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Abstract. A parametrized verification problem asks if a parallel com-
position of a leader process with some number of copies of a contributor
process can exhibit a behavior satisfying a given property. We focus on
the case of pushdown processes communicating via shared memory. In a
series of recent papers it has been shown that reachability in this model is
PSPACE-complete [Hague’l1], [Esparza, Ganty, Majumdar’13], and that
liveness is decidable in NEXPTIME [Durand-Gasselin, Esparza, Ganty,
Majumdar’15]. We show that verification of general regular properties of
traces of executions, satisfying some stuttering condition, is NEXPTIME-
complete for this model. We also study two interesting subcases of this
problem: we show that liveness is actually PSPACE-complete, and that
safety is already NEXPTIME-complete.

1 Introduction

A parametrized verification problem asks if a given property holds for the parallel
composition of a leader system with some arbitrary number of copies of a con-
tributor system (see Fig. 1). This formulation appears already in a seminal paper
of German and Sistla [19], see also the survey [3] for a recent overview of the
literature. In this work, following [12,15,20,21,27], we consider parametric push-
down systems, where both the leader and contributors are pushdown automata,
and communication is via shared variables without any locking primitives. Our
primary motivation is the analysis of concurrent programs with procedure calls.
While previous work on parametric pushdown systems focused mainly on reach-
ability, or repeated reachability for the leader process, we show here that a large
class of omega-regular properties is decidable for these systems.

In his pioneering work [21] Kahlon proposed parametrization as an abstrac-
tion step that avoids the undecidability barrier. A system composed of two copies
of a pushdown automaton communicating via one register can simulate Turing
machines [35], so no effective analysis of such systems is possible. Yet, if instead
of two copies we ask if a system composed of an arbitrary number of copies of the
pushdown automaton can write a specified value to a register, then the problem
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Fig. 1. A system consisting of one leader pushdown automaton and a number of copies
of a contributor pushdown automaton.

becomes decidable. Later Hague [20] showed that reachability is also decidable
for a more general architecture proposed by German and Sistla. Namely he con-
sidered systems with a leader pushdown automaton and an arbitrary number of
copies of a contributor pushdown automaton; cf. Fig. 1. Consecutively, Esparza
et al. [15] have proved that the problem is PSPACE-complete, thus surprisingly
easy for such type of problem. La Torre et al. [27] showed that the reachabil-
ity problem remains decidable if instead of pushdown automata one considers
higher-order pushdown automata, or any other automata model with some weak
decidability properties. Reachability was also shown to be decidable for para-
metric pushdown systems with dynamic thread creation [32].

Our motivating question is “what kind of linear-time properties are decidable
for parametric pushdown systems?” Suppose that we want to check a universal
reachability property: whether for every number of components, every run finally
writes a specified value to the register. This problem translates into a safety
query: does there exist some number of contributors, and some maximal run
that does not write the specified value to the register? Maximality means here
either an infinite run, or a finite run that cannot be prolonged. The maximality
condition is clearly essential, as otherwise we could always take the empty run
as a witness.

We show as our main result that verification of parametric pushdown systems
is decidable for all regular properties subject to some stuttering condition linked
to the fact that the number of contributors is not determined. We give pre-
cise complexities of the parametric verification problem for both the case when
the property is given as a Biichi automaton, as well as when it is given by an
LTL formula (NEXPTIME-complete). On the way we revisit the liveness problem
studied in [12] and give a PSPACE algorithm for it. This answers the question
left open by [12], that provided a PSPACE lower bound and a NEXPTIME upper
bound for the liveness problem. It is somewhat surprising that for this kind of
parametrized systems, checking liveness is not more difficult computationally
than checking reachability, unlike for many other families of parametrized or,
more generally, infinite-state systems (see e.g. Chap. 5 in [3] for a discussion and
more references).
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Another intermediate result of independent interest concerns universal reach-
ability, which turns out to be coNEXPTIME-complete. The lower bound shows
that it is actually possible to force a fair amount of synchronization in the para-
metric model; we can ensure that the first 2" values written into the shared
register are read in the correct order and none of them is skipped. So the
coNEXPTIME-hardness result can be interpreted positively, as showing what can
be implemented in this model.

Related Work. Parametrized verification of shared-memory, multi-threaded pro-
grams has been studied for finite-state threads e.g. in [2,23] and for pushdown
threads in [1,5,25,26]. The decidability results in [1,5,25,26] fall in the category
of reachability analysis up to a bounded number of execution contexts, and in
[1,5], dynamic thread creation is allowed. The main difference with our setting
is that synchronization primitives are allowed in those models, so decidability
depends on restricting the set of executions. Our model does not restrict the
executions, but has a weaker form of synchronization. In consequence our model
rather over-approximates the set of executions while the approaches cited above
under-approximate it.

In our model we have shared registers but no locks. Another option is to have
locks and no registers. Analysis of pushdown systems with unrestricted locks is
undecidable [22]. Interestingly, it becomes decidable for some locking disciplines
like nested [22] or contextual locking [8]. This model remains decidable even when
extended to dynamic pushdown networks [6]. Even reachability of regular sets of
configurations is decidable in this model, provided it has a finitely many global
locks together with nested locking [28,30] or contextual locking [29]. Regular
sets of configurations can compensate to some extent the lack of communication
in the model, for example they can describe globally inconsistent configurations.

Besides the cited papers, there are numerous results on the German and Sistla
model beyond the reachability property, but restricted to finite state processes.
German and Sistla have already considered LTL properties of the leader or of the
contributors. They have also studied the setting without a leader and observed
that it is much easier to handle. Emerson and Kahlon have considered stuttering-
invariant properties [13] of the whole system of finite state processes. Recently,
Bouyer et al. [7] considered a probabilistic version without leader and only finite-
state contributors. They consider the problem of almost-sure reachability, which
asks if a given state is reached by some process with probability 1 under a
stochastic scheduler. They exhibit the existence of positive or negative cut-offs,
and show that the problem can be decided in EXPSPACE, and is at least PSPACE-
hard.

Finally, we should mention that there is a rich literature concerning the verifi-
cation of asynchronously-communicating parametrized programs, that is mostly
related to the verification of distributed protocols and varies for approaches and
models (see e.g. [9,14,19,24] for some early work, and [3,11,31,33] and refer-
ences therein). Most of these papers are concerned with finite-state programs
only, which are not the main focus of our results.
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Outline of the Paper. Section2 starts by introducing the problems considered
in this paper, and states our main results. In Sect.3, we present the formal
definitions of parametrized pushdown systems. In Sect.4 we study the liveness
problem, and in Sect. 5 the safety problem. Finally, we show in Sect. 6 how these
results may be used to verify more general w-regular properties. Throughout the
paper we try to outline our arguments and give some intuitions for the proofs.
The detailed proofs can be found in the in the full version of the paper [17].

2 Problem Statement and Overview of Results

The parametrized pushdown systems studied by [15,20,21] are described by two
transition systems D and C, traditionally called leader and contributor, which
are both pushdown systems (cf. Fig.1). Parametrization amounts to say that
arbitrarily many contributor instances interact with one leader, and that con-
tributors are anonymous. All participants communicate over lock-free, shared
variables with finite domains. We distinguish read/write actions of the leader
from those of contributors, for this we have two alphabets Xp and X¢. Since
contributors do not have identities we do not distinguish between actions of
different contributors.

The question we ask in this paper is which kind of linear-time proper-
ties of (X'p U X)-labeled traces of parametrized pushdown systems can be
model-checked. Unsurprisingly, it turns out that we cannot hope for model-
checking arbitrary regular properties. In general, model-checking is undecidable
because the ability to refer to actions of both leader and contributors allows
to single out exactly one contributor instance. Since two communicating push-
down systems [35] can simulate a Turing machine, undecidability follows then
immediately.

The solution to the above problem is to consider properties that are adapted
to the parametrized setting. Technically we consider linear-time properties P
where actions of contributors can be replicated: if ugaguiaius--- € P with
a; € Yo, u; € X5, and f: N — Nt then uoag(o)ula{(l)uz -+ € P, too. We call
such properties c-expanding.

A related, classical notion is stuttering. A property P is stutter-invariant if for
every finite or infinite sequence agay - -+ and every function f : N — NT we have
apay - -+ € Piff ag(o)a{(l) -+- € P. Observe that every stutter-invariant property
is c-expanding. Stutter-invariance is a natural requirement in the verification
of general concurrent systems, and moreover well studied, e.g. for LTL they
correspond to the fragment LTL\X [16,34]. Stutter-invariance is also common
in parametrized verification [3], and for some synchronization primitives it allows
to recover decidability in the finite-state case [13].

We will consider regular properties on both finite and infinite traces of para-
metrized systems, described either by LTL formulas or by Biichi automata with
action labels from Yo U Xp.
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Our main result is that model-checking c-expanding, w-regular properties’
of parametrized pushdown systems is decidable, and NEXPTIME-complete.

Theorem 1. The following question is NEXPTIME-complete: given a parame-
trized pushdown system S and a c-expanding w-regular property P over S
(described by a Biichi automaton or by an LTL formula), determine if S has
some maximal trace in P.

We list some particular instances of regular c-expanding w-properties, that
are both interesting on their own, and essential for our decision procedure:

1. The reachability problem asks if the parametrized pushdown system has some
trace containing a given leader action T.

2. The liveness (repeated reachability) problem asks if the parametrized push-
down system has some trace with infinitely many occurrences of a given leader
action T.

3. The universal reachability problem asks if every maximal trace of the para-
metrized pushdown system contains a given leader action T.

4. The complement of the previous question is the maz-safety problem. It asks
if the parametrized pushdown system has some maximal trace that does not
contain a given leader action T.

Ezxample 1. Let us imagine the system from Fig.1 that works as follows: first
some contributors propose values, then the leader chooses some proposed value
and announces this choice to contributors so that afterwards all the contributors
should use only this value. For such a system one may be interested to verify if
for every number of contributors every run satisfies:

1. The leader eventually decides on the value.

2. If the leader decides on the value then the contributors use only this value.

3. On runs where only one value is used infinitely often, some correctness prop-
erty holds.

Following other works on the subject we will rather prefer existentially quanti-
fied questions, where we ask whether there is some number of contributors and
some run satisfying a property. Solutions to the reachability problem from the
literature can be used to verify the second property, as its negation is “there
is some run where the leader decides on a value and then a contributor uses a
different value”. The negation of the first property corresponds to max-safety:
“there is some maximal run without the leader deciding on a value”. The third
property is a more complicated liveness property that is neither reachability nor
safety. (Il

Since max-safety and liveness problems are important steps towards our main
result we also establish their exact complexities.

! By abuse of language we call them w-regular although they may contain finite and
infinite sequences.



160 M. Fortin et al.

Theorem 2. The maz-safety problem for parametrized pushdown systems is
NEXPTIME-complete. It is NP-complete when contributors are finite-state systems.

Theorem 3. The liveness problem for parametrized pushdown systems is
PSPACE-complete.

The proof of Theorem 1 uses Theorems 2 and 3, and one more result, that is
interesting on its own. Note that both the max-safety and liveness problems talk
about one distinguished action of the leader, while c-expanding properties refer
to actions of both leader and contributors. Perhaps a bit surprisingly, we show
below that it suffices to consider only properties that refer to leader actions.

Theorem 4. For every parametrized pushdown system S, there exists a para-
metrized pushdown system S such that for every c-expanding property P over

traces of S there exists a property P over sequences of leader actions of S such
that:

1. S has a finite (resp. infinite) mazimal trace in P iff S has a finite (resp. infi-
nite) mazximal trace whose projection on leader actions is in P;

2. every infinite Tun of S has infinitely many writes of the leader;

3. S has an infinite run iff S has one.

System S has size linear in the size of S, and can be constructed in polynomial
time. If P is a reqular, respectively LTL property, then so is P. An automaton
or LTL formula of linear size for P is effectively computable from the one for P.

3 Parametrized Pushdown Systems

In this section we recall the model of parametrized pushdown systems of [20] and
its semantics. We start with some basic notations.

A multiset over a set I is a function M : B — N. We let [M| =3 _, M(x).
The support of M is the set {x € E : M(z) > 0}. For n € N, we write nM,
M + M’ and M — M’ for the multisets defined by (nM)(xz) =n- M(x), (M +
M) (z) = M(z)+ M'(z) and (M — M’)(z) = max(0, M (z) — M'(z)). We denote
by [z] the multiset containing a single copy of x, and [x1,...,z,] the multiset
[x1] + ... + [zn]. We write M < M’ when M (z) < M'(x) for all x.

A transition system with actions over a finite alphabet X' is a tuple (S, 6, Sinit)
where S is a (finite or infinite) set of states, 6 C S x X' x S is a set of transitions,
and s;n; € S the initial state. We write s — s’ (for u € X*) when there exists a
path from s to s’ labeled by u. A trace is a sequence of actions labeling a path
starting in s;pi¢; so u is a trace if sip; — s’ for some s'.

A pushdown system is a tuple (Q, X, I'y A, @init, Ainit) consisting of a finite
set of states (), a finite input alphabet X', a finite stack alphabet I', a set of
transitions A C (Q x I') x (X U {e}) x (Q x I'*), an initial state qinit € Q,
and an initial stack symbol A;,;; € I'. The associated transition system has
Q x I'* as states, @initAinit as the initial state, and transitions gAa = ¢’a’a for
(¢, Aja,q, ") € A.
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We proceed to the formal definition of parametrized pushdown systems.
Given a leader process D and a contributor process C, a system consists of one
copy of D and arbitrarily many copies of C communicating via shared registers.
For simplicity we assume that there is a single, finite-valued shared register (in
the full version of the paper [17] we show how to reduce the case of several reg-
isters to that with one register). We write G for the finite set of register values,
and use g, h to range over elements of G. The initial value of the register is g;p:.
Since only processes of type C are parametrized we distinguish the read/write
actions of C and D, by using disjoint action sets: Yo = {7(g9),w(g) : g € G}
and Xp = {r(g),w (g) : g € G}. Both processes C and D are (possibly infinite)
transition systems with read/write actions:

C:<S75QSXECXS,SZ'””> D:<T,AQT><EDXT,tth> (1)

In this paper we will consider the special case where C and D are pushdown
transition systems:

Ac = (P, 5c,Tc, 6, pinit, AS i) Ap ={(Q, Xp, I'p, A, Ginit, ALY (2)

In this case the transition system C from (1) is the transition system associated
with Ac: its set of states is S = P x (I'c)* and the transition relation ¢ is defined
by the push and pop operations. Similarly, the transition system D is determined
by Ap. When stating general results on parametrized pushdown systems we will
use the notations from Eq. (1); when we need to refer to precise states, or use
some particular property of pushdown transition systems, we will employ the
notations from Eq. (2).

So a parametrized pushdown system S consists of an arbitrary number of
copies of C, one copy of D, and a shared register. A configuration (M € Nt €
T,g € G) of S consists of a multiset M counting the number of instances of C
in a given state, the state ¢ of D and the current register value g.

To define the transitions of the parametrized pushdown system we need to
extend the transition relation & of C to multisets: let M < M’ if s 5 &' in
0, M(s) > 0, and M' = M — [s] + [¢'], for some s,s" € S. Observe also that
multiset transitions do not modify the size of the multiset. The transitions of
the parametrized pushdown system are either transitions of D (the first two
cases below) or transitions of C (the last two cases):

(M, t,g) U (0, h) it ¢ 20, 450 A,

(M, t,9) "L, ¢, 1) itt 2% ¢ in Aand h =g,
(M, t,9) 25 (0 t, ) if M M, 0 in s,
(M, t, ) 2 (M7, h) it M 2" M7 in 6 and h = g.
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A run of § from a configuration (M,t,g) is a finite or an infinite sequence of
transitions starting in (M, ¢, g). A run can start with any number n of contrib-
utors, but then the number of contributors is constant during the run. A run
is 4nitial if it starts in a configuration of the form (n[sint], tinit, Ginit), for some
n € N. It is maximal if it is initial and cannot be extended to a longer run.
In particular, every infinite initial run is maximal. A (mazimal) trace of the
parametrized pushdown system is a finite or an infinite sequence over Yo U Xp
labeling a (maximal) initial run.

4 Liveness

We show in this section that liveness for parametrized pushdown systems has
the same complexity as reachability, namely PSPACE-complete (Theorem 3). The
lower bound comes from reachability [15], and our contribution is to improve the
upper bound from NEXPTIME [12] to PSPACE. We call a run of the parametrized
pushdown system a Biichi run if it has infinitely many occurrences of the leader
action T. So the problem is to decide if a given parametrized pushdown system
has a Biichi run.

Our proof has three steps. The first one relies on a result from [12], showing
that it suffices to bound the stacks of contributors polynomially. This allows
to search for ultimately periodic (lasso-shaped) runs of the parametrized push-
down system (Corollary 1), as in the case of a single pushdown system. The next
step extends the technique introduced in [27] for the reachability problem, to
Biichi runs: we reduce the search for Biichi runs to the existence of some run
of the leader pushdown system, that is feasible in the global parametrized sys-
tem (Lemma2). The last step is the observation that we can replace the leader
process by a finite-state system using downward closure (Lemma 3). Overall our
procedure yields a PSPACE algorithm for the liveness problem (Theorem 3).

Finite-State Contributors. As observed in [12], parametrization allows to
replace pushdown contributors by finite-state contributors, preserving all behav-
iors of the leader. The reason is that any behavior of some contributor instance
can be replicated arbitrarily (but finitely many times). To state the result of [12]
we need the notion of effective stack-height for a pushdown system. Consider a
possibly infinite run p = g1y 2 e 22 .. of a pushdown system. We write
a; = ata, where of is the longest suffix of «; that is also a proper suffix of
aj for all j > i. The effective stack-height of a configuration g;a; in p is the
length of of. (Notice that even though it is never popped, the first element of
the longest common suffix of the (a;);>; may be read, hence the use of proper

suffixes).

Remark 1. Tt is folklore that every infinite run of a single pushdown system
contains infinitely many configurations with effective stack-height one.

By Cn we denote the restriction of the contributor pushdown A¢ to runs in
which all configurations have effective stack-height at most N. More precisely,
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Cn is the finite-state system with set of states {pa € PI'% : |a| < N}, and
transitions pa = qo/ if pac = qa’a’” in A for some a”. Note that Cy is effectively
computable in PSPACE from A¢ and N given in unary. One key idea in [12] is
that when looking for Biichi runs of pushdown parametrized pushdown systems,
C can be replaced by Cn for N polynomially bounded:

Theorem 5 (Theorem 4 in [12]). Let N > 2|P|?|I'¢|. The parametrized push-
down system S has some Biichi run iff the parametrized pushdown system Sy
obtained from S by replacing C by Cn, has some Biichi run.

The proof of the above theorem yields a similar result for finite runs. We state
this in the next lemma, as we need to refer later to the form of configurations
that are reachable in Sy . The proof of the lemma relies on “distributing” the run
of one contributor on the runs of two contributors, thereby decreasing the height
of the stack. Recall that configurations of S are of the form ([s1,...,sn],%,9),
where the n contributor instances have states sq,...,s,, the leader has state ¢,
and the shared register has value g.

Lemma 1. Let N > 2|P*|Ic| + 1. A configuration ([p1aa,...,pnan),t,g) of
Sy is reachable iff there exists a reachable configuration of S of the form
([plalﬁla cee 7pnanﬁn]atag): fOT’ some ﬂ’i € Fé

Notation. For the sake of clarity we write throughout the paper Cgy, instead
of Cy with N = 2|P?|I'c| 4 2, and Sjy, for the parametrized pushdown system
with contributor process Cpy, and leader process D. We will use the notation
(Pfin, X, 6, pisy) for the finite-state system Cpy,, and continue to write Ap =
(Q,%Yp, I'p, A, Ginit, AP .,) for the pushdown system D.

Theorem 5 and Remark 1 show that the existence of Biichi runs boils down
to the existence of “ultimately periodic runs”:

Corollary 1. The parametrized pushdown system S has a Bichi Tun iff there
is a run of Sgn, of the form

([P, tinits Ginit) — (M, t1,9) — (M, ta,g) = ...
for somen €N, ge G, M € (Pg,)", u,v € (¥c U Xp)*, where:

— v ends by an action from Xp and contains T, and
— all configurations t; € QI'}, of D have effective stack-height one, the same
control state, and the same top stack symbol.

Capacities and Supported Loops. Our next goal is a PSPACE algorithm for
the existence of ultimately periodic runs of Sg,. Since the reachability problem
is decidable in PSPACE, we will focus on loops in Sgy, (i.e., runs of the form

(M,t,qg) =, (M,t', g) as in Corollary 1) and adapt the proof for the reachability
problem proposed in [27].
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In a nutshell, the idea of [27] is to split a parametrized pushdown system
into a part that concerns the leader, and a part that concerns the contributors.
What actually matters are the values that the contributors can write into the
register because once these values are written they can be repeatedly written on
demand, since we are in a parametrized setting. This information will be sum-
marized by the notion of capacity. The leader, resp. any individual contributor,
can work with an additional capacity that abstracts the details of runs of other
contributors, by recording only the effect on the shared register. Of course, the
capacity needs to be validated at some point, leading to the notion of “supported
run”. The additional challenge is that this run should give a loop in the original
system.

Following [27], Sk, splits into a finite-state system Cf, representing the
“capacity-aware” contributor, and a pushdown system D", representing the
“capacity-aware” leader.

Formally, there is a new set of actions ¥, = {v(g) : ¢ € G} denoting first
contributor writes. In addition, each of Cf’%n and D" have a component K —
the capacity — that stores the values that contributors have already written. The
set of control states of D" is P(G) X Q X G, and the initial state is (0, giit, Ginat)-
The input and the stack alphabets, Y'p and I'p, are inherited from D. So a
configuration of D* has the form (K C G, t € QI'},, g € G). The transitions of
D~ are:

w(h) (h)

(K,t,g) —5(K,t',h) if t =% 1 in A,
(h)

(K. t,9) " (5, 1/ 1) ift =% ¢ in Aand h € KU{g},
(K.t,9) "L (K U{R)t,h)  ith¢K.
The finite transition system Cf, is defined similarly, it just follows in addition
the transitions of D" (first line below). The set of states of Cf,, is P(G) x Ppn X G,
input alphabet X¢, and initial state (0, pfmt, ginit). The transitions of Cﬁn are:

r(h) V<h)

(K,p,g) 2L (K,p, h),  (K,p,g) Z25 (K,p,h), (K,p,q) 225
(K,p,g) U(h) w(h)

—2(K,p',h) ifp =L p indand he K
(K7pvg) ;(K7p/ah) lpr—>p/ 1n5andh€KU{g}

(K U{h},p,h)

7(h)

Note that in both D* and C* some additional reads r(h),7(h) are possible when
h € K — these are called capacity-reads.

Notation. We write Xp , for ¥p U X,,. Similarly for X¢ , and X¢ p,. By v|s
we will denote the subword of v obtained by erasing the symbols not in Y. Note
that the value of the register after executing a trace v, in both Cf,, and D~, is
determined by the last action of v. We denote by last(v) the register value of
the last action of v (for v non-empty).

We now come back to examining when there exists an ultimately periodic
run of Sg,. Clearly, a run (or loop) of Sp,, induces a run (or loop) of D*, but the
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converse is not true. For the other direction we extend the notion of supported
trace [27] to w-support. Informally, a trace v of D* is called w-supported when
(1) for each first write v/(h) in v there is a trace of Cf, witnessing the fact that a
contributor run can produce the required action w(h), and (2) all witness traces
can be completed to loops in Cf,,.

Definition 1. Consider a word v = viv(hy) -« vV (hm)vm+1 € 2., where
Vi,.oo, Umy1 € Xh, and hy, ..., hy € G are pairwise different register values.
Let p1,...,pm € Pay be states of Cgy, .

We say that v is w-supported from (p1,...,pm) if for every 1 < i < m there
is some trace u' € (Yo p.)* of C,, of the form

u' = ujv(hy) - iy (hi) Whe) uiyy (B g, 1

such that: (i) u'|s,, = v, and (ii) (0,p;,9) i (K, pi,g) in Cf,, where g =
last(v).

Note that K = {hy,...,hp} in the above definition, and that u}|s, , = v;
holds for all j. The next lemma states that the notions of capacity and of w-
support suffice for checking the existence of Biichi runs. The intuition behind
the proof of the lemma is that a finite number of contributor instances, starting
in one of the states p;, can simultaneously ensure that all capacity-reads are
possible, and get back to state p;.

Lemma 2. The parametrized pushdown system S has some Buchi run iff there
is some reachable configuration (M, qAx,g) of Shn and a word v € X, such
that:

1. D" has a run of the form (0, qA, g) = (K,qAd’,g), and T appears in v.
2. v is w-supported from some (p1,...,Pm) such that [p1,...,pm] < M.

Observe that by Definition 1, we have m < |G| in Lemma 2.

Algorithm. Recall that a word w is a subword of v, written v C v, if u is
obtained from v by erasing some symbols. The downward closure of a language
LCXY*isL|={ue X*:3ve L.uLl v}. By a classical result in combinatorics
(Higman’s lemma) we know that the downward closure of any language is regular,
however not effective in general. For pushdown systems it is effective [10] and a
finite-state automaton of exponential size can be computed on-the-fly in PSPACE.

For our PSPACE algorithm we first observe that the capacity-aware leader
D" can be replaced by its downward closure, since adding some transitions of
the leader does not affect the support of contributors:

Lemma 3. Let v = viv(hy) - 0 (hum )Umr1 be w-supported from pi, ..., pm,
and let v; C T, for every j. Assume that T =T1v(h1) -+ UV (A )Um41 Satisfies
last(v) = last(v). Then U is also w-supported from (p1,...,Dm)-
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The proof of Theorem 3 is based on Lemmas 2 and 3. The algorithm checks
emptiness of the product of at most |G|+ 1 finite-state automata of exponential
size — the automaton for the downward closure, and the automata for w-support.
Together with a reachability check for the initial trace segment, we get a PSPACE
algorithm for liveness.

5 Max-Safety

Recall that universal reachability amounts to ask that some special action T of
the leader occurs in every trace, no matter how many contributor instances are
around. This is a typical question to ask when we are interested in something
that is computed by a parametrized system. The max-safety problem is just the
complement of universal reachability. A (maximal) safe run is a (maximal) run
that does not contain T.

We show in this section that the max-safety problem is NP-complete when
contributors are finite-state systems, and NEXPTIME-complete when contributors
are pushdown systems (the leader is in both cases a pushdown system). As for
liveness, we can reduce the second case to the first one, thus obtaining the
NEXPTIME upper bound. The lower bound is more challenging.

Set Semantics. As a first step we will introduce a set semantics of parametrized
pushdown systems that is equivalent to the multiset semantics of Sect.3 when
only finite traces are considered. The idea is that since the number of contributors
is arbitrary, one can always add some contributor instances that copy all the
actions of a given contributor. So once a state of C is reached, we can assume that
we have arbitrarily (but finitely) many copies of C in that state. In consequence,
multisets can be replaced by sets. Very similar ideas have been already used
in [15,27]. Here we need to be a bit finer because we are interested in mazimal
runs.

Consider a parametrized pushdown system with the notations on page 7
(Ea. (1)):

C= <Sv 5vsinit> D= <TaAatinit>'

Instead of multisets M € N°, we use sets B C S. As we have done for
multisets, we lift the transitions from elements to sets of elements:

B% B ind ifs% s ind, and B is either BU{s'} or (BU{s'})\ {s}

for some s € B.

The intuition is that B % BU {s’} represents the case where some contributors
in state s take the transition, and B % (BU{s})\ {s} corresponds to the case
where all contributors in state s take the transition. The transitions in the set
semantics are essentially the same as for the multiset case:
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(B,t,9) “"L(B, ¢, h) it 2" i A

(B,t,9) (B, 1, h) it 2 v in Aand h=g
(B,t,9) 2L (B t,h) if B2, Brin g

(B, t,9) "%(B' 1, ) it B " B ingand h=g

Remark 2. The set semantics is a variant of the accumulator semantics used
in [27], in which only transitions of the form B % B U {s'} (but not B %
(BU{s'}) \ {s}) were used. The accumulator semantics is nice because it is
monotonic, and it suffices for reachability. But it is not precise enough when
dealing with mazimal runs. O

Recall that a support of a multiset is the set of elements that appear in it
with non-zero multiplicity. We have modified the accumulator semantics so that
runs preserve the support as stated in the next lemma.

Lemma 4

1. If (Mo, to, go) 5 ... 2% (M, tp, gn) in the multiset semantics, and Bj is the
support of M, for every j =0,...,n, then (By,to, go) A (B ta, gn)
in the set semantics.

2. If (Bo, to, g0) — ... 2 (Bn,tn,gn) in the set semantics, then there exist
multisets My, ..., M, such that M; has support B;, and for some i; > 0,

(a1)"t

(Mo, to, go) —— (M1,t1, g1

(@2)2  (an)i
) —— ... (My,tn, gn)

i the multiset semantics.

Corollary 2. Fixz a parametrized pushdown system. In the multiset semantics
the system has a finite mazximal safe run ending in a configuration (M,t,g) iff
in the set semantics the system has a finite maximal safe run ending in the
configuration (B,t,g) with B being the support of M.

Finite-State Contributors. We start with the case where contributors are
finite-state. An easy reduction from 3-SAT shows:

Lemma 5. The maz-safety problem is NP-hard when contributor and leader
are both finite-state systems.

For the upper bound of the max-safety problem with finite-state contributors
we need to distinguish between finite and infinite maximal safe runs.

The case of infinite safe runs reduces to the liveness problem, using Theorem 4
(items 2 and 3): we can construct from a given parametrized pushdown system
S a parametrized pushdown system S’ such that S has an infinite safe run iff S’
has a run with infinitely many leader writes, but not T. To decide if &’ admits
such a run, we remove T and test for each possible value g of the register if there
is a run with infinitely many writes w(g). Since liveness is in NP for finite-state
contributors [12] we obtain:
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Lemma 6. For finite-state contributors and pushdown leader, it can be decided
in NP whether a parametrized pushdown system has an infinite safe run.

It remains to describe an algorithm for the existence of a finite maximal safe
run. By Corollary 2 we can use our set semantics for this. From now on we will
also exploit the fact that D is a pushdown system. Recall that the states of D are
of the form ga where ¢ is the state of the pushdown automaton defining D and «
represents the stack. The question is to decide if there is a deadlock configuration
(B, qa, g) in the parametrized pushdown system, such that (B, g, g) is reachable
without using the T action. Note that we can determine whether (B, qa, g) is a
deadlock by looking only at B, g, g and the top symbol of «. Our algorithm will
consist in guessing B, ¢, g and some A € ['p, and then checking reachability.

To check reachability in NP we first show that it is sufficient to look for
traces where the number of changes of the first component of configurations
(the set-component) is polynomially bounded:

Lemma 7. For every finite run p of the parametrized pushdown system in the
set semantics, there exists some run p' with the same action labels, same end
configuration and of the form p’ = py - - - pj, with k < 2|S|, where in each p}, all
states have the same set-component.

Proof. Take a run p = (By,t0,90) — (B1,t1,01) — ... 2% (B, tn, gn) of
the parametrized pushdown system. We claim that there exists a run p/ =
(B}, to,g0) = (B}, t1,g91) =2 ... 2% (B!, tn, g,) such that By = B}, B, = B!,
and for all s € S and 0 < i < n, if s € B] and s ¢ Bj ,, then for all j > i,
s ¢ Bj.

Indeed let us define B; by induction on i: B, = By, and for ¢ > 1,

—if Bi-l—l = Bi, then BZ/-Jrl = B;

— if Bijy1 = B; U {s}, then Bj , = Bj U {s}.

— if Biy1 = (Bi\{s})U{s'} and s ¢ B; forall j >4, then B, | = (Bj\{s})U{s'}.
If s € B; for some j >4, then B; | = B; U {s'}.

Clearly, p’ is a run of the parametrized pushdown system. Moreover, for all i,
B, C B, C U?:i B,. So in particular, B,, = B},.

Now we take the run p’. Let ig = 0, and 71 < - - - < i be the indices such that
B} # B]_;. Then p' can be decomposed into p’ = pj - - - p}., where for all j, the
set-component of all states in p/; is BZ'-J_. Consider the sequence B; , B; ,...,Bj .

There are states si1,...,s, € S such that for all 0 < j < k, B;jﬂ = Bl’-]_ U{s,}
or B = (Bj, U{s})\{s;} for some s. Moreover, each s € S is added at most
once, and removed at most once from some Bj, which means that there are at

most two distinct indices j such that s = s;. Hence k < 2|5]. O

The next lemma follows now from Lemma7: we first guess a sequence of
sets of states By, Bi,...,Br = B of length k < 2|S], then construct a push-
down automaton of polynomial size according to the guess, and finally check
reachability in polynomial time [4]:
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Lemma 8. The following problem is in NP: given a parametrized pushdown
system with finite-state contributors and a configuration (B,qA,g) in the set
semantics, decide if there exists a such that (B,qAaq, g) is reachable from the
nitial configuration.

Proof. The set semantics of the parametrized pushdown system corresponds to a
pushdown automaton A with set of control states 25 xQ x G, input alphabet YU
Xp, and stack alphabet I'p. We first guess a sequence {$;ni: } = Bo, B1,..., By =
B of sets of contributor states, where k < 2|.S|. Then we construct the restriction
of A to runs where the first component of the state is equal to By, then By,
up to Bg. The pushdown automaton thus obtained has polynomial size, and
we can check in polynomial time whether it has some reachable configuration
(B,qAa, g) [4]. O

Combining Lemmas 5, 6 and 8 we obtain the complexity result for finite-state
contributors:

Theorem 6. The maz-safety problem is NP-complete when contributors are
finite-state systems.

Pushdown Contributors. We now return to the case where contributors are
pushdown systems, and show first a lower bound, by a reduction from a tiling
problem [18]:

Lemma 9. The max-safety problem is NEXPTIME-hard for parametrized push-
down systems.

Proof. We reduce the following tiling problem [18] to the max-safety problem:

Input: A finite set of tiles X, horizontal and vertical compatibility relations
H,V C X2 and an initial row © € ™.

Question: Is there a tiling of the 2™ x 2" square respecting the compatibility
relations and containing the initial row in the left corner?

A tiling is a function ¢ : {1,...,2"}? — X such that (¢(i,7),t(i,j +1)) € H
and (¢(4,7),t(i +1,7)) € V for all 4,4, and ¢(1,1)¢(1,2)---t(1,n) = .

The idea of the reduction is that the system will have a maximal run without
T if and only if the leader can guess a tiling respecting the horizontal compati-
bility, and the contributors check that the vertical compatibility is respected as
well.

The leader will write down the tiling from left to right and from top to
bottom, starting with the initial row. The sequence of values taken by the register
on a (good) run will have the form

- - - —on
Al,l) Al,la A1,27 Al,?a ey Al,?”a A1,2”3 s 7A2",2" AQ",Q” ($$)2 o

The A;; are guessed and written by the leader, and the A;; are written
by contributors. Letters A;; have two purposes: they ensure that at least one
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contributor has read the preceding letter, and prevent a contributor from read-
ing the same letter twice. For technical reasons, this sequence is followed by a
sequence ($$)2" o of writes from the leader (with $,¢ ¢ X)), and we will consider
that (A,8) € V for all A € X.

The leader uses her stack to count the number 4 of rows (using the lower part
of the stack), and the number j of tiles on each row (using the upper part of the
stack). So, she repeats the following, up to reaching the values i = 2", j = 2™:
(i) guess a tile A compatible with the one on its left (if j # 1), and write A
on the register, (ii) wait for an acknowledgment A from one of the contributors,
(ili) increment j, (iv) if j > 2", increment ¢ and set j = 1.

Finally, she repeats 2" times the actions w($), w($), then finishes by writing
w(o) and going to some distinguished state ¢;.

Each contributor is supposed to read the entire sequence of values written in
the register. He alternates between reading values of the form A and A, which
ensures that no value is read more than one time. At the same time, he uses his
stack to count the number of writes w(A) (A € X U {$}) of the leader, up to
(227 4-2™), so that he can check that no value was missed. This operation will in
fact be divided between counting up to 227, and counting up to 27, as described
below.

Every contributor decides non-deterministically to check vertical compatibil-
ity at some point. He chooses the current tile A # $, and needs to check that the
tile located below it (that is, occurring 2™ tiles later in the sequence of values
written by the leader) is compatible with it. This is done as follows: after reading
A # $, the contributor writes A on the register (rather than waiting for another
contributor to do so), and remembers the value. He interrupts his current count-
ing, and starts counting anew on the top of the stack, up to 2". Upon reaching
2™ he stores the value A’ of the register, for later check. Then he resumes the
first counting while reading the remaining of the sequence, up to 22". At any
moment, the contributor can read ¢. If he reads ¢ and either (A, A’) ¢ V or the
counting up to 2" failed (i.e., his stack is not empty), then he writes # (with
# ¢ YUY U{$,0}) and stops; otherwise he simply stops. In state qys, the leader

may read any value g # ¢, and she then does T: gy @L From every other

state ¢ # ¢y, the leader can do T, too.

It can be verified [17] that there is a tiling of the 2™ x 2™ square, if and
only if, there is a maximal run without any occurrence of T. For the left-to-right
implication the leader should write a sequence of register values corresponding to
the tiling, and every contributor can end up with the empty stack upon reading
©, so no T will be generated. For the right-to-left direction, observe that in
the maximal run the leader should reach gy. In this case the acknowledgment
mechanism is set up in such a way that all the values written by the leader
should be successfully checked by contributors. O

For the upper bound, similarly to the case of finite-state contributors we need
to consider maximal finite and infinite runs separately. The case of infinite runs
can be again reduced to liveness using Theorem 4, and turns out to be easier:
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Lemma 10. It can be decided in PSPACE whether a parametrized pushdown
system has some infinite safe run.

For finite maximal runs, we show that we match the NEXPTIME lower
bound. For this we reduce the problem to the case of finite-state contribu-
tors, using Lemma 1 that gives a polynomial bound for contributor stacks. Then
we can apply Lemmag& that states that the complexity is NP for finite-state
contributors:

Lemma 11. It can be decided in NEXPTIME whether a parametrized pushdown
system has some finite, maximal safe Tun.

The three lemmas together prove Theorem 2.

6 Regular C-expanding Properties

In this section, we outline the proof of our general result stated in Theorem 1.
The proof is based on Theorem 4, that says that we can focus on properties that
refer only to leader actions. The proof idea for Theorem4 is that in the new
parametrized pushdown system, the register becomes part of the leader’s state.
This releases the register, that can be used now by contributors to communicate
with the leader regarding the actions that they intend to perform, but the leader
is in charge to execute them. Contributors in the new parametrized pushdown
system write into the register the read/write action they want to execute; the
leader executes the action and confirms this to the contributors by writing back
into the register. The confirmation is read by contributors who at this point know
that their action request has been read and executed. The simulation makes use
of the fact that the property we want to check is c-expanding. The details of
the construction, and the correctness proof, are a bit tedious since it is always
possible that a value is overwritten before it gets read.

The proof of Theorem 1 is, once again, divided into two cases: one for finite
and the other for infinite traces. For finite maximal traces we use the results
about the max-safety problem, and for infinite traces we reduce the problem to
liveness.

Lemma 12. The following question is NEXPTIME-complete: given a parame-
trized pushdown system S and a c-expanding w-reqular property P over S
(described by a Bichi automaton or by an LTL formula), determine if S has
some maximal, finite trace in P.

Proof Sketch. By Theorem 4 we can assume that we need to check a property
‘P that refers only to actions of the leader. If P is given by an LTL formula,
we start by constructing an equivalent finite automaton of exponential size. By
taking the product of the leader D with this automaton representing P, we can
assume that D has a distinguished set of final (control) states such that a finite
run of the parametrized pushdown system satisfies P iff D reaches a final state.
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The result then follows using Lemma 1, together with Lemma 8. Recall that in
order to decide if a finite run is maximal it is enough to look at the top of its last
configuration. Lemma 1 then tells us that there exists a maximal finite run in the
parametrized pushdown system S with D ending in a final state iff there exists
such a run in the parametrized pushdown system Sg,, where contributors are
finite-state; and by Lemma 8 the latter can be decided in NP in the size of Sz,
so overall in NEXPTIME. The matching NEXPTIME-hardness lower bound follows
from the proof of Lemma9, as the parametrized pushdown system constructed
there has no infinite safe trace, and the max-safety problem restricted to finite
traces is a special instance of our problem. (I

As for the max-safety problem, the case of infinite runs turns out to be easier.
It is also interesting to observe that the complexity now depends on whether the
property is described by an automaton or by a formula.

Lemma 13. The following question is PSPACE-complete: given a parametrized
pushdown system S and a c-expanding w-reqular property P over S described by
a Biichi automaton, determine if S has some infinite trace in P.

Proof Sketch. Applying again Theorem 4 and slightly modifying the parametrized
pushdown system we can reduce the satisfaction of P to an instance of the
liveness problem; observe also that liveness is a special case of our problem.
With this reduction, PSPACE-completeness follows from Theorem 3. O

Lemma 14. The following question is EXPTIME-complete: given a parametrized
pushdown system S and a c-expanding w-reqular property P over S described by
an LTL formula, determine if S has some infinite trace in P.

Proof Sketch. The lower bound comes from the situation where there are no
contributors at all [4]. For the upper bound: from an LTL formula we first con-
struct a Biichi automaton of exponential size. As in Lemma 13, the first step
is to reduce the problem of deciding if the parametrized pushdown system has
a trace in P to the liveness of some parametrized pushdown system S’. In the
obtained system S’ the leader D’ is of exponential size, and C’ is of polynomial
size. As a second step we adapt the procedure given in the proof of Theorem 3:
we do not build the downward closure of the leader, and we enumerate all pos-
sible sequences v(hy),...,v(h,,) and intermediate states, instead of guessing
them. Then we follow the lines of the proof of Theorem 3, checking emptiness of
pushdown systems of exponential size in EXPTIME. ([

7 Conclusion

We have established the decidability and exact complexity for verifying linear-
time properties of parametrized pushdown systems, a model introduced in [20]
that can be seen as adapting a formulation from [19] to communicating pushdown
processes as in [21]. For decidability we needed to require that properties are c-
expanding, a lighter version of stuttering invariance. On the way to this result
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we have determined the exact complexity of deciding liveness properties, which
turned out to be an easier problem than deciding the existence of maximal runs.

Technically, our upper bound results for liveness as well as for maximal runs
require to build on both the techniques from [12] and [27]. As pointed out in [12]
the techniques for deciding reachability are not immediately applicable to the
liveness problem. For reachability we can assume that for every write there is a
separate contributor responsible to produce it. This is a very useful simplification
that does not apply to repeated reachability, since we require that the number of
contributors is bounded over the complete infinite run. For the case of maximal
runs we introduced a simplification of the original semantics that is sensitive to
divergence. The lower bound result for this case shows that being able to detect
termination increases the complexity of the problem.

The model considered in this paper can be extended with dynamic thread
creation. Reachability is still decidable for this extension [32]. The decidability
proof is based on upper closures and well-quasi orders, so it does not provide any
interesting complexity upper bounds. It is actually open whether the verification
of regular properties of parametric systems with dynamic thread creation is
decidable.
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