definition 4.4 (Correctness). Fix a security parameter λ, and let ΠTPRF be
a translucent constrained PRF with domain X and range Y. We say that ΠTPRF

is correct with respect to a set system S ⊆ 2X if it satisfies the following two
properties:

– Evaluation correctness: For all efficient adversaries A and setting
(x, S) ← ExptΠTPRF,A,S(λ), then

x ∈ S and TPRF.ConstrainEval(pp, skS , x) �= TPRF.Eval(pp,msk, x)

with probability negl(λ).
– Verification correctness: For all efficient adversaries A and taking

(x, S) ← ExptΠTPRF,A,S(λ), then

x ∈ X \ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability 1 − negl(λ). Conversely,

x ∈ S and TPRF.Test(pp, tk,TPRF.ConstrainEval(pp, skS , x)) = 1

with probability negl(λ).

Remark 4.5 (Selective Notions of Correctness). In Definition 4.3, the adver-
sary is able to choose the set S ∈ S adaptively, that is, after seeing the public
parameters pp. We can define a weaker (but still useful) notion of selective cor-
rectness, where the adversary is forced to commit to its set S before seeing the
public parameters. The formal correctness conditions in Definition 4.4 remain
unchanged. For certain set systems (e.g., when all sets S ∈ S contain a polyno-
mial number of points), complexity leveraging [8] can be used to boost a scheme
that is selectively correct into one that is also adaptively correct, except under
a possibly super-polynomial loss in the security reduction. For constructing a
watermarkable family of PRFs (Sect. 6), a selectively-correct translucent PRF
already suffices.

Translucent Puncturable PRFs. A special case of a translucent constrained
PRF is a translucent puncturable PRF. Recall that a puncturable PRF [14,15,
33] is a constrained PRF where the constrained keys enable PRF evaluation at
all points in the domain X except at a single, “punctured” point x∗ ∈ X . We
can generalize this notion to a t-puncturable PRF, which is a PRF that can be
punctured at t different points. Formally, we define the analog of a translucent
puncturable and t-puncturable PRFs.
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Definition 4.6 (Translucent t-Puncturable PRFs). We say that a translu-
cent constrained PRF over a domain X is a translucent t-puncturable PRF if it
is constrained with respect to the set system S(t) = {S ⊆ X : |S| = |X | − t}. The
special case of t = 1 corresponds to a translucent puncturable PRF.

4.1 Security Definitions

We now introduce several security requirements a translucent constrained PRF
should satisfy. First, we require that Eval(pp,msk, ·) implements a PRF whenever
the parameters pp and msk are honestly generated. Next, we require that given
a constrained key skS for some set S, the real PRF values Eval(pp,msk, x) for
points x /∈ S remain pseudorandom. This is the notion of constrained pseudo-
randomness introduced in [14]. Using a similar argument as in [10, Appendix A],
it follows that a translucent constrained PRF satisfying constrained pseudoran-
domness is also pseudorandom. Finally, we require that the key skS output by
Constrain(pp,msk, S) hides the constraint set S. This is essentially the privacy
requirement in a private constrained PRF [12].

Definition 4.7 (Pseudorandomness). Let λ be a security parameter, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is pseudorandom if for (pp, tk) ← TPRF.Setup(1λ), the tuple
(KeyGen,Eval) is a secure PRF, where KeyGen(1λ) outputs a fresh draw k ←
TPRF.SampleKey(pp) and Eval(k, x) outputs TPRF.Eval(pp, k, x). Note that we
implicitly assume that the PRF adversary in this case also is given access to the
public parameters pp.

Definition 4.8 (Constrained Pseudorandomness Experiment). Fix a
security parameter λ, and let ΠTPRF be a translucent constrained PRF with
domain X and range Y. Let A = (A1,A2) be an adversary, S ⊆ 2X be a set
system, and b ∈ {0, 1} be a bit. The constrained pseudorandomness experiment
CExpt

(b)
ΠTPRF,A,S(λ) is defined as follows:

Experiment CExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. msk ← TPRF.SampleKey(pp)

3. (S, stA) ← ATPRF.Eval(pp,msk,·)
1 (1λ, pp) where S ∈ S

4. Output b′ ← ATPRF.Eval(pp,msk,·),Ob(·)
2 (stA, sk) where

sk ← TPRF.Constrain(pp,msk, S) and the challenge oracle Ob is defined as
follows:
– O0(·) = TPRF.Eval(pp,msk, ·)
– O1(·) = f(·) where f

r← Funs[X , Y] is chosen (and fixed) at the beginning
of the experiment.

Definition 4.9 (Constrained Pseudorandomness [14, adapted]). Fix a
security parameter λ, and let ΠTPRF be a translucent constrained PRF with
domain X and range Y. We say that an adversary A is admissible for the con-
strained pseudorandomness game if all of the queries x that it makes to the
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evaluation oracle TPRF.Eval satisfy x ∈ S and all of the queries it makes to the
challenge oracle (O0 or O1) satisfy x /∈ S.12 Then, we say that ΠTPRF satisfies
constrained pseudorandomness if for all efficient and admissible adversaries A,

∣
∣
∣Pr

[
CExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
CExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣
∣ = negl(λ).

Theorem 4.10 (Constrained Pseudorandomness Implies Pseudoran-
domness [10]). Let ΠTPRF be a translucent constrained PRF. If ΠTPRF satisfies
constrained pseudorandomness (Definition 4.9), then it satisfies pseudorandom-
ness (Definition 4.7).

Proof. Follows by a similar argument as that in [10, Appendix A].

Definition 4.11 (Privacy Experiment). Fix a security parameter λ, and
let ΠTPRF be a translucent constrained PRF with domain X and range Y. Let
A = (A1,A2) be an adversary, S ⊆ 2X be a set system, and b ∈ {0, 1} be a bit.
The privacy experiment PExpt(b)ΠTPRF,A,S(λ) is defined as follows:

Experiment PExpt
(b)
ΠTPRF,A,S(λ):

1. (pp, tk) ← TPRF.Setup(1λ)
2. (S0, S1, stA) ← A1(1

λ, pp) where S0, S1 ∈ S
3. skb ← TPRF.Constrain(pp,msk, Sb) where msk ← TPRF.SampleKey(pp)
4. Output b′ ← A2(stA, skb)

Definition 4.12 (Privacy [12, adapted]). Fix a security parameter λ. Let
ΠTPRF to be a translucent constrained PRF with domain X and range Y. We
say that ΠTPRF is private with respect to a set system S ⊆ 2X if for all efficient
adversaries A,

∣
∣
∣Pr

[
PExpt

(0)
ΠTPRF,A,S(λ) = 1

]
− Pr

[
PExpt

(1)
ΠTPRF,A,S(λ) = 1

]∣∣
∣ = negl(λ).

Remark 4.13 (Selective vs. Adaptive Security). We say that a scheme satisfying
Definition 4.9 or Definition 4.12 is adaptively secure if the adversary chooses the
set S (or sets S0 and S1) after seeing the public parameters pp for the translucent
constrained PRF scheme. As in Definition 4.5, we can define a selective notion of
security where the adversary commits to its set S (or S0 and S1) at the beginning
of the game before seeing the public parameters.

Key Injectivity. Another security notion that becomes useful in the context of
watermarking is the notion of key injectivity. Intuitively, we say a family of PRFs

12 In the standard constrained pseudorandomness game introduced in [14], the adver-
sary is also allowed to make evaluation queries on values not contained in S. While
our construction can be shown to satisfy this stronger property, this is not needed for
our watermarking construction. To simplify the presentation and security analysis,
we work with this weaker notion here.
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satisfies key injectivity if for all distinct PRF keys k1 and k2 (not necessarily
uniformly sampled from the key-space), the value of the PRF under k1 at any
point x does not equal the value of the PRF under k2 at x with overwhelming
probability. We note that Cohen et al. [21] introduce a similar, though incompa-
rable, notion of key injectivity13 to achieve their strongest notions of watermark-
ing (based on indistinguishability obfuscation). We now give the exact property
that suffices for our construction:

Definition 4.14 (Key Injectivity). Fix a security parameter λ and let
ΠTPRF be a translucent constrained PRF with domain X . Take (pp, tk) ←
TPRF.Setup(1λ), and let K = {Kλ}λ∈N be the set of possible keys output by
TPRF.SampleKey(pp). Then, we say that ΠTPRF is key-injective if for all keys
msk1,msk2 ∈ K, and any x ∈ X ,

Pr[TPRF.Eval(msk1, x) = TPRF.Eval(msk2, x)] = negl(λ),

where the probability is taken over the randomness used in TPRF.Setup.

5 Translucent Puncturable PRFs from LWE

In this section, we describe our construction of a translucent t-puncturable PRF.
After describing the main construction, we state the concrete correctness and
security theorems for our construction. We defer their formal proofs to the full
version [34]. Our scheme leverages a number of parameters (described in detail at
the beginning of Sect. 5.1). We give concrete instantiations of these parameters
based on the requirements of the correctness and security theorems in Sect. 5.2.

5.1 Main Construction

In this section, we formally describe our translucent t-puncturable PRF (Defi-
nition 4.6). Let λ be a security parameter. Additionally, we define the following
scheme parameters:

– (n,m, q, χ) - LWE parameters
– ρ - length of the PRF input
– p - rounding modulus
– t - the number of punctured points (indexed by i)
– N - the dimension of the coefficient vectors w1, . . . ,wt (indexed by �). Note

that N = m · n
– Btest - norm bound used by the PRF testing algorithm

Let ΠHE = (HE.KeyGen,HE.Enc,HE.Enc,HE.Dec) be the (leveled) homomorphic
encryption scheme with plaintext space {0, 1}ρ × Z

N
q . We define the following

additional parameters specific to the FHE scheme:
13 Roughly speaking, Cohen et al. [21, Definition 7.1] require that for a uniformly

random PRF key k, there does not exist a key k′ and a point x where PRF(k, x) =
PRF(k′, x). In contrast, our notion requires that any two PRF keys do not agree at
any particular point with overwhelming probability.
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– z - bit-length of a fresh FHE ciphertext (indexed by j)
– τ - bit-length of the FHE secret key (indexed by k)

Next, we define the equality-check circuit eq� : {0, 1}ρ×{0, 1}ρ×Z
N
q → Zq where

eq�(x, (x∗,w)) =

{
w� if x = x∗

0 otherwise,
(5.1)

as well as the circuit C
(�)
Eval : {0, 1}z × {0, 1}ρ → {0, 1}τ for homomorphic evalu-

ation of eq�:
C

(�)
Eval(ct, x) = HE.Eval(eq�(x, ·), ct). (5.2)

Finally, we define the following additional parameters for the depths of these
two circuits:

– deq - depth of the equality-check circuit eq�

– d - depth of the homomorphic equality-check circuit C
(�)
Eval

For � ∈ [N ], we define the matrix D� to be the �th elementary “basis matrix”
for the Zq-module Z

n×m
q . More concretely,

D�[a, b] =

{
1 if am + b = �

0 otherwise.

In other words, each matrix D� has its �th component (when viewing the matrix
as a collection of N = mn entries) set to 1 and the remaining components set
to 0.

Translucent PRF Construction. The translucent t-puncturable PRF
ΠTPRF = (TPRF.Setup,TPRF.Eval,TPRF.Constrain,TPRF.ConstrainEval,
TPRF.Test) with domain {0, 1}ρ and range Z

m
p is defined as follows:

– TPRF.Setup(1λ): On input the security parameter λ, the setup algorithm
samples the following matrices uniformly at random from Z

n×m
q :

• Â: an auxiliary matrix used to provide additional randomness
• {Ab}b∈{0,1}: matrices to encode the bits of the input to the PRF
• {Bi,j}i∈[t],j∈[z]: matrices to encode the bits of the FHE encryptions of the

punctured points
• {Ck}k∈[τ ]: matrices to encode the bits of the FHE secret key

It also samples trapdoor matrices (Wi, zi) ← TrapGen(1n, q) for all i ∈ [t].
Finally, it outputs the public parameters pp and testing key tk:

pp =
(
Â, {Ab}b∈{0,1}, {Bi,j}i∈[t],j∈[z], {Ck}k∈[τ ], {Wi}i∈[t]

)
tk = {zi}i∈[t].

– TPRF.SampleKey(pp): On input the public parameters pp, the key generation
algorithm samples a PRF key s ← χn and sets msk = s.
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– TPRF.Eval(pp,msk, x): On input the public parameters pp, the PRF key
msk = s, and an input x = x1x2 · · · xρ ∈ {0, 1}ρ, the evaluation algorithm
first computes

B̃i,� ← Evalpk
(
C�,Bi,1, . . . ,Bi,z,Ax1 , . . . ,Axρ

,C1, . . . ,Cτ

)

for all i ∈ [t] and � ∈ [N ], and where C� = IP ◦ C
(�)
Eval. Finally, the evaluation

algorithm outputs the value

yx =

⎢
⎢
⎢
⎢
⎢
⎣s

T

⎛

⎜
⎜
⎝Â +

∑

i∈[t]
�∈[N ]

B̃i,� · G−1(D�)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥

p

.

– TPRF.Constrain(pp,msk,T):14 On input the public parameters pp, the PRF
key msk = s and the set of points T = {x∗

i }i∈[t] to be punctured, the con-
straining algorithm first computes

B̃i,i∗,� ← Evalpk(C�,Bi,1, . . . ,Bi,z,Ax∗
i∗,1

, . . . ,Ax∗
i∗,ρ

,C1, . . . ,Cτ )

for all i, i∗ ∈ [t] and � ∈ [N ] where C� = IP ◦ C
(�)
Eval. Then, for each

i∗ ∈ [t], the puncturing algorithm computes the (unique) vector wi∗ =
(wi∗,1, . . . , wi∗,N ) ∈ Z

N
q where

Wi∗ = Â +
∑

i∈[t]
�∈[N ]

B̃i,i∗,� · G−1(D�) +
∑

�∈[N ]

wi∗,� · D�.

Next, it samples an FHE key HE.sk ← HE.KeyGen(1λ, 1deq , 1ρ+N ), and for
each i ∈ [t], it constructs the ciphertext cti ← HE.Enc(HE.sk, (x∗

i ,wi)) and
finally, it defines ct = {cti}i∈[t]. It samples error vectors e0 ← χm, e1,b ← χm

for b ∈ {0, 1}, e2,i,j ← χm for i ∈ [t] and j ∈ [z], and e3,k ← χm for k ∈ [τ ]
and computes the vectors

âT = sT Â + eT
0

aT
b = sT (Ab + b · G) + eT

1,b ∀b ∈ {0, 1}
bT

i,j = sT (Bj + cti,j · G) + eT
2,i,j ∀i ∈ [t],∀j ∈ [z]

cT
k = sT (Ck + HE.skk · G) + eT

3,k ∀k ∈ [τ ].

Next, it sets enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z], {ck}k∈[τ ]

)
. It outputs the

constrained key skT = (enc, ct).
– TPRF.ConstrainEval(pp, skT, x): On input the public parameters pp, a con-

strained key skT = (enc, ct), where enc =
(
â, {ab}b∈{0,1}, {bi,j}i∈[t],j∈[z],

14 For notational convenience, we modify the syntax of the constrain algorithm to take
in a set T of t punctured points rather than a set of allowed points.
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{ck}k∈[τ ]

)
, ct = {cti}i∈[t], and a point x ∈ {0, 1}ρ, the constrained evalu-

ation algorithm computes

b̃i,� ← Evalct((cti, x), C�,bi,1, . . . ,bi,z,ax1 , . . . ,axρ
, c1, . . . , cτ )

for i ∈ [t] and � ∈ [N ], and where C�(ct, x) = IP ◦ C
(�)
Eval. Then, it computes

and outputs the value

yx =

⎢
⎢
⎢
⎢
⎢
⎣â +

∑

i∈[t]
�∈[N ]

b̃T
i,� · G−1(D�)

⎤

⎥
⎥
⎥
⎥
⎥

p

.

– TPRF.Test(pp, tk,y): On input the testing key tk = {zi}i∈[t] and a point
y ∈ Z

m
p , the testing algorithm outputs 1 if 〈y, zi〉 ∈ [−Btest, Btest] for some

i ∈ [t] and 0 otherwise.

Correctness Theorem. We now state that under the LWE and 1D-SIS assump-
tions (with appropriate parameters), our translucent t-puncturable PRF ΠTPRF

satisfies (selective) evaluation correctness and verification correctness (Defini-
tion 4.4, Remark 4.5). We give the formal proof in the full version [34].

Theorem 5.1 (Correctness). Fix a security parameter λ, and define parame-
ters n,m, p, q, χ, t, z, τ, Btest as above. Let B be a bound on the error distribution
χ, and suppose Btest = B(m + 1), p = 2ρ(1+ε)

for some constant ε > 0, and
q

2pmB > B · mO(d). Then, take m′ = m · (3 + t · z + τ) and β = B · mO(d).
Under the LWEn,m′,q,χ and 1D-SIS-Rm′,p,q,β assumptions, ΠTPRF is (selectively)
correct.

Security Theorems. We now state that under the LWE assumption (with
appropriate parameters), our translucent t-puncturable PRF ΠTPRF satisfies
selective constrained pseudorandomness (Definition 4.9), selective privacy (Defi-
nition 4.12) and weak key-injectivity (Definition 4.14). We give the formal proofs
in the full version [34]. As a corollary of satisfying constrained pseudorandom-
ness, we have that ΠTPRF is also pseudorandom (Definition 4.7, Theorem 4.10).

Theorem 5.2 (Constrained Pseudorandomness). Fix a security parame-
ter λ, and define parameters n,m, p, q, χ, t, z, τ as above. Let m′ = m · (3+ t(z +
1)+τ), m′′ = m ·(3+t ·z+τ) and β = B ·mO(d) where B is a bound on the error
distribution χ. Then, under the LWEn,m′,q,χ and 1D-SIS-Rm′′,p,q,β assumptions,
ΠTPRF satisfies selective constrained pseudorandomness (Definition 4.9).

Corollary 5.3 (Pseudorandomness). Fix a security parameter λ, and define
the parameters n,m, p, q, χ, t, z, τ as above. Under the same assumptions as in
Theorem5.2, ΠTPRF satisfies selective pseudorandomness (Definition 4.7).
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Theorem 5.4 (Privacy). Fix a security parameter λ, and define parame-
ters n,m, q, χ, t, z, τ as above. Let m′ = m · (3 + t(z + 1) + τ). Then, under
the LWEn,m′,q,χ assumption, and assuming the homomorphic encryption scheme
ΠHE is semantically secure, ΠTPRF is selectively private (Definition 4.12).

Theorem 5.5 (Key-Injectivity). If the bound B on the error distribution
χ satisfies B < p̂/2 where p̂ is the smallest prime dividing the modulus q, and
m = ω(n), then the translucent t-puncturable PRF ΠTPRF satisfies key-injectivity
(Definition 4.14).

5.2 Concrete Parameter Instantiations

In this section, we give one possible instantiation for the parameters for the
translucent t-puncturable PRF construction in Sect. 5.1. We choose our parame-
ters so that the underlying LWE and 1D-SIS assumptions that we rely on are
as hard as approximating worst-case lattice problems to within a subexponen-
tial factor 2Õ(n1/c) for some constant c (where n is the lattice dimension). Fix a
constant c and a security parameter λ.

– We set the PRF input length ρ = λ. Then, the depth deq of the equality check
circuit eq� satisfies deq = O(log ρ) = O(log λ).

– We set the lattice dimension n = λ2c.
– The noise distribution χ is set to be the discrete Gaussian distribution DZ,

√
n.

Then the FHE ciphertext length z and the FHE secret key length τ is deter-
mined by poly(λ, deq, ρ, log q) = poly(λ). The depth of the FHE equality check
circuit is d = poly(deq, log z) = polylog(λ). Finally, we set Btest = B · (m + 1).

– We set q > mO(d) in order to invoke correctness and security of the leveled
homomorphic encryption scheme and the matrix embeddings. We refer to the
full version [34] for more details. Furthermore, for the 1D-SIS-R assumption,
we need q to be the product of λ primes p1, . . . , pλ. For each i ∈ [λ], we set
the primes pj = 2O(n1/2c) such that p1 < · · · < pλ.

– We set p = 2n1/2c+ε

for any ε > 0, so the condition in Theorem 5.1 is satisfied.
– We set m = Θ(n log q), and Btest = B · (m+1). For these parameter settings,

mO(d) = mpolylog(λ) and q = 2Õ(n1/2c) = 2Õ(λ).

Under these parameter setting, the private translucent t-puncturable PRF in
Sect. 5.1 is selectively secure assuming the polynomial hardness of approximat-
ing worst-case lattice problems over an n-dimensional lattice to within a subex-
ponential approximation factor 2Õ(n1/2c). Using complexity leveraging [8], the
same construction is adaptively secure assuming subexponential hardness of the
same worst-case lattice problems.

6 Watermarkable PRFs from Translucent PRFs

In this section, we formally introduce the notion of a watermarkable family of
PRFs. Our definitions are adapted from those of [12,21]. Then, in Sect. 6.2, we
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show how to construct a secretly-extractable, message-embedding watermark-
able family of PRFs from translucent t-puncturable PRFs. Combined with our
concrete instantiation of translucent t-puncturable PRFs from Sect. 5, this gives
the first watermarkable family of PRFs (with security against arbitrary removal
strategies) from standard assumptions.

6.1 Watermarking PRFs

We begin by introducing the notion of a watermarkable PRF family.

Definition 6.1 (Watermarkable Family of PRFs [12, adapted]). Fix a sec-
urity parameter λ and a message space {0, 1}t. Then, a secretly-extractable,
message-embedding watermarking scheme for a PRF ΠPRF = (PRF.KeyGen,
PRF.Eval) is a tuple of algorithms ΠWM = (WM.Setup,WM.Mark,WM.Extract)
with the following properties:

– WM.Setup(1λ) → msk: On input the security parameter λ, the setup algorithm
outputs the watermarking secret key msk.

– WM.Mark(msk, k,m) → C: On input the watermarking secret key msk, a PRF
key k (to be marked), and a message m ∈ {0, 1}t, the mark algorithm outputs
a marked circuit C.

– WM.Extract(msk, C ′) → m: On input the master secret key msk and a circuit
C ′, the extraction algorithm outputs a string m ∈ {0, 1}t ∪ {⊥}.

Definition 6.2 (Circuit Similarity). Fix a circuit class C on n-bit inputs.
For two circuits C,C ′ ∈ C and for a non-decreasing function f : N → N, we
write C ∼f C ′ to denote that the two circuits agree on all but an 1/f(n) fraction
of inputs. More formally, we define

C ∼f C ′ ⇐⇒ Pr
x

r←{0,1}n

[C(x) �= C ′(x)] ≤ 1/f(n)

We also write C �f C ′ to denote that C and C ′ differ on at least a 1/f(n)
fraction of inputs.

Correctness. The correctness property for a watermarking scheme for a PRF
family consists of two requirements which we state below.

Definition 6.3 (Watermarking Correctness). Fix a security parame-
ter λ. We say that a watermarking scheme ΠWM = (WM.Setup,WM.Mark,
WM.Extract) for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with domain {0, 1}n

is correct if for all messages m ∈ {0, 1}t, and setting msk ← WM.Setup(1λ),
k ← PRF.KeyGen(1λ), and C ← WM.Mark(msk, k,m), the following two proper-
ties hold:

– Functionality-preserving: C(·) ∼f PRF.Eval(k, ·) where 1/f(n) = negl(λ)
with overwhelming probability.

– Extraction correctness: Pr[WM.Extract(msk, C) = m] = 1 − negl(λ).
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Security. Following [12,21], we introduce two different security notions for a
watermarking scheme: unremovability and unforgeability. We begin by defining
the watermarking experiment.

Definition 6.4 (Watermarking Experiment [12, adapted]). Fix a security
parameter λ. Let ΠWM = (WM.Setup,WM.Mark,WM.Extract) be a watermarking
scheme for a PRF ΠPRF = (PRF.KeyGen,PRF.Eval) with key-space K, and let A
be an adversary. Then the watermarking experiment ExptΠWM,A(λ) proceeds as
follows. The challenger begins by sampling msk ← WM.Setup(1λ). The adversary
A is then given access to the following oracles:

– Marking oracle. On input a message m ∈ {0, 1}t and a PRF key k ∈ K,
the challenger returns the circuit C ← WM.Mark(msk, k,m) to A.

– Challenge oracle. On input a message m ∈ {0, 1}t, the challenger samples a
key k ← PRF.KeyGen(1λ), and returns the circuit C ← WM.Mark(msk, k,m)
to A.

Finally, A outputs a circuit C ′. The output of the experiment, denoted
ExptΠWM,A(λ), is WM.Extract(msk, C ′).

Definition 6.5 (Unremovability [12,21]). Fix a security parameter λ. For
a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a
PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is
unremoving-admissible if the following conditions hold:

– The adversary A makes exactly one query to the challenge oracle.
– The circuit C̃ that A outputs satisfies C̃ ∼f Ĉ, where Ĉ is the circuit output

by the challenge oracle and 1/f = negl(λ).

Then, we say that ΠWM is unremovable if for all efficient and unremoving-
admissible adversaries A,

Pr[ExptΠWM,A(λ) �= m̂] = negl(λ),

where m̂ is the message A submitted to the challenge oracle in ExptΠWM,A(λ).

Definition 6.6 (δ-Unforgeability [12,21]). Fix a security parameter λ. For
a watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for a
PRF ΠPRF = (PRF.KeyGen,PRF.Eval) and an adversary A, we say that A is
δ-unforging-admissible if the following conditions hold:

– The adversary A does not make any challenge oracle queries.
– The circuit C̃ that A outputs satisfies C̃ �∼f C� for all � ∈ [Q], where Q is the

number of queries A made to the marking oracle, C� is the output of the mark-
ing oracle on the �th query, and 1/f > δ. Moreover, C̃ �∼f PRF.Eval(k�, ·),
where k� is the key the adversary submitted on its �th query to the marking
oracle.
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Then, we say that ΠWM is δ-unforgeable if for all efficient and δ-unforging-
admissible adversaries A,

Pr[ExptΠWM,A(λ) �= ⊥] = negl(λ).

Remark 6.7 (Giving Access to an Extraction Oracle). As noted in [21], in the
secret-key setting, the watermarking security game (Definition 6.4) can be aug-
mented to allow the adversary oracle access to an extraction oracle (which
implements WM.Extract(msk, ·)). It is an open problem to construct secretly-
extractable watermarking from standard assumptions where the adversary is
additionally given access to a extraction oracle. The only known constructions
today [21] rely on indistinguishability obfuscation.

Remark 6.8 (Marking Oracle Variations). In the watermarking security game
(Definition 6.4), the adversary can submit arbitrary keys (of its choosing) to the
marking oracle. Cohen et al. [21] also consider a stronger notion where the adver-
sary is allowed to submit arbitrary circuits (not corresponding to any particular
PRF) to the marking oracle. However, in this model, they can only achieve
lunch-time security (i.e., the adversary can only query the marking oracle before
issuing its challenge query). In the model where the adversary can only query
the marking oracle on valid PRF keys, their construction achieves full security
(assuming the PRF family satisfies a key-injectivity property). Similarly, our
construction achieves full security in this model (in the secret-key setting), and
also relies on a key-injectivity property on the underlying PRF. Our notion is
strictly stronger than the notion in [12]. In the Boneh et al. model [12], the
adversary cannot choose the key for the marking oracle. Instead, the marking
oracle samples a key (honestly) and gives both the sampled key as well as the
watermarked key to the adversary. In contrast, in both our model as well as that
in [21], the adversary is allowed to see watermarked keys on arbitrary keys of its
choosing. The key difference in our security analysis that enables us to achieve
this stronger security notion (compared to [12]) is the new key-injectivity prop-
erty on the underlying translucent PRF. Instantiating the construction in [12]
with a private programmable PRF satisfying key-injectivity should also yield a
watermarkable family of PRFs under our strengthened definition.

In the full version of this paper [34], we further compare our correctness and
security notions to those considered in previous work [12,21].

6.2 Watermarking Construction

In this section, we show how any translucent t-puncturable PRF can be used to
obtain a watermarkable family of PRFs. Combined with our construction of a
translucent t-puncturable PRF from Sect. 5.1, we obtain the first watermarkable
family of PRFs from standard assumptions.

Construction 6.9. Fix a security parameter λ and a positive real value δ < 1
such that d = λ/δ = poly(λ). Let {0, 1}t be the message space for the watermark-
ing scheme. Our construction relies on the following two ingredients:
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– Let ΠTPRF be a translucent t-puncturable PRF (Definition 4.6) with key-space
K, domain {0, 1}n, and range {0, 1}m.

– Let ΠPRF be a secure PRF with domain ({0, 1}m)d and range ({0, 1}n)2t.

We require n,m, t = ω(log λ). The secretly-extractable, message-embedding
watermarking scheme ΠWM = (WM.Setup,WM.Mark,WM.Extract) for the PRF
associated with ΠTPRF is defined as follows:

– WM.Setup(1λ): On input the security parameter λ, the setup algorithm runs
(pp, tk) ← TPRF.Setup(1λ). Next, for each j ∈ [d], it samples hj

r← {0, 1}n.
It also samples a key k∗ ← PRF.KeyGen(1λ). Finally, it outputs the master
secret key msk = (pp, tk, h1, . . . , hd, k

∗).
– WM.Mark(msk, k,m): On input the master secret key msk = (pp, tk, h1, . . . ,

hd, k
∗), a PRF key k ∈ K to be marked, and a message m ∈ {0, 1}t, the

marking algorithm proceeds as follows:
1. For each j ∈ [d], set yj ← TPRF.Eval(pp, k, hj). Let y = (y1, . . . , yd).
2. Compute points x =

(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

) ← PRF.Eval(k∗,y).
3. Compute the t-punctured key skS ← TPRF.Constrain(pp, k, S), where the

set S is given by S = {x ∈ {0, 1}n : x �= x
(mi)
i ∀i ∈ [t]},

4. Output the circuit C where C(·) = TPRF.ConstrainEval(pp, skS , ·).
– WM.Extract(msk, C): On input the master secret

key msk = (pp, tk, h1, . . . , hd, k) and a circuit C : {0, 1}n → {0, 1}m, the
extraction algorithm proceeds as follows:
1. Compute points x =

(
x
(0)
1 , x

(1)
1 , . . . , x

(0)
t , x

(1)
t

) ← PRF.Eval(k∗, C(h1),
. . . , C(hd)).

2. For each i ∈ [t], and b ∈ {0, 1}, compute z
(b)
i = TPRF.Test(pp,

tk, C(x(b)
i )).

3. If there exists some i for which z
(0)
i = z

(1)
i , output ⊥. Otherwise, output

the message m ∈ {0, 1}t where mi = 0 if z
(0)
i = 1 and mi = 1 if z

(1)
i = 1.

Security Analysis. We now state the correctness and security theorems for our
construction, but defer their formal proofs to the full version of this paper [34].

Theorem 6.10. If ΠTPRF is a secure translucent t-puncturable PRF, and ΠPRF

is a secure PRF, then the watermarking scheme in Construction 6.9 is correct.

Theorem 6.11. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is unre-
movable.

Theorem 6.12. If ΠTPRF is a selectively-secure translucent t-puncturable PRF,
and ΠPRF is secure, then the watermarking scheme in Construction 6.9 is
δ-unforgeable.
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