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Abstract. Bitcoin’s innovative and distributedly maintained blockchain
data structure hinges on the adequate degree of difficulty of so-called
“proofs of work,” which miners have to produce in order for transac-
tions to be inserted. Importantly, these proofs of work have to be hard
enough so that miners have an opportunity to unify their views in the
presence of an adversary who interferes but has bounded computational
power, but easy enough to be solvable regularly and enable the miners
to make progress. As such, as the miners’ population evolves over time,
so should the difficulty of these proofs. Bitcoin provides this adjustment
mechanism, with empirical evidence of a constant block generation rate
against such population changes.

In this paper we provide the first formal analysis of Bitcoin’s target
(re)calculation function in the cryptographic setting, i.e., against all pos-
sible adversaries aiming to subvert the protocol’s properties. We extend
the q-bounded synchronous model of the Bitcoin backbone protocol [Euro-
crypt 2015], which posed the basic properties of Bitcoin’s underlying
blockchain data structure and shows how a robust public transaction
ledger can be built on top of them, to environments that may introduce
or suspend parties in each round.

We provide a set of necessary conditions with respect to the way the
population evolves under which the “Bitcoin backbone with chains of
variable difficulty” provides a robust transaction ledger in the presence
of an actively malicious adversary controlling a fraction of the miners
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strictly below 50% at each instant of the execution. Our work introduces
new analysis techniques and tools to the area of blockchain systems that
may prove useful in analyzing other blockchain protocols.

1 Introduction

The Bitcoin backbone [11] extracts and analyzes the basic properties of Bitcoin’s
underlying blockchain data structure, such as “common prefix” and “chain qual-
ity,” which parties (“miners”) maintain and try to extend by generating “proofs
of work” (POW, aka “cryptographic puzzles” [1,8,14,23])1. It is then formally
shown in [11] how fundamental applications including consensus [17,22] and a
robust public transaction ledger realizing a decentralized cryptocurrency (e.g.,
Bitcoin [20]) can be built on top of them, assuming that the hashing power of
an adversary controlling a fraction of the parties is strictly less than 1/2.

The results in [11], however, hold for a static setting, where the protocol is
executed by a fixed number of parties (albeit not necessarily known to the par-
ticipants), and therefore with POWs (and hence blockchains) of fixed difficulty.
This is in contrast to the actual deployment of the Bitcoin protocol where a
“target (re)calculation” mechanism adjusts the hardness level of POWs as the
number of parties varies during the protocol execution. In more detail, in [11] the
target T that the hash function output must not exceed, is set and hardcoded
at the beginning of the protocol, and in such a way that a specific relation to
the number of parties running the protocol is satisfied, namely, that a ratio f
roughly equal to qnT/2κ is small, where q is the number of queries to the hash
function that each party is allowed per round, n is the number of parties, and
κ is the length of the hash function output. Security was only proven when the
number of parties is n and the choice of target T is never recalculated, thus
leaving as open question the full analysis of the protocol in a setting where, as
in the real world, parties change dynamically over time.

In this paper, we abstract for the first time the target recalculation algorithm
from the Bitcoin system, and present a generalization and analysis of the Bitcoin
backbone protocol with chains of variable difficulty, as produced by an evolving
population of parties, thus answering the aforementioned open question.

In this setting, there is a parameter m which determines the length of an
“epoch” in number of blocks.2 When a party prepares to compute the j-th
block of a chain with j mod m = 1, it uses a target calculation algorithm that
determines the proper target value to use, based on the party’s local view about
the total number of parties that are present in the system, as reflected by the rate
of blocks that have been created so far and are part of the party’s chain. (Each
block contains a timestamp of when it was created; in our synchronous setting,
timestamps will correspond to the round numbers when blocks are created—see
1 In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash

inequality based on SHA-256.
2 In Bitcoin, m is set to 2016 and roughly corresponds to 2 weeks in real time—

assuming the number of parties does not change much.
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Sect. 2.) To accomodate the evolving population of parties, we extend the model
of [11] to environments that are free to introduce and suspend parties in each
round. In other respects, we follow the model of [11], where all parties have
the same “hashing power,” with each one allowed to pose q queries to the hash
function that is modeled as a “random oracle” [3]. We refer to our setting as the
dynamic q-bounded synchronous setting.

In order to give an idea of the issues involved, we note that without a tar-
get calculation mechanism, in the dynamic setting the backbone protocol is not
secure even if all parties are honest and follow the protocol faithfully. Indeed, it
is easy to see that a combination of an environment that increases the number
of parties and adversarial network conditions can lead to substantial divergence
(a.k.a. “forks”) in the chains of the honest parties, leading to the violation of the
agreement-type properties that are needed for the applications of the protocol,
such as maintaining a robust transaction ledger. The attack is simple: the envi-
ronment increases the number of parties constantly so that the block production
rate per round increases (which is roughly the parameter f mentioned above);
then, adversarial network conditions may divide the parties into two sets, A and
B, and schedule message delivery so that parties in set A receive blocks produced
by parties in A first, and similarly for set B. According to the Bitcoin protocol,
parties adopt the block they see first, and thus the two sets will maintain two
separate blockchains.

While this specific attack could in principle be thwarted by modifying the
Bitcoin backbone (e.g., by randomizing which block a party adopts when they
receive in the same round two blocks of the same index in the chain), it certainly
would not cope with all possible attacks in the presence of a full-blown adversary
and target recalculation mechanism. Indeed, such an attack was shown in [2],
where by mining “privately” with timestamps in rapid succession, corrupt miners
are able to induce artificially high targets in their private chain; even though such
chain may grow slower than the main chain, it will still make progress and, via
an anti-concentration argument, a sudden adversarial advance that can break
agreement amongst honest parties cannot be ruled out.

Given the above, our main goal is to show that the backbone protocol with a
Bitcoin-like target recalculation function satisfies the common prefix and chain
quality properties, as an intermediate step towards proving that the protocol
implements a robust transaction ledger. Expectedly, the class of protocols we will
analyze will not preserve its properties for arbitrary ways in which the number
of parties may change over time. In order to bound the error in the calibration
of the block generation rate that the target recalculation function attempts, we
will need some bounds on the way the number of parties may vary. For γ ∈ R

+

and s ∈ N, we will call a sequence (nr)r∈N of parties (γ, s)-respecting if it holds
that in a sequence of rounds S with |S| ≤ s, maxr∈S nr ≤ γ ·minr∈S nr, and will
determine for what values of these parameters the backbone protocol is secure.

After formally describing blockchains of variable difficulty and the Bitcoin
backbone protocol in this setting, at a high level our analysis goes as follows.
We first introduce the notion of goodness regarding the approximation that is
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performed on f in an epoch. In more detail, we call a round r (η, θ)-good, for
some parameters η, θ ∈ R

+, if the value fr computed for the actual number
of parties and target used in round r by some honest party, falls in the range
[ηf, θf ], where f is the initial block production rate (note that the first round
is always assumed good). Together with “goodness” we introduce the notion of
typical executions, in which, informally, for any set S of consecutive rounds the
successes of the adversary and the honest parties do not deviate too much from
their expectations as well as no “bad” event concerning the hash function occurs
(such as a collision). Using a martingale bound we demonstrate that almost all
polynomially bounded (in κ) executions are typical.

Next, we proceed to show that in a typical execution any chain that an honest
party adopts (1) contains timestamps that are approximately accurate (i.e., no
adversarial block has a timestamp that differs too much from its real creation
time), and (2) it has a target such that the probability of block production
remains near the fixed constant f , i.e., it is “good.” Finally, these properties
allow us to demonstrate that a typical execution enjoys the common prefix and
chain quality properties, which is a stepping stone towards the ultimate goal, that
of establishing that the backbone protocol with variable difficulty implements a
robust transaction ledger. Specifically, we show the following:

Main Result. (Informal—see Theorems 4 and 5). The Bitcoin backbone pro-
tocol with chains of variable difficulty, suitably parameterized, satisfies with
overwhelming probability in m and κ the properties of (1) persistence—if a
transaction tx is confirmed by an honest party, no honest party will ever dis-
agree about the position of tx in the ledger, and (2) liveness—if a transaction
tx is broadcast, it will eventually become confirmed by all honest parties.

Remark. Regarding the actual parameterization of the Bitcoin system (that uses
epochs of m = 2016 blocks), even though it is consistent with all the constraints
of our theorems (cf. Remark 3 in Sect. 6.1), it cannot be justified by our martin-
gale analysis. In fact, our probabilistic analysis would require much longer epochs
to provide a sufficiently small probability of attack. Tightening the analysis or
discovering attacks for parameterizations beyond our security theorems is an
interesting open question.

Finally, we note that various extensions to our model are relevant to the
Bitcoin system and constitute interesting directions for further research. Impor-
tantly, a security analysis in the “rational” setting (see, e.g., [9,15,24]), and in
the “partially synchronous,” or “bounded-delay” network model [7,21]3.

2 Model and Definitions

We describe our protocols in a model that extends the synchronous communica-
tion network model presented in [10,11] for the analysis of the Bitcoin backbone
3 In the latest version of [10], we show that in the case of fixed difficulty, the analysis of

the Bitcoin backbone in the synchronous model extends with relative ease to partial
synchrony. We leave the extension of the variable-difficulty case for future work.
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protocol in the static setting with a fixed number of parties (which in turn is
based on Canetti’s formulation of “real world” notion of protocol execution [4–6]
for multi-party protocols) to the dynamic setting with a varying number of par-
ties. In this section we provide a high-level overview of the model, highlighting
the differences that are intrinsic to our dynamic setting.

Round Structure and Protocol Execution. As in [10], the protocol exe-
cution proceeds in rounds with inputs provided by an environment program
denoted by Z to parties that execute the protocol Π, and our adversarial model
in the network is “adaptive,” meaning that the adversary A is allowed to take
control of parties on the fly, and “rushing,” meaning that in any given round the
adversary gets to see all honest players’ messages before deciding his strategy.
The parties’ access to the hash function and their communication mechanism are
captured by a joint random oracle/diffusion functionality which reflects Bitcoin’s
peer structure. The diffusion functionality, [10], allows the order of messages to
be controlled by A, i.e., there is no atomicity guarantees in message broadcast
[13], and, furthermore, the adversary is allowed to spoof the source information
on every message (i.e., communication is not authenticated). Still, the adversary
cannot change the contents of the messages nor prevent them from being deliv-
ered. We will use Diffuse as the message transmission command that captures
this “send-to-all” functionality.

The parties that may become active in a protocol execution are encoded as
part of a control program C and come from a universe U of parties.

The protocol execution is driven by an environment program Z that interacts
with other instances of programs that it spawns at the discretion of the control
program C. The pair (Z, C) forms of a system of interactive Turing machines
(ITM’s) in the sense of [5]. The execution is with respect to a program Π, an
adversary A (which is another ITM) and the universe of parties U . Assuming the
control program C allows it, the environment Z can activate a party by writing
to its input tape. Note that the environment Z also receives the parties’ outputs
when they are produced in a standard subroutine-like interaction. Additionally,
the control program maintains a flag for each instance of an ITM, (abbreviated
as ITI in the terminology of [5]), that is called the ready flag and is initially set
to false for all parties.

The environment Z, initially is restricted by C to spawn the adversary A.
Each time the adversary is activated, it may send one or more messages of the
form (Corrupt, Pi) to C and C will mark the corresponding party as corrupted.

Functionalities Available to the Protocol. The ITI’s of protocol Π will
have access to a joint ideal functionality capturing the random oracle and the
diffusion mechanism which is defined in a similar way as [10] and is explained
below.

– The random oracle functionality. Given a query with a value x marked for
“calculation” for the function H(·) from an honest party Pi and assuming
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x has not been queried before, the functionality returns a value y which is
selected at random from {0, 1}κ; furthermore, it stores the pair (x, y) in the
table of H(·), in case the same value x is queried in the future. Each honest
party Pi is allowed to ask q queries in each round as determined by the
diffusion functionality (see below). On the other hand, each honest party is
given unlimited queries for “verification” for the function H(·). The adversary
A, on the other hand, is given a bounded number queries in each round as
determined by diffusion functionality with a bound that is initialized to 0
and determined as follows: whenever a corrupted party is activated, the party
can ask the bound to be increased by q; each time a query is asked by the
adversary the bound is decreased by 1. No verification queries are provided to
A. Note that the value q is a polynomial function of κ, the security parameter.
The functionality can maintain tables for functions other than H(·) but, by
convention, the functionality will impose query quotas to function H(·) only.

– The diffusion functionality. This functionality keeps track of rounds in the
protocol execution; for this purpose it initially sets a variable round to be
1. It also maintains a Receive() string defined for each party Pi in U . A
party that is activated is allowed to query the functionality and fetch the
contents of its personal Receive() string. Moreover, when the functionality
receives a message (Diffuse,m) from party Pi it records the message m. A
party Pi can signal when it is complete for the round by sending a special
message (RoundComplete). With respect to the adversary A, the functionality
allows it to receive the contents of all contents sent in Diffuse messages for
the round and specify the contents of the Receive() string for each party
Pi. The adversary has to specify when it is complete for the current round.
When all parties are complete for the current round, the functionality inspects
the contents of all Receive() strings and includes any messages m that were
diffused by the parties in the current round but not contributed by the adver-
sary to the Receive() tapes (in this way guaranteeing message delivery). It
also flushes any old messages that were diffused in previous rounds and not
diffused again. The variable round is then incremented.

The Dynamic q-Bounded Synchronous Setting. Consider n = {nr}r∈N

and t = {tr}r∈N two series of natural numbers. As mentioned, the first instance
that is spawned by Z is the adversary A. Subsequently the environment may
spawn (or activate if they are already spawned) parties Pi ∈ U . The control
program maintains a counter in each sequence of activations and matches it
with the current round that is maintained by the diffusion functionality. Each
time an honest party diffuses a message containing the label “ready” the control
program C increases the ready counter for the round. In round r, the control
program C will enable the adversary A to complete the round, only provided
that (i) exactly nr parties have transmitted ready message, (ii) the number of
(“corrupt”) parties controlled by A should match tr.

Parties, when activated, are able to read their input tape Input() and com-
munication tape Receive() from the diffusion functionality. Observe that par-
ties are unaware of the set of activated parties. The Bitcoin backbone protocol



The Bitcoin Backbone Protocol with Chains of Variable Difficulty 297

requires from parties (miners) to calculate a POW. This is modeled in [11] as
parties having access to the oracle H(·). The fact that (active) parties have
limited ability to produce such POWs, is captured as in [11] by the random ora-
cle functionality and the fact that it paces parties to query a limited number of
queries per round. The bound, q, is a function of the security parameter κ; in this
sense the parties may be called q-bounded4. We refer to the above restrictions
on the environment, the parties and the adversary as the dynamic q-bounded
synchronous setting.

The term {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ denotes the random variable ensemble

describing the view of party P after the completion of an execution running
protocol Π with environment Z and adversary A, on input z ∈ {0, 1}∗. We will
only consider a “standalone” execution without any auxiliary information and
we will thus restrict ourselves to executions with z = 1κ. For this reason we will
simply refer to the ensemble by viewP,t,n

Π,A,Z . The concatenation of the view of all
parties ever activated in the execution is denoted by viewt,n

Π,A,Z .

Properties of Protocols. In our theorems we will be concerned with properties
of protocols Π running in the above setting. Such properties will be defined as
predicates over the random variable viewt,n

Π,A,Z by quantifying over all possible
adversaries A and environments Z. Note that all our protocols will only satisfy
properties with a small probability of error in κ as well as in a parameter k that
is selected from {1, . . . , κ} (with foresight we note that in practice would be able
to choose k to be much smaller than κ, e.g., k = 6).

The protocol class that we will analyze will not be able to preserve its prop-
erties for arbitrary sequences of parties. To restrict the way the sequence n is
fluctuating we will introduce the following class of sequences.

Definition 1. For γ ∈ R
+, we call a sequence (nr)r∈N (γ, s)-respecting if for

any set S of at most s consecutive rounds, maxr∈S nr ≤ γ · minr∈S nr.

Observe that the above definition is fairly general and also can capture expo-
nential growth; e.g., by setting γ = 2 and s = 10, it follows that every 10 rounds
the number of ready parties may double. Note that this will not lead to an expo-
nential running time overall since the total run time is bounded by a polynomial
in κ, (due to the fact that (Z, C) is a system of ITM’s, Z is locally polynomial
bounded, C is a polynomial-time program, and thus [5, Proposition 3] applies).

More formally, a protocol Π would satisfy a property Q for a certain class of
sequences n, t, provided that for all PPT A and locally polynomial bounded Z,
it holds that Q(viewt,n

Π,A,Z) is true with overwhelming probability of the coins
of A,Z and the random oracle functionality.

In this paper, we will be interested in (γ, s)-respecting sequences n, sequences
t suitably restricted by n, and protocols Π suitably parameterized given n, t.
4 In [11] this is referred to as the “flat-model” in terms of computational power,

where all parties are assumed equal. In practice, different parties may have different
“hashing power”; note that this does not sacrifice generality since one can imagine
that real parties are simply clusters of some arbitrary number of flat-model parties.
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3 Blockchains of Variable Difficulty

We start by introducing blockchain notation; we use similar notation to [10],
and expand the notion of blockchain to explicitly include timestamps (in the
form of a round indicator). Let G(·) and H(·) be cryptographic hash functions
with output in {0, 1}κ. A block with target T ∈ N is a quadruple of the form
B = 〈r, st, x, ctr〉 where st ∈ {0, 1}κ, x ∈ {0, 1}∗, and r, ctr ∈ N are such that
they satisfy the predicate validblockT

q (B) defined as

(H(ctr,G(r, st, x)) < T ) ∧ (ctr ≤ q).

The parameter q ∈ N is a bound that in the Bitcoin implementation deter-
mines the size of the register ctr; as in [10], in our treatment we allow q to be
arbitrary, and use it to denote the maximum allowed number of hash queries
in a round (cf. Sect. 2). We do this for convenience and our analysis applies
in a straightforward manner to the case that ctr is restricted to the range
0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈r, st, x, ctr〉
can be extended to a longer chain by appending a valid block B = 〈r′, st′, x′, ctr′〉
that satisfies st′ = H(ctr,G(r, st, x)) and r′ > r, where r′ is called the
timestamp of block B. In case C = ε, by convention any valid block of the
form 〈r′, st′, x′, ctr′〉 may extend it. In either case we have an extended chain
Cnew = CB that satisfies head(Cnew) = B.

The length of a chain len(C) is its number of blocks. Consider a chain C of
length � and any nonnegative integer k. We denote by C�k the chain resulting
from “pruning” the k rightmost blocks. Note that for k ≥ len(C), C�k = ε. If C1

is a prefix of C2 we write C1 � C2.
Given a chain C of length len(C) = �, we let xC denote the vector of � values

that is stored in C and starts with the value of the first block. Similarly, rC is
the vector that contains the timestamps of the blockchain C.

For a chain of variable difficulty, the target T is recalculated for each block
based on the round timestamps of the previous blocks. Specifically, there is a
function D : Z∗ → R which receives an arbitrary vector of round timestamps
and produces the next target. The value D(ε) is the initial target of the system.
The difficulty of each block is measured in terms of how many times the block
is harder to obtain than a block of target T0. In more detail, the difficulty of a
block with target T is equal to T0/T ; without loss of generality we will adopt
the simpler expression 1/T (as T0 will be a constant across all executions). We
will use diff(C) to denote the difficulty of a chain. This is equal to the sum of
the difficulties of all the blocks that comprise the chain.

The Target Calculation Function. Intuitively, the target calculation func-
tion D(·) aims at maintaining the block production rate constant. It is parame-
terized by m ∈ N and f ∈ (0, 1); Its goal is that m blocks will be produced every
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m/f rounds. We will see in Sect. 6 that the probability f(T, n) with which n
parties produce a new block with target T is approximated by

f(T, n) ≈ qTn

2κ
.

(Note that T/2κ is the probability that a single player produces a block in a
single query.)

To achieve the above goal Bitcoin tries to keep qTn/2κ close to f . To that end,
Bitcoin waits for m blocks to be produced and based on their difficulty and how
fast these blocks were computed it computes the next target. More specifically,
say the last m blocks of a chain C are for target T and were produced in Δ
rounds. Consider the case where a number of players

n(T,Δ) =
2κm

qTΔ

attempts to produce m blocks of target T ; note that it will take them approxi-
mately Δ rounds in expectation. Intuitively, the number of players at the point
when m blocks were produced is estimated by n(T,Δ); then the next target T ′

is set so that n(T,Δ) players would need m/f rounds in expectation to produce
m blocks of target T ′. Therefore, it makes sense to set

T ′ =
Δ

m/f
· T,

because if the number of players is indeed n(T,Δ) and remains unchanged, it
will take them m/f rounds in expectation to produce m blocks. If the initial
estimate of the number parties is n0, we will assume T0 is appropriately set so
that f ≈ qT0n0/2κ and then

T ′ =
n0

n(T,Δ)
· T0.

Remark 1. Recall that in the flat q-bounded setting all parties have the same
hashing power (q-queries per round). It follows that n0 represents the estimated
initial hashing power while n(T,Δ) the estimated hashing power during the last
m blocks of the chain C. As a result the new target is equal to the initial target
T0 multiplied by the factor n0/n(T,Δ), reflecting the change of hashing power
in the last m blocks.

Based on the above we give the formal definition of the target (re)calculation
function, which is as follows.

Definition 2. For fixed constants κ, τ,m, n0, T0, the target calculation function
D : Z∗ → R is defined as

D(ε) = T0 and D(r1, . . . , rv) =

⎧
⎪⎨

⎪⎩

1
τ · T if n0

n(T,Δ) · T0 < 1
τ · T ;

τ · T if n0
n(T,Δ) · T0 > τ · T ;

n0
n(T,Δ) · T0 otherwise,
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where n(T,Δ) = 2κm/qTΔ, with Δ = rm′ − rm′−m, T = D(r1, . . . , rm′−1), and
m′ = m · �v/m�.

In the definition, (r1, . . . , rv) corresponds to a chain of v blocks with ri the
timestamp of the ith block; m′,Δ, and T correspond to the last block, duration,
and target of the last completed epoch, respectively.

Remark 2. A remark is in order about the case n0
n(T,Δ) ·T0 /∈ [ 1τ T, τT ], since this

aspect of the definition is not justified by the discussion preceeding Definition 2.
At first there may seem to be no reason to introduce such a “dampening filter”
in Bitcoin’s target recalculation function and one should let the parties to try
collectively to approximate the proper target. Interestingly, in the absence of
such dampening, an efficient attack is known [2] (against the common-prefix
property). As we will see, this dampening is sufficient for us to prove security
against all attackers, including those considered in [2] (with foresight, we can
say that the attack still holds but it will take exponential time to mount).

4 The Bitcoin Backbone Protocol with Variable Difficulty

In this section we give a high-level description of the Bitcoin backbone proto-
col with chains of variable difficulty; a more detailed description, including the
pseudocode of the algorithms, is given in the full version. The presentation is
based on the description in [11]. We then formulate two desired properties of the
blockchain—common prefix and chain quality—for the dynamic setting.

4.1 The Protocol

As in [11], in our description of the backbone protocol we intentionally avoid
specifying the type of values/content that parties try to insert in the chain, the
type of chain validation they perform (beyond checking for its structural prop-
erties with respect to the hash functions G(·),H(·)), and the way they interpret
the chain. These checks and operations are handled by the external functions
V (·), I(·) and R(·) (the content validation function, the input contribution func-
tion and the chain reading function, resp.) which are specified by the application
that runs “on top” of the backbone protocol. The Bitcoin backbone protocol in
the dynamic setting comprises three algorithms.

Chain Validation. The validate algorithm performs a validation of the struc-
tural properties of a given chain C. It is given as input the value q, as well as
hash functions H(·), G(·). It is parameterized by the content validation predicate
predicate V (·) as well as by D(·), the target calculation function (Sect. 3). For
each block of the chain, the algorithm checks that the proof of work is properly
solved (with a target that is suitable as determined by the target calculation
function), and that the counter ctr does not exceed q. Furthermore it collects
the inputs from all blocks, xC , and tests them via the predicate V (xC). Chains
that fail these validation procedure are rejected.
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Chain Comparison. The objective of the second algorithm, called maxvalid,
is to find the “best possible” chain when given a set of chains. The algorithm
is straightforward and is parameterized by a max(·) function that applies some
ordering to the space of blockchains. The most important aspect is the chains’
difficulty in which case max(C1, C2) will return the most difficult of the two. In
case diff(C1) = diff(C2), some other characteristic can be used to break the tie.
In our case, max(·, ·) will always return the first operand to reflect the fact that
parties adopt the first chain they obtain from the network.

Proof of Work. The third algorithm, called pow, is the proof of work-finding
procedure. It takes as input a chain and attempts to extend it via solving a
proof of work. This algorithm is parameterized by two hash functions H(·), G(·)
as well as the parameter q. Moreover, the algorithm calls the target calculation
function D(·) in order to determine the value T that will be used for the proof of
work. The procedure, given a chain C and a value x to be inserted in the chain,
hashes these values to obtain h and initializes a counter ctr. Subsequently, it
increments ctr and checks to see whether H(ctr, h) < T ; in case a suitable ctr is
found then the algorithm succeeds in solving the POW and extends chain C by
one block.

The Bitcoin Backbone Protocol. The core of the backbone protocol with
variable difficulty is similar to that in [11], with several important distinctions.
First is the procedure to follow when the parties become active. Parties check the
ready flag they possess, which is false if and only if they have been inactive in
the previous round. In case the ready flag is false, they diffuse a special message
‘Join’ to request the most recent version of the blockchain(s). Similarly, parties
that receive the special request message in their Receive() tape broadcast their
chains. As before parties, run “indefinitely” (our security analysis will apply
when the total running time is polynomial in κ). The input contribution function
I(·) and the chain reading function R(·) are applied to the values stored in the
chain. Parties check their communication tape Receive() to see whether any
necessary update of their local chain is due; then they attempt to extend it via
the POW algorithm pow. The function I(·) determines the input to be added
in the chain given the party’s state st, the current chain C, the contents of
the party’s input tape Input() and communication tape Receive(). The input
tape contains two types of symbols, Read and (Insert, value); other inputs are
ignored. In case the local chain C is extended the new chain is diffused to the
other parties. Finally, in case a Read symbol is present in the communication
tape, the protocol applies function R(·) to its current chain and writes the result
onto the output tape Output().

4.2 Properties of the Backbone Protocol with Variable Difficulty

Next, we define the two properties of the backbone protocol that the protocol
will establish. They are close variants of the properties in [11], suitably modified
for the dynamic q-bounded synchronous setting.
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The common prefix property essentially remains the same. It is parameterized
by a value k ∈ N, considers an arbitrary environment and adversary, and it holds
as long as any two parties’ chains are different only in their most recent k blocks.
It is actually helpful to define the property between an honest party’s chain and
another chain that may be adversarial. The definition is as follows.

Definition 3 (Common-Prefix Property). The common-prefix property Qcp

with parameter k ∈ N states that, at any round of the execution, if a chain C
belongs to an honest party, then for any valid chain C′ in the same round such
that either diff(C′) > diff(C), or diff(C′) = diff(C) and head(C′) was computed
no later than head(C), it holds that C�k � C′ and C′�k � C.

The second property, called chain quality, expresses the number of honest-
party contributions that are contained in a sufficiently long and continuous part
of a party’s chain. Because we consider chains of variable difficulty it is more
convenient to think of parties’ contributions in terms of the total difficulty they
add to the chain as opposed to the number of blocks they add (as done in
[11]). The property states that adversarial parties are bounded in the amount of
difficulty they can contribute to any sufficiently long segment of the chain.

Definition 4 (Chain-Quality Property). The chain quality property Qcq

with parameters μ ∈ R and � ∈ N states that for any party P with chain C in
viewt,n

Π,A,Z , and any segment of that chain of difficulty d such that the timestamp
of the first block of the segment is at least � smaller than the timestamp of the
last block, the blocks the adversary has contributed in the segment have a total
difficulty that is at most μ · d.

4.3 Application: Robust Transaction Ledger

We now come to the (main) application the Bitcoin backbone protocol was
designed to solve. A robust transaction ledger is a protocol maintaining a ledger
of transactions organized in the form of a chain C, satisfying the following two
properties.

– Persistence: Parameterized by k ∈ N (the “depth” parameter), if an honest
party P , maintaining a chain C, reports that a transaction tx is in C�k, then
it holds for every other honest party P ′ maintaining a chain C′ that if C′�k

contains tx, then it is in exactly the same position.
– Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parame-

ters, resp.), if a transaction tx is provided to all honest parties for u consec-
utive rounds, then it holds that for any player P , maintaining a chain C, tx
will be in C�k.

We note that, as in [11], Liveness is applicable to either “neutral” transactions
(i.e., those that they are never in “conflict” with other transactions in the ledger),
or transactions that are produced by an oracle Txgen that produces honestly
generated transactions.
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5 Overview of the Analysis

Our main goal is to show that the backbone protocol satisfies the properties com-
mon prefix and chain quality (Sect. 4.2) in a (γ, s)-respecting environment as an
intermediate step towards proving, eventually, that the protocol implements a
robust transaction ledger. In this section we present a high-level overview of our
approach; the full analysis is then presented in Sect. 6. To prove the aforemen-
tioned properties we first characterize the set of typical executions. Informally,
an execution is typical if for any set S of consecutive rounds the successes of
the adversary and the honest parties do not deviate too much from their expec-
tations and no bad event occurs with respect to the hash function (which we
model as a “random oracle”). Using the martingale bound of Theorem 6 we
demonstrate that almost all polynomially bounded executions are typical. We
then proceed to show that in a typical execution any chain that an honest party
adopts (1) contains timestamps that are approximately accurate (i.e., no adver-
sarial block has a timestamp that differs too much by its real creation time) and
(2) has a target such that the probability of block production remains near a
fixed constant f . Finally, these properties of a typical execution will bring us
to our ultimate goal: to demonstrate that a typical execution enjoys the com-
mon prefix and the chain quality properties, and therefore one can build on the
blockchain a robust transaction ledger (Sect. 4.3). Here we highlight the main
steps and the novel concepts that we introduce.

“Good” Executions. In order to be able to talk quantitatively about typ-
ical executions, we first introduce the notion of (η, θ)-good executions, which
expresses how well the parties approximate f . Suppose at round r exactly n
parties query the oracle with target T . The probability at least one of them will
succeed is

f(T, n) = 1 −
(
1 − T

2κ

)qn

.

For the initial target T0 and the initial estimate of the number of parties n0,
we denote f0 = f(T0, n0). Looking ahead, the objective of the target recalcula-
tion mechanism is to maintain a target T for each party such that f(T, nr) ≈ f0
for all rounds r. (For succintness, we will drop the subscript and simply refer to
it as f .)

Now, at a round r of an execution E the honest parties might be querying
the random oracle for various targets. We denote by Tmin

r (E) and Tmax
r (E) the

minimum and maximum over those targets. We say r is a target-recalculation
point of a valid chain C, if there is a block with timestamp r and m exactly
divides the number of blocks up to (and including) this block. Consider constants
η ∈ (0, 1] and θ ∈ [1,∞) and an execution E:

Definition 5 (Abridged). A round r is (η, θ)-good in E if ηf ≤ f(Tmin
r (E), nr)

and f(Tmax
r (E), nr) ≤ θf . An execution E is (η, θ)-good if every round of E was

(η, θ)-good.
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We are going to study the progress of the honest parties only when their
targets lie in a reasonable range. It will turn out that, with high probability, the
honest parties always work with reasonable targets. The following bound will be
useful because it gives an estimate of the progress the honest parties have made
in an (η, θ)-good execution. We will be interested in the progress coming from
uniquely successful rounds, where exactly one honest party computed a POW.
Let Qr be the random variable equal to the (maximum) difficulty of such rounds
(recall a block with target T has difficulty 1/T ); 0 otherwise. We refer to Qr also
as “unique” difficulty. We are able to show the following.

Proposition 2 (Informal). If r is an (η, θ)-good round in an execution E, then
E[Qr(Er−1)] ≥ (1−θf)pnr, where Qr(Er−1) is the unique difficulty conditioned
on the execution so far, and p = q

2κ .
“Per round” arguments regarding relevant random variables are not suffi-

cient, as we need executions with “good” behavior over a sequence of rounds—
i.e., variables should be concentrated around their means. It turns out that this
is not easy to get, as the probabilities of the experiments performed per round
depend on the history (due to target recalculation). To deal with this lack of
concentration/variance problem, we introduce the following measure.

Typical Executions. Intuitively, the idea that this notion captures is as fol-
lows. Note that at each round of a given execution E the parties perform
Bernoulli trials with success probabilities possibly affected by the adversary.
Given the execution, these trials are determined and we may calculate the
expected progress the parties make given the corresponding probabilities. We
then compare this value to the actual progress and if the difference is “reason-
able” we declare E typical. Note, however, that considering this difference by
itself will not always suffice, because the variance of the process might be too
high. Our definition, in view of Theorem 6 (AppendixA), says that either the
variance is high with respect to the set of rounds we are considering, or the par-
ties have made progress during these rounds as expected. A bit more formally,
for a given random oracle query in an execution E, the history of the execution
just before the query takes place, determines the parameters of the distribution
that the outcome of this query follows as a POW (a Bernoulli trial). For the
queries performed in a set of rounds S, let V (S) denote the sum of the variances
of these trials.

Definition 8 (Abridged). An execution E is (ε, η, θ)-typical if, for any given set
S of consecutive rounds such that V (S) is appropriately bounded from above:

– The average unique difficulty is lower-bounded by 1
|S| (

∑
r∈S E[Qr(Er−1)] −

ε(1 − θf)p
∑

r∈S nr);
– the average maximum difficulty is upper-bounded by 1

|S| (1 + ε)p
∑

r∈S nr;
– the adversary’s average difficulty of blocks with “easy” targets is upper-

bounded by 1
|S| (1 + ε)p

∑
r∈S tr, while the number of blocks with “hard”

targets is bounded below m by a suitable constant; and
– no “bad events” with respect to the hash function occur (e.g., collisions).
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The following is one of the main steps in our analysis.

Proposition 4 (Informal). Almost all polynomially bounded executions (in κ)
are typical. The probability of an execution not being typical is bounded by
exp(−Ω(min{m,κ}) + lnL) where L is the total run-time.

Recall (Remark 2) that the dynamic setting (specifically, the use of target
recalculation functions) offers more opportunities for adversarial attacks [2]. The
following important intermediate lemma shows that if a typical execution is good
up to a certain point, chains that are privately mined for long periods of time
by the adversary will not be adopted by honest parties.

Lemma 2 (Informal). Let E be a typical execution in a (γ, s)-respecting envi-
ronment. If Er is (η, θ)-good, then, no honest party adopts at round r+1 a chain
that has not been extended by an honest party for at least O( m

τf ) consecutive
rounds.

An easy corollary of the above is that in typical executions, the honest parties’
chains cannot contain blocks with timestamps that differ too much from the
blocks’ actual creation times.

Corollary 1 (Informal). Let E be a typical execution in a (γ, s)-respecting
environment. If Er−1 is (η, θ)-good, then the timestamp of any block in Er is
at most O( m

τf ) away from its actual creation time (cf. the notion of accuracy in
Definition 6).

Additional important results we obtain regarding (η, θ)-good executions are
that their epochs last about as much as they should (Lemma 3), as well as
a “self-correcting” property, which essentially says that if every chain adopted
by an honest party is (ηγ, θ

γ )-good in Er−1 (cf. the notion of a good chain in
Definition 5), then Er is (η, θ)-good (Corollary 2). The above (together with
several smaller intermediate steps that we omit from this high-level overview)
allow us to conclude:

Theorem 1 (Informal). A typical execution in a (γ, s)-respecting environment
is O( m

τf )-accurate and (η, θ)-good.

Common Prefix and Chain Quality. Typical executions give us the two
desired low-level properties of the blockchain:

Theorems 2 and 3 (Informal). Let E be a typical execution in a (γ, s)-
respecting environment. Under the requirements of Table 1 (Sect. 6.1), common
prefix holds for any k ≥ θγm/8τ and chain quality holds for � = m/16τf and
μ ≤ 1 − δ/2, where for all r, tr < nr(1 − δ).

Robust Transaction Ledger. Given the above we then prove the properties
of the robust transaction ledger:
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Theorems 4 and 5 (Informal). Under the requirements of Table 1, the back-
bone protocol satisfies persistence with parameter k = Θ(m) and liveness with
wait time u = Ω(m + k) for depth k.

We refer to Sect. 6 for the full analysis of the protocol.

6 Full Analysis

In this section we present the full analysis and proofs of the backbone protocol
and robust transaction ledger application with chains of variable difficulty. The
analysis follows at a high level the roadmap presented in Sect. 5.

6.1 Additional Notation, Definitions, and Preliminary Propositions

Our probability space is over all executions of length at most some polynomial
in κ. Formally, the set of elementary outcomes can be defined as a set of strings
that encode every variable of every party during each round of a polynomially
bounded execution. We won’t delve into such formalism and leave the details
unspecified. We will denote by Pr the probability measure of this space. Define
also the random variable E taking values on this space and with distribution
induced by the random coins of all entities (adversary, environment, parties)
and the random oracle.

Suppose at round r exactly n parties query the oracle with target T . The
probability at least one of them will succeed is

f(T, n) = 1 −
(
1 − T

2κ

)qn

.

For the initial target T0 and the initial estimate of the number of parties
n0, we denote f0 = f(T0, n0). Looking ahead, the objective of the target recal-
culation mechanism would be to maintain a target T for each party such that
f(T, nr) ≈ f0 for all rounds r. For this reason, we will drop the subscript from f0
and simply refer to it as f ; to avoid confusion, whenever we refer to the function
f(·, ·), we will specify its two operands.

Note that f(T, n) is concave and increasing in n and T . In particular, Fact 2
applies. The following proposition provides useful bounds on f(T, n). For con-
venience, define p = q/2κ.

Proposition 1. For positive integers κ, q, T, n and f(T, n) defined as above,

pTn

1 + pTn
≤ f(T, n) ≤ pTn ≤ f(T, n)

1 − f(T, n)
, where p =

q

2κ
.

Proof. The bounds can be obtained using the inequalities (1 − x)α ≥ 1 − xα,
valid for x ≤ 1 and α ≥ 1, and e−x ≤ 1

1+x , valid for x ≥ 0. ��
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At a round r of an execution E the honest parties might be querying the
random oracle for various targets. We denote by Tmin

r (E) and Tmax
r (E) the

minimum and maximum over those targets. We say r is a target-recalculation
point of a valid chain C, if there is a block with timestamp r and m exactly
divides the number of blocks up to (and including) this block.

We now define two desirable properties of executions which will be crucial in
the analysis. We will show later that most executions have these properties.

Definition 5. Consider an execution E and constants η ∈ (0, 1] and θ ∈ [1,∞).
A target-recalculation point r in a chain C in E is (η, θ)-good if the new tar-
get T satisfies ηf ≤ f(T, nr) ≤ θf . A chain C in E is (η, θ)-good if all its
target-recalculation points are (η, θ)-good. A round r is (η, θ)-good in E if
ηf ≤ f(Tmin

r (E), nr) and f(Tmax
r (E), nr) ≤ θf . We say that E is (η, θ)-good if

every round of E was (η, θ)-good.

For a round r, the following set of chains is of interest. It contains, besides the
chains that the honest parties have, those chains that could potentially belong
to an honest party.

Sr =

⎧
⎪⎪⎨

⎪⎪⎩

C ∈ Er

“C belongs to an honest party” or
“for some chain C′ of an honest party diff(C) > diff(C′)” or
“for some chain C′ of an honest party diff(C) = diff(C′) and

head(C) was computed no later than head(C′)”

⎫
⎪⎪⎬

⎪⎪⎭

,

where C ∈ Er means that C exists and is valid at round r.

Definition 6. Consider an execution E. For ε ∈ [0,∞), a block created at round
r is ε-accurate if it has a timestamp r′ such that |r′ − r| ≤ εm

f . We say that Er

is ε-accurate if no chain in Sr contains a block that is not ε-accurate. We say
that E is ε-accurate if for every round r in the execution, Er is ε-accurate.

Our next step is to define the typical set of executions. To this end we define
a few more quantities and random variables.

In an actual execution E the honest parties may be split across different
chains with possibly different targets. We are going to study the progress of the
honest parties only when their targets lie in a reasonable range. It will turn
out that, with high probability, the honest parties always work with reasonable
targets. For a round r, a set of consecutive rounds S, and constant η ∈ (0, 1), let

T (r,η) =
ηf

pnr
and T (S,η) = min

r∈S
T (r,η).

To expunge the mystery from the definition of T (r,η), note that in an (η, θ)-good
round all honest parties query for target at least T (r,η). We now define for each
round r a real random variable Dr equal to the maximum difficulty among all
blocks with targets at least T (r,η) computed by honest parties at round r. Define
also Qr to equal Dr when exactly one block was computed by an honest party
and 0 otherwise.
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Regarding the adversary, we are going to be interested in periods of time
during which he has gathered a number of blocks in the order of m. Given that
the targets of blocks are variable themselves, it is appropriate to consider the
difficulty acquired by the adversary not in a set of consecutive rounds but rather
in a set of consecutive adversarial queries that may span a number of rounds
but do are not necessarily a multiple of q.

For a set of consecutive queries indexed by a set J , we define the follow-
ing value that will act as a threshold for targets of blocks that are attempted
adversary.

T (J) =
η(1 − δ)(1 − 2ε)(1 − θf)

32τ3γ
· m

|J | · 2κ.

Given the above threshold, for j ∈ J , if the adversary computed at his j-th
query a block of difficulty at most 1/T (J), then let the random variable A(J)

j be
equal to the difficulty of this block; otherwise, let A(J)

j = 0. The above definition
suggests that we collect in A(J)

j the difficulty acquired by the adversary as long
as it corresponds to blocks that are not too difficult (i.e., those with targets
less than T (J)). With foresight we note that this will enable a concentration
argument for random variable A(J)

j . We will usually drop the superscript (J)
from A.

Let Er−1 contain the information of the execution just before round r. In
particular, a value Er−1 of Er−1 determines the targets against which every
party will query the oracle at round r, but it does not determine Dr or Qr.
If E is a fixed execution (i.e., E = E), denote by Dr(E) and Qr(E) the value
of Dr and Qr in E. If a set of consecutive queries J is considered, then, for
j ∈ J , A(J)

j (E) is defined analogously. In this case we will also write E(J)
j for the

execution just before the j-th query of the adversary.
With respect to the random variables defined above, the following bound will

be useful because it gives an estimate of the progress the honest parties have
made in an (η, θ)-good execution. Note that we are interested in the progress
coming from uniquely successful rounds, where exactly one honest party com-
puted a POW. The expected difficulty that will be computed by the nr honest
parties at round r is pnr. However, the easier the POW computation is, the
smaller E[Qr|Er−1 = Er−1] will be with respect to this value. Since the execu-
tion is (η, θ)-good, a POW is computed by the honest parties with probability
at most θf . This justifies the appearance of (1 − θf) in the bound.

Proposition 2. If round r is (η, θ)-good in E, then E[Qr|Er−1 = Er−1] ≥
(1 − θf)pnr.

Proof. Let us drop the subscript r for convenience. Suppose that the honest
parties were split into k chains with corresponding targets T1 ≤ T2 ≤ · · · ≤
Tk = Tmax. Let also n1, n2, . . . , nk, with n1 + · · ·+nk = n, be the corresponding
number of parties with each chain. First note that

∏

j∈[k]

[
1 − f(Tj , nj)

] ≥
∏

j∈[k]

[
1 − f(Tmax, nj)

]
= 1 − f(Tmax, n) ≥ 1 − θf,
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where the first inequality holds because f(T, n) is increasing in T . Proposition 1
now gives

E[Qr|Er−1 = Er−1] =
∑

i∈[k]

f(Ti, ni)/Ti

1 − f(Ti, ni)
·

∏

j∈[k]

[
1 − f(Tj , nj)

] ≥ (1 − θf)
∑

i∈[k]

pni.

��
The properties we have defined will be shown to hold in a (γ, s)-respecting

environment, for suitable γ and s. The following simple fact is a consequence of
the definition.

Fact 1. In a (γ, s)-respecting environment, for any set S of consecutive rounds
with |S| ≤ s, any S′ ⊆ S, and any n ∈ {nr : r ∈ S},

1
γ

· n ≤ 1
|S′| ·

∑

r∈S′
nr ≤ γ · n.

Proof. The average of several numbers is bounded by their min and max. Fur-
thermore, the definition of (γ, s)-respecting implies minr∈S nr ≥ 1

γ maxr∈S nr ≥
1
γ n and maxr∈S nr ≤ γ minr∈S ≤ γn. Thus,

1
γ

· n ≤ min
r∈S

nr ≤ min
r∈S′

nr ≤ 1
|S′| ·

∑

r∈S′
nr ≤ max

r∈S′
nr ≤ max

r∈S
nr ≤ γ · n.

��
Our analysis involves a number of parameters that are suitably related.

Table 1 summarizes them, recalls their definitions and lists all the constraints
that they should satisfy.

Remark 3. We remark that for the actual parameterization of the parameters
τ,m, f of Bitcoin5, i.e., τ = 4,m = 2016, f = 0.03, vis-à-vis the constraints of
Table 1, they can be satisfied for δ = 0.99, η = 0.268, θ = 1.995, ε = 2.93 · 10−8,
for γ = 1.281 and s = 2.71 · 105. Given that s measures the number of rounds
within which a fluctuation of γ may take place, we have that the constraints
are satisfiable for a fluctuation of up to 28% every approximately 2 months
(considering a round to last 18 s).

5 Note that in order to calculate f , we can consider that a round of full interaction
lasts 18 s; If this is combined with the fact that the target is set for a POW to be
discovered approximately every 10 min, we have that 18/600 = 0.3 is a good estimate
for f .
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Table 1. System parameters and requirements on them. The parameters are as follows:
positive integers s, m, L; positive reals f, γ, δ, ε, τ, η, θ, where f, ε, δ ∈ (0, 1), and 0 <
η ≤ 1 ≤ θ.

nr: number of honest parties mining in round r

tr: number of activated parties that are corrupted

δ: advantage of honest parties, ∀r(tr/nr < 1 − δ)

(γ, s): determines how the number of parties fluctuates across rounds, cf.
Definition 1

f : probability at least one honest party succeeds in a round assuming n0 parties
and target T0 (the protocol’s initialization parameters)

τ : the dampening filter, see Definition 2

(η, θ): lower and upper bound determining the goodness of an execution, cf.
Definition 5

ε: quality of concentration of random variables in typical executions, cf.
Definition 8

m: the length of an epoch in number of blocks

L: the total run-time of the system

[(R0)] ∀r : tr < (1 − δ)nr

[(R1)] s ≥ τm
f

+ m
8τf

[(R2)] δ
2

≥ 2ε + θf

[(R3)] τ − 1/8τ > 1/(1 − ε)(1 − θf)η

[(R4)] 17(1 + ε)θ ≤ 8τ(γ − θf)

[(R5)] 9(1 + ε)ηγ2 ≤ 4(1 − ηγf)

[(R6)] 7θ(1 − ε)(1 − θf) ≥ 8γ2

6.2 Chain-Growth Lemma

We now prove the Chain-growth lemma. This lemma appears already in [11],
but it refers to number of blocks instead of difficulty. In [16] the name “chain
growth” appears for the first time and the authors explicitly state a chain-growth
property.

Informally, this lemma says that honest parties will make as much progress
as how many POWs they obtain. Although simple to prove, the chain-growth
lemma is very important, because it shows that no matter what the adversary
does the honest parties will advance (in terms of accumulated difficulty) by at
least the difficulty of the POWs they have acquired.

Lemma 1. Let E be any execution. Suppose that at round u an honest party
has a chain of difficulty d. Then, by round v + 1 ≥ u, every honest party will
have received a chain of difficulty at least d +

∑v
r=u Dr(E).

Proof. By induction on v−u. For the basis, v+1 = u and d+
∑v

r=u Dr(E) = d.
Observe that if at round u an honest party has a chain C of difficulty d, then
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that party broadcast C at a round earlier than u. It follows that every honest
party will receive C by round u.

For the inductive step, note that by the inductive hypothesis every honest
party has received a chain of difficulty at least d′ = d +

∑v−1
r=u Dr by round v.

When Dv = 0 the statement follows directly, so assume Dv > 0. Since every
honest party queried the oracle with a chain of difficulty at least d′ at round v, if
follows that an honest party successful at round v broadcast a chain of difficulty
at least d′ + Dv = d +

∑v
r=u Dr. ��

6.3 Typical Executions: Definition and Related Proofs

We can now define formally our notion of typical executions. Intuitively, the idea
that this definition captures is as follows. Suppose that we examine a certain
execution E. Note that at each round of E the parties perform Bernoulli trials
with success probabilities possibly affected by the adversary. Given the execu-
tion, these trials are determined and we may calculate the expected progress the
parties make given the corresponding probabilities. We then compare this value
to the actual progress and if the difference is reasonable we declare E typical.
Note, however, that considering this difference by itself will not always suffice,
because the variance of the process might be too high. Our definition, in view
of Theorem 6, says that either the variance is high with respect to the set of
rounds we are considering, or the parties have made progress during these rounds
as expected.

Beyond the behavior of random variables described above, a typical execution
will also be characterized by the absence of a number of bad events about the
underlying hash function H(·) which is used in proofs of work and is modeled as
a random oracle. The bad events that are of concern to us are defined as follows;
(recall that a block’s creation time is the round that it has been successfully
produced by a query to the random oracle either by the adversary or an honest
party).

Definition 7. An insertion occurs when, given a chain C with two consecutive
blocks B and B′, a block B∗ created after B′ is such that B,B∗, B′ form three
consecutive blocks of a valid chain. A copy occurs if the same block exists in
two different positions. A prediction occurs when a block extends one with later
creation time.

Given the above we are now ready to specify what is a typical execution.

Definition 8 (Typical execution). An execution E is (ε, η, θ)-typical if the
following hold:

(a) If, for any set S of consecutive rounds, pT (S,η)
∑

r∈S nr ≥ ηm
16τγ , then

∑

r∈S

Qr(E) ≥
∑

r∈S

E[Qr|Er−1 = Er−1] − ε(1 − θf)p
∑

r∈S

nr

and
∑

r∈S

Dr(E) ≤ (1 + ε)p
∑

r∈S

nr.
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(b) For any set J indexing a set of consecutive queries of the adversary we have
∑

j∈J

Aj(E) ≤ (1 + ε)2−κ|J |

and during these queries the blocks with targets (strictly) less than τT (J) that
the adversary has acquired are (strictly) less than η(1−ε)(1−θf)

32τ2γ · m.
(c) No insertions, no copies, and no predictions occurred in E.

Remark 4. Note that if J indexes the queries of the adversary in a set S of
consecutive rounds, then |J | = q

∑
r∈S tr and the inequality in Definition 8(b)

reads
∑

j∈J Aj(E) ≤ (1 + ε)p
∑

r∈S tr.

The next proposition simplify our applications of Definition 8(a).

Proposition 3. Assume E is a typical execution in a (γ, s)-respecting environ-
ment. For any set S of consecutive rounds with |S| ≥ m

16τf ,

∑

r∈S

Dr ≤ (1 + ε)p
∑

r∈S

nr.

If in addition, E is (η, θ)-good, then
∑

r∈S

Qr ≥ (1 − ε)(1 − θf)p
∑

r∈S

nr

and any block computed by an honest party at any round r corresponds to target
at least T (r,η), and so contributes to the random variables Dr and Qr (if the r
was uniquely successful).

Proof. We first partition S into several parts with size at least m
16τf and at most

s. In view of Proposition 2, for both of the inequalities, we only need to verify
the ‘if’ part of Definition 8(a) for each part S′ of S. Indeed, by the definition of
T (S′,η) and Fact 1, pT (S′,η) ∑

r∈S′ nr ≥ ηf |S′|/γ ≥ ηm
16τγ . The last part, in view

of the definition of T (r,η), is equivalent to r being (η, θ)-good. ��
Almost all polynomially bounded executions (in κ) are typical:

Proposition 4. Assuming the ITM system (Z, C) runs for L steps, the event
“E is not typical” is bounded by exp(−Ω(min{m,κ}) + lnL). Specifically, the
bound is exp

{−ηε2(1−2δ)m
64τ3γ + 2(ln L + ln 2)

}
+ 2−κ+1+2 log L.

Proof. See the full version. ��
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6.4 Typical Executions are Good and Accurate

Lemma 2. Let E be a typical execution in a (γ, s)-respecting environment. If
Er is (η, θ)-good, then Sr+1 contains no chain that has not been extended by an
honest party for at least m

16τf consecutive rounds.

Proof. Suppose—towards a contradiction—C ∈ Sr+1 and has not been extended
by an honest party for at least m

16τf rounds. Without loss of generality we may
assume that r + 1 is the first such round.

Let r∗ ≤ r denote the greatest timestamp among the blocks of C computed by
honest parties (r∗ = 0 if none exists). Define S = {r∗ +1, . . . , r} with |S| ≥ m

16τf

and the index-set of the corresponding set of queries J = {1, . . . , q
∑

r∈S tr}.
Suppose that the blocks of C with timestamps in S span k epochs with corre-
sponding targets T1, . . . , Tk. For i ∈ [k] let mi be the number of blocks with
target Ti and set M = m1 + · · · + mk.

Our plan is to contradict the assumption that C ∈ Sr+1, by showing that
the honest parties have accumulated more difficulty than the adversary. To be
precise, note that the blocks C has gained in S sum to

∑
i∈[k]

mi

Ti
difficulty. On

the other hand, by the Chain-Growth Lemma 1, all the honest parties have
advanced during the rounds in S by

∑
r∈S Dr(E) ≥ ∑

r∈S Qr(E). Since |S| ≥
m

16τf , Proposition 3 implies that
∑

r∈S Qr(E) is at least (1−ε)(1−θf)p
∑

r∈S nr.
Therefore, to obtain a contradiction, it suffices to show that

∑

i∈[k]

mi

Ti
< (1 − ε)(1 − θf)p

∑

r∈S

nr. (1)

We proceed by considering cases on M .
First, suppose M ≥ 2M ′, where M ′ = η(1−ε)(1−θf)

32τ2γ · m (see Definition 8(b)).
Partition the part of C with these M blocks into � parts, so that each part has
the following properties: (1) it contains at most one target-calculation point,
and (2) it contains at least M ′ blocks with the same target. Note that such a
partition exists because M ≥ 2M ′ and M ′ < m. For i ∈ [�], let ji ∈ J be the
index of the query during which the last block of the i-th part was computed. Set
Ji = {ji−1 + 1, . . . , ji}, with j0 = 0. Note that Definition 8(c) implies ji−1 < ji,
and this is a partition of J . Recalling Definition 8(b), the sum of the difficulties
of all the blocks in the i-th part is at most

∑
j∈Ji

Aj(E). This holds because one
of the targets is at least τT (Ji) (since more than M ′ blocks have been computed
in Ji with this target) and so both are at least T (Ji) (since targets with at most
one calculation point between them can differ by a factor at most τ). Thus,
∑

i∈[k]

mi

Ti
≤

∑

i∈[�]
j∈Ji

Aj(E) ≤
∑

i∈[�]

1 + ε

2κ
|Ji| = (1 + ε)p

∑

r∈S

tr < (1 + ε)(1 − δ)p
∑

r∈S

nr,

where in the last step we used Requirement (R0). Requirement (R1) implies
(1+ε)(1−δ) ≤ (1−ε)(1−θf)); thus, Eq. (1) holds concluding the case M ≥ 2M ′.

Otherwise, k ≤ 2 and m1 +m2 < 2M ′. Let S′ consist of the first m
16τf rounds

of S. We are going to argue that in this case Eq. (1) holds even for S′ in the place
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of S. Since we are in a (γ, s)-respecting environment, by Fact 1, γ
∑

r∈S′ nr ≥
nr∗ |S′|. Furthermore, since r∗ is (η, θ)-good, T1 ≥ T (r∗,η) = ηf/pnr∗ . Recalling
also that T2 ≥ T1/τ , we have m1

T1
+ m2

T2
≤ m1+τm2

T1
, which in turn is at most

τM

T (r∗,η)
<

2τM ′pnr∗

ηf
≤ 2τγM ′p

∑
r∈S′ nr

ηf |S′| ≤ 32τ2γM ′p
∑

r∈S nr

ηm

and, after substituting M ′, Eq. (1) holds concluding this case and the proof. ��
Corollary 1. Let E be a typical execution in a (γ, s)-respecting environment. If
Er−1 is (η, θ)-good, then Er is m

16τf -accurate.

Proof. Suppose—towards a contradiction—that, for some r∗ ≤ r, C ∈ Sr∗ con-
tains a block which is not m

16τf -accurate and let u ≤ r∗ ≤ r be the timestamp of
this block and v its creation time. If u−v > m

16τf , then every honest party would
consider C to be invalid during rounds v, v + 1, . . . , u. If v − u > m

16τf , then in
order for C to be valid it should not contain any honest block with timestamp in
u, u + 1, . . . , v. (Note that we are using Definition 8(c) here as a block could be
inserted later.) In either case, C ∈ Sr∗ , but has not been extended by an honest
party for at least m

16τf rounds. Since Er∗−1 is (η, θ)-good, the statement follows
from Lemma 2. ��
Lemma 3. Let E be a typical execution in a (γ, s)-respecting environment and
r∗ an (ηγ, θ

γ )-good target-recalculation point of a valid chain C. For r > r∗ + τm
f ,

assume Er−1 is (η, θ)-good. Then, either the duration Δ of the epoch of C starting
at r∗ satisfies

m

τf
≤ Δ ≤ τm

f
,

or C /∈ Su for each u ∈ {r∗ + τm
f , . . . , r}.

Proof. Let T be the target of the epoch in question.
For the upper bound, assume Δ > τm

f . We show first that in the rounds
S = {r∗ + m

16τf , . . . , r∗ + τm
f − m

16τf } the honest parties have acquired more than
m
T difficulty. Note that the rounds of S are (η, θ)-good as they come before r.
Thus, by Proposition 3, the difficulty acquired in S by the honest parties is at
least

(1 − ε)(1 − θf)p
∑

r∈S

nr ≥ (1 − ε)(1 − θf)p · |S|nr∗

γ
≥ (1 − ε)(1 − θf)|S|ηf

T
>

m

T
.

For the first inequality, we used Fact 1. For the second, recall that r∗ is (ηγ, θ/γ)-
good and so pTnr∗ ≥ f(T, nr∗) ≥ ηγf . For the last inequality observe that
|S| = m

f (τ − 1/8τ) and thus follows from Requirement (R3).
Next, we observe that chain C either has a block within the epoch in question

that is computed by an honest party in a round within the period [r∗, r∗ + m
16τf ),

or by Lemma 2, C /∈ Su for each u ∈ {r∗ + m
16τf , . . . , r} ⊇ {r∗ + τm

f , . . . , r}.
Assuming the first happens, it follows that by round r∗ + τm

f − m
16τf the honest
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parties’ chains have advanced by an amount of difficulty which exceeds the total
difficulty of the epoch in question. This means that no honest party will extend C
during the rounds {r∗ + τm

f − m
16τf +1, . . . ,Δ}. Since it is assumed Δ > r∗ + τm

f ,
Lemma 2 can then be applied to imply that C /∈ Su for u ∈ {r∗ + τm

f , . . . , r}.
For the lower bound, we assume Δ < m

τf and that C ∈ Su for some u ∈ {r∗ +
Δ + 1, . . . , r}, and seek a contradiction. Clearly, the honest parties contributed
only during the set of rounds S = {r∗, . . . , r∗ +Δ}. The adversary, by Lemma 2,
may have contributed only during S′ = {r∗ − m

16τf , . . . , r∗ +Δ+ m
16τf }. Let J be

the set of queries available to the adversary during the rounds in S′. We show
that in a typical execution the honest parties together with the adversary cannot
acquire difficulty m

T in the rounds in the sets S and S′ respectively. With respect
to the honest parties, Proposition 3 applies. Regarding the adversary, assume
first T ≥ T (J) (it is not hard to verify that the case T < T (J) leads to a more
favorable bound). It follows that the total difficulty contributed to the epoch is
at most

(1 + ε)p
(

∑

r∈S

nr +
∑

r∈S′
tr

)

≤ (1 + ε)pγnr∗(|S| + |S′|) < (1 + ε)pγnr∗ · 17m

8τf
.

The first inequality follows from Fact 1 using tr < (1 − δ)nr. For the second
substitute the upper bounds on the sizes of S and S′. Next, note that r∗ is
an (ηγ, θ/γ)-good recalculation point and so f(T, nr∗) ≤ θf/γ. By Proposition 1,
pTnr∗ < f(T, nr∗)/(1 − f(T, nr∗)) ≤ (θf/γ)/(1 − θf/γ). It follows that the last
displayed quantity is at most 17(1+ε)θ

8τ(γ−θf) · m
T and recalling Requirement (R4) this

less than m
T as desired. ��

Proposition 5. Assume E is a typical execution in a (γ, s)-respecting environ-
ment. Consider a round r and a set of consecutive rounds S with |S| ≥ m

32τ2f . If
Er−1 is (η, θ)-good, then the adversary, during the rounds in S, has contributed
at most (1 − δ)(1 + ε)p

∑
r∈S nr difficulty to Sr.

Proof. Without loss of generality, we will assume in this proof that tr = (1−δ)nr

for each r ∈ S. Furthermore, we assume |S| ≤ τm
f . If this is not the case, then

we can partition S to parts of appropriate sizes and apply the arguments that
follow to each sum. The statement will follow upon summing over all parts.

By Lemma 2, for any block B in Sr, there is a block in the same chain and
computed at most m

16τf rounds earlier than it. By Lemma 3, there is at most one
recalculation point between them. Let u be the round the honest party computed
this block and T its target. Note that since E is (η, θ)-good, T ≥ T (u,η) = ηf

pnu

and the target of B is at least τ (−1)T . We are going to show that, with J the set
of queries that correspond to S, we have τ−1T ≥ T (J). This will suffice, because
(1 − δ)(1 + ε)p

∑
r∈S nr ≥ (1 + ε)p

∑
r∈S tr, and this is at least

∑
j∈J Aj in a

typical execution (Definition 8(b)).
Note first that, using Fact 1 and the lower-bound on |S|,

2−κ|J | = (1 − δ)p
∑

r∈S

nr ≥ (1 − δ)p
|S|nu

γ
≥ (1 − δ)p

mnu

32τ3fγ
.
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Recalling the definition of T (J) and using this bound,

T (J) =
η(1 − δ)(1 − 2ε)(1 − θf)

32τ3γ
· m

|J | · 2κ ≤ ηf(1 − 2ε)(1 − θf)
τpnu

<
T (u,η)

τ
≤ T

τ
,

as desired. ��
Lemma 4. Let E be a typical execution in a (γ, s)-respecting environment and
assume Er−1 is (η, θ)-good. If C ∈ Sr, then C is (ηγ, θ/γ)-good in Er.

Proof. Note that it is our assumption that every chain is (ηγ, θ/γ)-good at the
first round. Therefore, to prove the statement, it suffices to show that if a chain
is (ηγ, θ/γ)-good at a recalculation point r∗, then it will also be (ηγ, θ/γ)-good at
then next recalculation point r∗ + Δ.

Let r∗ and r∗ +Δ ≤ r be two consecutive target-calculation points of a chain
C and T the target of the corresponding epoch. By Lemma 3 and Definition 2
of the target-recalculation function, the new target will be

T ′ =
Δ

m/f
· T,

where Δ is the duration of the epoch.
We wish to show that

ηγf ≤ f(T ′, nr∗+Δ) ≤ θf/γ.

To this end, let S = {r∗, . . . , r∗ + Δ}, S′ =
{
max{0, r∗ − m

16τf }, . . . ,min{r∗ +
Δ+ m

16τf , r}}
, and let J index the queries available to the adversary in S′. Note

that, by Corollary 1, every block in the epoch was computed either by an honest
party during a round in S or by the adversary during a round in S′.

Suppose—towards a contradiction—that f(T ′, nr∗+Δ) < ηγf . Using the def-
inition of f(T, n), this implies qnr∗+Δ ln

(
1 − T ′

2κ

)
> ln(1 − ηγf). Applying the

inequality − x
1−x < ln(1 − x) < −x, valid for x ∈ (0, 1), substituting the expres-

sion for T ′ above and rearranging, we obtain

m

T
>

1 − ηγf

ηγ
· pΔnr∗+Δ.

By Propositions 3 and 5 it follows that

m

T
≤ 2(1 + ε)p

∑

r∈S′
nr ≤ 2(1 + ε)p ·

Δ + m
8τf

|S′| ·
∑

r∈S′
nr.

By Lemma 3, Δ ≥ m
τf . Thus,

Δ+ m
8τf

Δ ≤ 9
8 . Using this, Requirement (R5), and

combining the inequalities on m
T ,

γnr∗+Δ <
9(1 + ε)ηγ2

4(1 − ηγf)
· 1
|S′|

∑

r∈S′
nr ≤ 1

|S′|
∑

r∈S′
nr,

contradicting Fact 1.
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For the upper bound, assume f(T ′, nr∗+Δ) > θf/γ, which (see Proposition 1)
implies

m

T
<

γ

θ
· pΔnr∗+Δ.

Set S = {r∗ + m
16τf , . . . , r∗ +Δ− m

16τf }. Since an honest party posses C at round
r, it follows by Lemma 2 that there is a block computed by an honest party in
C during {r∗, . . . , r∗ + m

16τf − 1} and one during {r∗ +Δ− m
16τf +1, . . . , r∗ +Δ}.

By the Chain-Growth Lemma 1, it follows that the honest parties computed less
than m

T difficulty during S. In particular,

m

T
> (1 − ε)(1 − θf)p

∑

r∈S

nr ≥ (1 − ε)(1 − θf)p ·
Δ − m

8τf

|S| ·
∑

r∈S

nr.

By Lemma 3, Δ ≥ m
τf . Thus,

Δ− m
8τf

Δ ≥ 7
8 . Using this, Requirement (R6), and

combining the inequalities on m
T ,

nr∗+Δ

γ
>

7θ

8γ2
(1 − ε)(1 − θf) · 1

|S|
∑

r∈S

nr ≥ 1
|S|

∑

r∈S

nr,

contradicting Fact 1. ��
Corollary 2. Let E be a typical execution in a (γ, s)-respecting environment
and Er−1 be (η, θ)-good. If every chain in Sr−1 is (ηγ, θ

γ )-good, then Er is
(η, θ)-good.

Proof. We use notations and definitions of Lemma 3. Let CSr and let r∗ be its
last recalculation point in Er−1. Let T be the target after r∗ and T ′ the one at
r. We need to show that f(T ′, nr) ∈ [ηf, θf ]. Note that if r is a recalculation
point, this follows by Lemma 4. Otherwise, T ′ = T and ηγ ≤ f(T, nr∗) ≤ θf/γ.
Using Lemma 3, r − r∗ ≤ Δ ≤ τm

f . Thus, 1
γ nr∗ ≤ nr ≤ γnr∗ . By Fact 2 we

have f(T, nr) ≤ f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1
γ nr∗) ≥

1
γ f(T, nr∗) ≥ ηf. ��

Corollary 3. Let E be a typical execution in a (γ, s)-respecting environment.
Then every round is (η, θ)-good in E.

Proof. For the sake of contradiction, let r be the smallest round of E that is
not (η, θ)-good. This means that there is a chain C and an honest party that
possesses this chain in round r and the corresponding target T is such that
f(T, nr) �∈ [ηf, θf ]. Note that Er−1 is (η, θ)-good, and so, by Corollary 1, Er is

m
16τf -accurate. Let r∗ < r be the last (ηγ, θ/γ)-good recalculation point of C (let
r∗ be 0 in case there is no such point).

First suppose that there is another recalculation point r′ ∈ (r∗, r]. By the
definition of r∗, r′ is not (ηγ, θ/γ)-good. However, the assumptions of Lemma 4
hold, implying that C is (ηγ, θ/γ)-good. We have reached a contradiction.
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We may now assume that there is no recalculation point in (r∗, r] and so the
points r∗ and r correspond to the same target T with ηγ ≤ f(T, nr∗) ≤ θf/γ.
Note that since r∗ is an (ηγ, θ/γ)-good recalculation point and Er−1 is (η, θ)-
good, we have r−r∗ ≤ τm

f . This follows from Lemma 3, because C belongs to an
honest party at round r. Thus, 1

γ nr∗ ≤ nr ≤ γnr∗ , and so (by Fact 2) f(T, nr) ≤
f(T, γnr∗) ≤ γf(T, nr∗) ≤ θf and f(T, nr) ≥ f(T, 1

γ nr∗) ≥ 1
γ f(T, nr∗) ≥ ηf. ��

Theorem 1. A typical execution in a (γ, s)-respecting environment is m
16τf -

accurate and (η, θ)-good.

Proof. This follows from Corollaries 3 and 1. ��

6.5 Common Prefix and Chain Quality

Proposition 6. Let E be a typical execution in a (γ, s)-respecting environment.
Any θγm

8τ consecutive blocks in an epoch of a chain C ∈ Sr have been computed
in at least m

16τf rounds.

Proof. Suppose—towards a contradiction—that the blocks of C where computed
during the rounds in S∗, for some S∗ such that |S∗| < m

16τf . Consider an S such
that S∗ ⊆ S and |S| = m

16τf and the property that a block of target T in C
was computed by an honest party in some round v ∈ S. Such an S exists by
Lemmas 2 and 3. By Propositions 3 and 5, the number of blocks of target T
computed in S is at most

(1+ε)(2−δ)pT
∑

u∈S

nu ≤ (1+ε)(2−δ)pTγnv|S| ≤ (1 + ε)(2 − δ)γ|S|θf
1 − θf

≤ θγm

8τ
.

For the first inequality we used Fact 1, for the second Fact 1 and that round v
is (η, θ)-good, and for the last one Requirement (R2). ��

Let us say that two chains C and C′ diverge before round r, if the timestamp
of the last block on their common prefix is less than r.

Lemma 5. Let E be a typical execution in a (γ, s)-respecting environment. Any
C, C′ ∈ Sr do not diverge before round r − m

16τf .

Proof. Consider the last block on the common prefix of C and C′ that was com-
puted by an honest party and let r∗ be the round on which it was computed
(set r∗ = 0 if no such block exists). Denote by C∗ the common part of C and C′

up to (and including) this block and let d∗ = diff(C∗) and S = {i : r∗ < u < r}.
We claim that

(1 + ε)(1 − δ)p
∑

u∈S

nu ≥
∑

u∈S

Qu. (2)

In view of Proposition 5, it suffices to show that the difficulty which the adversary
contributed to C and C′ is at least the right-hand side of (2). The proof of this
rests on the following observation.
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Consider any block B extending a chain C1 that was computed by an honest
party in a uniquely successful round u ∈ S. Consider also an arbitrary d ∈ R

such that diff(C1) ≤ d < diff(C1B). We are going to argue that if another chain of
difficulty at least d exists, then the block that “contains” the point of difficulty d
was computed by the adversary. More formally, suppose a chain C2B

′ exists such
that B′ �= B and diff(C2) ≤ d < diff(C2B

′). We observe that B′ was computed
by the adversary. This is because no honest party would extend C2 at a round
later than u since diff(C2) ≤ d < diff(C1B); on the other hand, if an honest party
computed B′ at some round u′ < u, then no honest party would have extended
C1 at round u since diff(C1) ≤ d < diff(C2B

′); finally, note that u is also ruled
out since it was a uniquely successful round by assumption.

Returning to the proof of (2) note that, by the Chain-Growth Lemma 1,
diff(C′) and diff(C) are at least d∗ +

∑
u∈S Qu. To show (2) it suffices to argue

that for all d ∈ (d∗,
∑

u∈S Qu] there is always a B′ as above that lies either on C,
or on C′, or on their common prefix. But this is always possible since B cannot
be both on C and C′ (note that by the definition of r∗, B cannot be on their
common prefix). To finish the proof note that (2) contradicts Proposition 3 for
large enough S. ��
Theorem 2 (Common Prefix). Let E be a typical execution in a (γ, s)-
respecting environment. For any round r and any two chains in Sr, the common-
prefix property holds for k ≥ θγm

4τ .

Proof. Suppose common prefix fails for two chains C and C′ at round r. At least
k/2 of the blocks in each chain after their common prefix, lie in a single epoch.
Proposition 6 implies that C and C′ diverge before round r − m

16τf , contradicting
Lemma 5. ��
Theorem 3 (Chain Quality). Suppose E is a typical execution in a (γ, s)-
respecting environment. For the chain of any honest party at any round in E,
the chain-quality property holds with parameters � = m

16τf and μ = (1 + δ/2)λ <

(1 − δ/2), where λ = max{tr/nr} < (1 − δ).

Proof. Let us denote by Bi the i-th block of C so that C = B1 . . . Blen(C) and
consider L consecutive blocks Bu, . . . , Bv. Define L′ as the least number of con-
secutive blocks Bu′ , . . . , Bv′ that include the L given ones (i.e., u′ ≤ u and
v ≤ v′) and have the properties (1) that the block Bu′ was computed by an
honest party or is B1 in case such block does not exist, and (2) that there exists
a round at which an honest party was trying to extend the chain ending at block
Bv′ . Observe that number L′ is well defined since Blen(C) is at the head of a
chain that an honest party is trying to extend. Denote by d′ the total difficulty
of these L′ blocks. Define also r1 as the round that Bu′ was created (set r1 = 0
if Bu′ is the genesis block), r2 as the first round that an honest party attempts
to extend Bv′ , and let S = {r : r1 ≤ r ≤ r2}. Note that |S| ≥ m

16τf .
Now let x denote the total difficulty of all the blocks from honest parties that

are included in the L blocks and—towards a contradiction—assume that

x <
[
1 −

(
1 +

δ

2

)
λ
]
d ≤

[
1 −

(
1 +

δ

2

)
λ
]
d′. (3)
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Suppose first that all the L′ blocks {Bj : u′ ≤ j ≤ v′} have been com-
puted during the rounds in the set S. Recalling Proposition 5, we now argue the
following sequence of inequalities.

(1 + ε)(1 − δ)p
∑

u∈S

nu ≥ d′ − x ≥
(
1 +

δ

2

)
λd′ ≥

(
1 +

δ

2

)
λ

∑

u∈S

Qu. (4)

The first inequality follows from the definition of x and d′ and Proposition 5. The
second one comes from the relation between x and d′ outlined in (3). To see the
last inequality, assume

∑
u∈S Qu > d′. But then, by the Chain-Growth Lemma 1,

the assumption than an honest party is on Bv′ at round r2 is contradicted as all
honest parties should be at chains of greater length. We now observe that (4)
contradicts Proposition 3, since

(
1 +

δ

2

)
λ

∑

u∈S

Qu > (1 − ε)(1 − θf)
(
1 − δ

2

)
p

∑

u∈S

nu ≥ (1 + ε)(1 − δ)p
∑

u∈S

nu,

where the middle inequality follows by Requirement (R2).
To finish the proof we need to consider the case in which these L′ blocks

contain blocks that the adversary computed in rounds outside S. It is not hard
to see that this case implies either a prediction or an insertion and cannot occur
in a typical execution. ��

6.6 Persistence and Liveness

Theorem 4. Let E be a typical execution in a (γ, s)-respecting environment.
Persistence is satisfied with depth k ≥ θγm

4τ .

Proof. Suppose an honest party P has at round r a chain C such that C�k contains
a transaction tx.

We first show that the k ≥ θγm
4τ blocks of C cannot have been computed

in less than m
16τf rounds. Suppose—towards a contradiction—that this was the

case. By Lemma 3, at least θγm
8τ of the k blocks belong to a single epoch and

Proposition 6 is contradicted.
To show persistence, note that if any party P ′ �= P has a chain C′ at round

r and C�k is not a prefix of C′, then Lemma 5 is contradicted. Next, let r′ > r
be the first round after r such that an honest party P ′ has a chain C′ such that
C�k is not a prefix of C′. By the note above and the minimality of r′ it follows
that no honest party had a prefix of C′ at round r′ − 1. Thus, C′ existed at
round r′ − 1 and P ′ had another chain C′′ at that round such that C�k � C′′

and diff(C′′) < diff(C′). We now observe that C′ and C′′ contradict Lemma 5 at
round r′ − 1. ��
Theorem 5. Let E be a typical execution in a (γ, s)-respecting environment.
Liveness is satisfied for depth k with wait-time m

16τf + γk
ηf(1−ε)(1−θf) .
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Proof. Suppose a transaction tx is included in any block computed by an honest
party for m

16τf consecutive rounds and let S denote the set of γk
ηf(1−ε)(1−θf) rounds

that follow these rounds. Consider now the chain C of an arbitrary honest party
after the rounds in S. By Lemma 2, C contains an honest block computed in the

m
16τf rounds. This block contains tx. Furthermore, after the rounds in the set
S, on top of this block there has been accumulated at least

∑
r∈S Qr amount

of difficulty. We claim that this much difficulty corresponds to at least k blocks.
To show this, assume |S| ≤ s (or consider only the first s rounds of S). Let T
be the smallest target computed by an honest party during the rounds in S and
let u be such a round. It suffices to show T

∑
r∈S Qr ≥ k. Indeed,

T
∑

r∈S

Qr ≥ (1 − ε)(1 − θf)pT
∑

r∈S

nr ≥ (1 − ε)(1 − θf)
pTnu|S|

γ
≥ k.

The first inequality follows from Proposition 3, the second by Fact 1, and for the
last one we substitute the size of S and use that pTnu ≥ f(T, nu) ≥ ηf (since u
is (η, θ)-good). ��

A Martingale Sequences and Other Mathematical Facts

Definition 9 [19, Chap. 12]. A sequence of random variables X0,X1, . . . is a
martingale with respect to the sequence Y0, Y1, . . . , if, for all n ≥ 0, (1) Xn is a
function of Y0, . . . , Yn, (2) E[|Xn|] < ∞, and (3) E[Xn+1|Y0, . . . , Yn] = Xn.

Theorem 6 [18, Theorem 3.15]. Let X0,X1, . . . be a martingale with respect
to the sequence Y0, Y1, . . . . For n ≥ 0, let

V =
n∑

i=1

var(Xi −Xi−1|Y0, . . . , Yi−1) and b = max
1≤i≤n

sup(Xi −Xi−1|Y0, . . . , Yi−1),

where sup is taken over all possible assignments to Y0, . . . , Yi−1. Then, for any
t, v ≥ 0,

Pr
[
(Xn ≥ X0 + t) ∧ (V ≤ v)

] ≤ exp
{

− t2

2v + 2bt/3

}

.

Fact 2. Suppose f : R≥0 → R≥0 is concave and f(0) ≥ 0. Then, for any x, y ∈
[0,∞) and λ ∈ [1,∞), f(x/λ) ≥ f(x)/λ, f(λx) ≤ λf(x), f(x+y) ≤ f(x)+f(y).

The following well-known inequalities may be used without reference.

Fact 3. (1) 1 + x < ex, for all x. (2) − x
1−x < ln(1 − x), for x ∈ (0, 1). (3)

x
1+x/2 < ln(1 + x) < x, for x > 0.
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