
A STORM is Coming:
A Modern Probabilistic Model Checker

Christian Dehnert(B), Sebastian Junges,
Joost-Pieter Katoen, and Matthias Volk

RWTH Aachen University, Aachen, Germany
dehnert@cs.rwth-aachen.de

Abstract. We launch the new probabilistic model checker Storm. It
features the analysis of discrete- and continuous-time variants of both
Markov chains and MDPs. It supports the Prism and JANI model-
ing languages, probabilistic programs, dynamic fault trees and gener-
alized stochastic Petri nets. It has a modular set-up in which solvers
and symbolic engines can easily be exchanged. It offers a Python API
for rapid prototyping by encapsulating Storm’s fast and scalable algo-
rithms. Experiments on a variety of benchmarks show its competitive
performance.

1 Introduction

In the last five years, we have developed our in-house probabilistic model checker
with the aim to have an easy-to-use platform for experimenting with new verifica-
tion algorithms, richer probabilistic models, algorithmic improvements, different
modeling formalisms, various new features, and so forth. Although open-source
probabilistic model checkers do exist, most are not flexible and modular enough
to easily support this. Our efforts have led to a toolkit with mature building
bricks with simple interfaces for possible extensions, and a modular set-up. It
comprises about 100,000 lines of C++ code. The time has come to make this
toolkit available to a wider audience: this paper presents Storm.

Like its main competitors Prism [1], MRMC [2], and iscasMC [3], Storm
relies on numerical and symbolic computations. It does not support discrete-
event simulation, known as statistical model checking [4]. The main characteristic
features of Storm are:

– it supports various native input formats: the Prism input format, general-
ized stochastic Petri nets, dynamic fault trees, and conditioned probabilistic
programs. This is not just providing another parser; state-space reduction
and generation techniques as well as analysis algorithms are partly tailored
to these modeling formalisms;

– in addition to Markov chains and MDPs, it supports Markov automata [5],
a model containing probabilistic branching, non-determinism, and exponen-
tially distributed delays;

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part II, LNCS 10427, pp. 592–600, 2017.
DOI: 10.1007/978-3-319-63390-9 31



A Storm is Coming: A Modern Probabilistic Model Checker 593

– it can do explicit state and fully symbolic (BDD-based) model checking as
well as a mixture of these modes;

– it has a modular set-up, enabling the easy exchange of different solvers and
distinct decision diagram packages; its current release supports about 15
solvers, and the BDD packages CUDD [6] and multi-threaded Sylvan [7];

– it provides a Python API facilitating easy and rapid prototyping of other
tools using the engines and algorithms in Storm;

– it provides the following functionalities under one roof: the synthesis of coun-
terexamples and permissive schedulers (both MILP- and SMT-based), game-
based abstraction of infinite-state MDPs, efficient algorithms for conditional
probabilities and rewards [8], and long-run averages on MDPs [9];

– its performance in terms of verification speed and memory footprint on the
Prism benchmark suite is mostly better compared to Prism.

Although many functionalities of Prism are covered by Storm, there are signif-
icant differences. Storm does not support LTL model checking (as in iscasMC
and Prism) and does not support the Prism features: probabilistic timed
automata, and an equivalent of Prism’s “hybrid” engine (a crossover between full
MTBDD and Storm’s “hybrid” engine), a fully symbolic engine for continuous-
time models, statistical model checking, and the analysis of stochastic games as
in Prism-GAMES [10].

2 Features

Model Types. Storm supports Markov chains and Markov decision processes
(MDPs), both in two forms: discrete time and continuous time. This yields four
different models: classical discrete-time (DTMCs) and continuous-time Markov
chains (CTMCs), as well as MDPs and Markov automata (MA) [5], a com-
positional variant of continuous-time MDPs. The MA is the richest model.
CTMCs are MAs without non-determinism, while MDPs are MAs without
delays; DTMCs are CTMCs without delays, cf. [11]. All these models are exten-
sible with rewards (or dually: costs) to states, and – for non-deterministic models
– to actions. Most probabilistic model checkers support Markov chains and/or
MDPs; MAs so far have only been supported by few tools [12,13].

Modeling Languages. Storm supports various symbolic and an explicit input
format to specify the aforementioned model types: (i) Most prominently, the
Prism input language [1] (ii) the recently defined JANI format [14], a universal
probabilistic modeling language; (iii) as the first tool every1 generalized sto-
chastic Petri net (GSPN) [17] via both a dedicated model builder as well as an
encoding in JANI; (iv) dynamic fault trees (DFTs) [18,19] – due to dedicated
state-space generation and reduction techniques for DFTs, Storm significantly

1 Existing CSL model checkers for GSPNs such as GreatSPN [15] and MARCIE [16]
are restricted to confusion-free Petri nets; Storm does not have this restriction as
it supports MA.



594 C. Dehnert et al.

outperforms competing tools in this domain [20]; (v) pGCL probabilistic pro-
grams [21] extended with observe-statements [22], an essential feature to describe
and analyze e.g., Bayesian networks; (vi) in the spirit of MRMC [2], models can
be provided in a format that explicitly enumerates transitions.

Properties. Storm focusses on probabilistic branching-time logics, i.e. PCTL
[23] and CSL [24] for discrete-time and continuous-time models, respectively.
To enable the treatment of reward objectives such as expected and long-run
rewards, Storm supports reward extensions of these logics in a similar way as
Prism. In addition, Storm supports conditional probabilities and conditional
rewards [8]; these are, e.g., important for the analysis of cpGCL programs.

Engines. Storm features two distinct in-memory representations of probabilis-
tic models: sparse matrices allow for fast operations on small and moderately
sized models, multi-terminal binary decision diagrams (MTBDDs) are able to
represent gigantic models, however with slightly more expensive operations.
A variety of engines built around the in-memory representations is available,
which allows for the more efficient treatment of input models. Both Storm’s
sparse and the exploration engine purely use a sparse matrix-based representa-
tion. While the former amounts to an efficient implementation of the standard
approaches, the latter one implements the ideas of [25] which scrutinizes the
state space with machine learning methods. Three other engines, dd , hybrid and
abstraction-refinement , use MTBDDs as their primary representation. While dd
exclusively uses decision diagrams, hybrid also uses sparse matrices for opera-
tions deemed more suitable on this format. The abstraction-refinement engine
abstracts (possibly infinite) discrete-time Markov models to (finite) stochastic
games and automatically refines the abstraction as necessary.

Parametric Models. Storm was used as backend in [26,27]. By using the dedi-
cated library CArL [28] for the representation of rational functions and apply-
ing novel algorithms for the analysis of parametric discrete-time models, it has
proven to significantly outperform the dedicated tool PARAM [29] and para-
metric model checking in Prism.

Exact Arithmetic. Several works [30,31] observed that the numerical methods
applied by probabilistic model checkers are prone to numerical problems. Storm
therefore supports enabling exact arithmetic to obtain precise results.

Counterexample Generation. For probabilistic models, several counterexample
representations have been proposed [32]. Storm implements the MILP-based
counterexample technique [33], as well as the MaxSat-based generation of high-
level counterexamples on Prism models [34]. These algorithms go beyond the
capabilities of dedicated, stand-alone counterexample generation tools such as
DiPro [35] and COMICS [36]. In particular, the synthesis of high-level coun-
terexamples facilitates to obtain counterexamples as Prism code, starting from
a Prism model and a refuted property.



A Storm is Coming: A Modern Probabilistic Model Checker 595

APIs. Storm can be used via three interfaces: a command-line interface, a
C++ API, and a Python API. The command-line interface consists of sev-
eral binaries that provide end-users access to the available settings for differ-
ent tasks. Advanced users can utilize the many settings to tune the perfor-
mance. Developers may either use the C++ API that offers fine-grained and
performance-oriented access to Storm’s functionality, or the Python API which
allows rapid prototyping and encapsulates the high-performance implementa-
tions within Storm.

Availability. Storm’s source code is available as open source and can be obtained
along with additional information at http://www.stormchecker.org.

3 Architecture

Figure 1 depicts the architecture of Storm. Solid arrows indicate the flow of
control and data, dashed lines represent a “uses” relationship. After the initial
parsing step, it depends on the selected engine whether a model building step is
performed: for all but the exploration and abstraction-refinement engines, it is
necessary to build a full in-memory representation of the model upfront. Note
that the available engines depend on the input format and that both PRISM
and GSPN input can be either treated natively or transformed to JANI.

Solvers. Storm’s infrastructure is built around the notion of a solver. For
instance, solvers are available for sets of linear or Bellman equations (both
using sparse matrices as well as MTBDDs), (mixed-integer) linear programming
(MILP) and satisfiability modulo theories (SMT). Note that Storm does not
support stochastic games as input models, yet, but solvers for them are avail-
able because they are used in the abstraction-refinement engine. Offering these
interfaces has several key advantages. First, it provides easy and coherent access
to the tasks commonly involved in probabilistic model checking. Secondly, it

Fig. 1. Storm’s architecture.

http://www.stormchecker.org


596 C. Dehnert et al.

Table 1. Solvers offered by Storm.

Solver type Available solvers

Linear equations (sparse) Eigen [37], gmm++ [38], elim. [39], built-in

Linear equations (MTBDD) CUDD [6], Sylvan [7]

Bellman equations (sparse) Eigen, gmm++, built-in

Bellman equations (MTBDD) CUDD, Sylvan

Stochastic games (sparse) built-in

Stochastic games (MTBDD) CUDD, Sylvan

(MI)LP Gurobi [40], glpk [41]

SMT Z3 [42], MathSAT [43], SMT-LIB

enables the use of dedicated state-of-the-art high-performance libraries for the
task at hand. More specifically, as the performance characteristics of different
backend solvers can vary drastically for the same input, this permits choosing
the best solver for a given task. Licensing problems are avoided, because imple-
mentations can be easily enabled and disabled, depending on whether or not the
particular license fits the requirements. Implementing new solver functionality is
easy and can be done without knowledge about the global code base. Finally, it
allows to embed new state-of-the-art solvers in the future. For each of those inter-
faces, several actual implementations exist. Table 1 gives an overview over the
currently available implementations. Almost all engines and all other key mod-
ules make use of solvers. The most prominent example is the use of the equation
solvers for answering standard verification queries. However, other modules use
them too, e.g. model building (SMT), counterexample generation [33,34] (SMT,
MILP) and permissive scheduler generation [44,45] (SMT, MILP).

4 Evaluation

Set-up. For the performance evaluation, we conducted experiments on a HP
BL685C G7. Up to eight cores with 2.0 GHz and 8 GB of memory were available
to the tools, but only Prism’s garbage collection used more than one core at a
time. We set a time-out of 1800 s.

Comparison with PRISM. To assess Storm’s performance on standard model-
checking queries, we compare it with Prism on the Prism benchmark suite [46].
More specifically, we consider all DTMCs, CTMCs and MDPs (24 in total, and
several instances per model) and all corresponding properties (82 in total). Note
that we do not compare Storm with iscasMC as the latter one has a strong
focus on more complex LTL properties.

Methodology. As both Prism and Storm offer several engines with different
strengths and weaknesses, we choose the following comparison methodology. We
compare engines that “match” in terms of the general approach. For example,



A Storm is Coming: A Modern Probabilistic Model Checker 597

Fig. 2. Run-time comparison (seconds) of different engines/features.

Prism’s explicit engine first builds the model in terms of a sparse matrix directly
and then performs the model checking on this representation, which matches the
approach of Storm’s sparse engine. In the same manner, Prism’s sparse engine
is comparable to Storm’s hybrid one and Prism’s mtbdd engine corresponds to
Storm’s dd engine. Finally, we compare the run-times of Prism and Storm
when selecting the best engine for each individual benchmark instance.

Results. Figure 2 (top-row) summarizes the results of the experiments in log-log
scale. We plot the total time taken by the Storm engines versus the “match-
ing” Prism engines. Data points above the main diagonal indicate that Storm
solved the task faster. The two dashed lines indicate a speed-up of 10 and 100,
respectively; “OoR” denotes memory- or time-outs, “Err” denotes that a tool
was not able to complete the task for any other reason and “NR” stands for “no
result”.

Discussion. We observe that Storm is competitive on all compared engines.
Even though the MTBDD-based engines are very similar and even use the same
MTBDD library (CUDD), most of the time Storm is able to outperform Prism.
Note that Storm currently does not support CTMCs in this engine. We observe
a slightly clearer advantage of Storm’ hybrid engine in comparison to Prism’s
sparse engine. Here, model building times tend to be similar, but most often
the numerical solution is done more efficiently by Storm. However, for large



598 C. Dehnert et al.

CTMC benchmarks, Prism tends to be faster than Storm. Storm’s sparse
engine consistently outperforms Prism due to both the time needed for model
construction as well as solving times. For the overwhelming majority of verifi-
cation tasks, Storm’s best engine is faster than Prism’s best engine. Storm
solves 361 (out of 380) tasks, compared to 346 tasks Prism solves.

Exact Arithmetic. Figure 2 (bottom center) compares the exact modes of
both tools. Storm outperforms Prism by up to three orders of magnitude.

Markov Automata. As Prism does not support the verification of MAs, we
compare Storm with the only other tool capable of verifying MAs: IMCA [12].
We used the models provided by IMCA, results are depicted in Fig. 2 (bottom
right). For most instances, Storm is significantly faster.

Acknowledgments. The authors would like to thank people that support(ed) the
development of Storm over the years (in alphabetical order): Philipp Berger, Harold
Bruintjes, Gereon Kremer, David Korzeniewski, and Tim Quatmann.

References

1. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

2. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins
and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

3. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-
based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.)
FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). doi:10.1007/
978-3-319-06410-9 22

4. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer,
Cham (2016). doi:10.1007/978-3-319-47166-2 1

5. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proceedings of LICS, pp. 342–351. IEEE CS (2010)

6. CUDD (2016). http://vlsi.colorado.edu/∼fabio/CUDD/cudd.pdf
7. Dijk, T., Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C., Tinelli, C.

(eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46681-0 60

8. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing conditional prob-
abilities in markovian models efficiently. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 515–530. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54862-8 43

9. de Alfaro, L.: How to specify and verify the long-run average behavior of proba-
bilistic systems. In: Proceedings of LICS, pp. 454–465. IEEE CS (1998)

10. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36742-7 13

http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-47166-2_1
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf
http://dx.doi.org/10.1007/978-3-662-46681-0_60
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-642-54862-8_43
http://dx.doi.org/10.1007/978-3-642-36742-7_13


A Storm is Coming: A Modern Probabilistic Model Checker 599

11. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of LICS,
pp. 31–46. ACM (2016)

12. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 168–184. Springer, Cham (2014). doi:10.1007/
978-3-319-11936-6 13

13. Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS 10(3), 1–29 (2014)

14. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). doi:10.
1007/978-3-662-54580-5 9

15. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in great-
SPN. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp.
354–363. Springer, Cham (2014). doi:10.1007/978-3-319-07734-5 19

16. Schwarick, M., Heiner, M., Rohr, C.: MARCIE - model checking and reachability
analysis done efficiently. In: Proceedings of QEST, pp. 91–100. IEEE CS (2011)

17. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38697-8 6

18. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

19. Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensi-
ble framework for dynamic fault tree analysis. IEEE Trans. Secure Distr. Comput.
7(2), 128–143 (2010)

20. Volk, M., Junges, S., Katoen, J.-P.: Advancing dynamic fault tree analysis - get suc-
cinct state spaces fast and synthesise failure rates. In: Skavhaug, A., Guiochet, J.,
Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 253–265. Springer, Cham
(2016). doi:10.1007/978-3-319-45477-1 20

21. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, Heidelberg (2005). doi:10.1007/
b138392

22. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani.K.: Probabilistic program-
ming. In: FOSE, pp. 167–181. ACM (2014)

23. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

24. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

25. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 8

26. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Ábrahám, E.: PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 13

27. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter syn-
thesis for markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). doi:10.
1007/978-3-319-46520-3 4

http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://dx.doi.org/10.1007/978-3-319-11936-6_13
http://dx.doi.org/10.1007/978-3-662-54580-5_9
http://dx.doi.org/10.1007/978-3-662-54580-5_9
http://dx.doi.org/10.1007/978-3-319-07734-5_19
http://dx.doi.org/10.1007/978-3-642-38697-8_6
http://dx.doi.org/10.1007/978-3-319-45477-1_20
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/b138392
http://dx.doi.org/10.1007/978-3-319-11936-6_8
http://dx.doi.org/10.1007/978-3-319-21690-4_13
http://dx.doi.org/10.1007/978-3-319-46520-3_4
http://dx.doi.org/10.1007/978-3-319-46520-3_4


600 C. Dehnert et al.

28. CArL Website: http://smtrat.github.io/carl/ (2015)
29. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric

Markov models. STTT 13(1), 3–19 (2010)
30. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value

iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol.
8762, pp. 125–137. Springer, Cham (2014). doi:10.1007/978-3-319-11439-2 10

31. Wimmer, R., Becker, B.: Correctness issues of symbolic bisimulation computation-
for Markov chains. In: Müller-Clostermann, B., Echtle, K., Rathgeb, E.P. (eds.)
MMB & DFT 2010. LNCS, vol. 5987, pp. 287–301. Springer, Berlin (2010)

32. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Cham (2014). doi:10.1007/
978-3-319-07317-0 3

33. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen, J.P., Becker, B.:
High-level counterexamples for probabilistic automata. LMCS 11(1), 1–23 (2015)

34. Dehnert, C., Jansen, N., Wimmer, R., Ábrahám, E., Katoen, J.-P.: Fast debugging
of PRISM models. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837,
pp. 146–162. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 11

35. Aljazzar, H., Leitner-Fischer, F., Leue, S., Simeonov, D.: DiPro - a tool for prob-
abilistic counterexample generation. In: Groce, A., Musuvathi, M. (eds.) SPIN
2011. LNCS, vol. 6823, pp. 183–187. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22306-8 13

36. Jansen, N., Ábrahám, E., Volk, M., Wimmer, R., Katoen, J.P., Becker, B.: The
COMICS tool - Computing minimal counterexamples for DTMCs. In: Chakraborty,
S., Mukund, M. (eds.) ATVA 2012, vol. 7561, pp. 349–353. Springer, Heidelberg
(2012)

37. Guennebaud, G., Jacob, B., et al.: Eigen v3. (2017). http://eigen.tuxfamily.org
38. GMM++ Website: (2015). http://getfem.org/gmm/index.html
39. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.

In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31862-0 21

40. Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015). http://www.
gurobi.com

41. GNU project: Linear programming kit, version 4.6 (2016). http://www.gnu.org/
software/glpk/glpk.html

42. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

43. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 7

44. Dräger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. LMCS 11(2), 1–34 (2015)

45. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.-P.: Safety-constrained
reinforcement learning for MDPs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 130–146. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 8

46. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Pro-
ceedings of QEST, pp. 203–204. IEEE CS (2012)

http://smtrat.github.io/carl/
http://dx.doi.org/10.1007/978-3-319-11439-2_10
http://dx.doi.org/10.1007/978-3-319-07317-0_3
http://dx.doi.org/10.1007/978-3-319-07317-0_3
http://dx.doi.org/10.1007/978-3-319-11936-6_11
http://dx.doi.org/10.1007/978-3-642-22306-8_13
http://dx.doi.org/10.1007/978-3-642-22306-8_13
http://eigen.tuxfamily.org
http://getfem.org/gmm/index.html
http://dx.doi.org/10.1007/978-3-540-31862-0_21
http://www.gurobi.com
http://www.gurobi.com
http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-662-49674-9_8
http://dx.doi.org/10.1007/978-3-662-49674-9_8

	A S TORM is Coming: A Modern Probabilistic Model Checker
	1 Introduction
	2 Features
	3 Architecture
	4 Evaluation
	References


