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Abstract. Symbolic automata and transducers extend finite automata
and transducers by allowing transitions to carry predicates and func-
tions over rich alphabet theories, such as linear arithmetic. Therefore,
these models extend their classic counterparts to operate over infinite
alphabets, such as the set of rational numbers. Due to their expres-
siveness, symbolic automata and transducers have been used to verify
functional programs operating over lists and trees, to prove the correct-
ness of complex implementations of BASE64 and UTF encoders, and
to expose data parallelism in computations that may otherwise seem
inherently sequential. In this paper, we give an overview of what is cur-
rently known about symbolic automata and transducers as well as their
variants. We discuss what makes these models different from their finite-
alphabet counterparts, what kind of applications symbolic models can
enable, and what challenges arise when reasoning about these formalisms.
Finally, we present a list of open problems and research directions
that relate to both the theory and practice of symbolic automata and
transducers.

1 Introduction

This paper summarizes the recent results in the theory and applications of sym-
bolic automata and transducers, which are models for reasoning about lists and
trees over complex domains. Finite automata and transducers are used in many
applications in software engineering, including software verification [13], text
processing [7], and computational linguistics [38]. Despite their many applica-
tions, these models suffer from a major drawback: in the most common forms
they can only handle finite and small alphabets.

To overcome this limitation, symbolic automata and transducers allow tran-
sitions to carry predicates and functions over a specified alphabet theory, such as
linear arithmetic, and therefore extend finite automata to operate over infinite
alphabets, such as the set of rational numbers. Despite this generality, symbolic
models retain many of the good properties of their finite-alphabet counterparts
and have enabled new applications such as verification of string sanitizers [30],
analysis of tree-manipulating programs [23], and program synthesis [33].
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Despite this success, traditional algorithms that work over finite alphabets
have been proven hard to generalize to the symbolic setting, making the design
of algorithms for symbolic models challenging and theoretically interesting. In
certain cases, properties that hold for finite alphabets stop holding in the sym-
bolic setting—e.g., while it is decidable to check whether a finite state transducer
is injective, the same problem is undecidable for symbolic finite transducers.

Intention and Organization. The intention of this paper is to give an overview
of what is currently known about symbolic automata and transducers. At the
same time, we take this opportunity to present new properties that were not
formally investigated in earlier papers and explain to the reader what differenti-
ates symbolic models from their finite-alphabet counterparts. We also show what
applications have been made possible thanks to the models we present.

In summary, the paper describes:

– The existing results on symbolic finite automata, their extensions (Sect. 2),
and their applications (Sect. 3);

– The existing results on symbolic finite transducers, their extensions (Sect. 4),
and their applications (Sect. 5); and

– A brief list of the current challenges and open problems related to symbolic
automata and transducers (Sect. 6).

Related Work. It should be noted that the concept of automata with predicates
instead of concrete symbols was first mentioned in [59] and was discussed in [49]
in the context of natural language processing. This paper focuses on work done
following the definition of symbolic finite automata presented in [55], where pred-
icates have to be drawn from a decidable Boolean algebra. The term symbolic
automata is sometimes used to refer to automata over finite alphabets where the
state space is represented using BDDs [43]. This meaning is different from the
one described in this paper.

Finally, it is hard to describe all the work related to symbolic automata in one
paper and the authors curate an updated list of papers on symbolic automata and
transducers [3]. Many of the algorithms we discuss in this paper are implemented
in the open source libraries AutomataDotNet (in C#) [1] and symbolicautomata
(in Java) [4], and many of the benchmarks used in the applications cited in this
paper are available in the open source collection of benchmarks AutomatArk [2].

2 Symbolic Automata

In symbolic automata, transitions carry predicates over a Boolean algebra. For-
mally, an effective Boolean algebra A is a tuple (D, Ψ, [[ ]],⊥,�,∨,∧,¬) where D
is a set of domain elements; Ψ is a set of predicates closed under the Boolean
connectives, with ⊥,� ∈ Ψ ; the component [[ ]]: Ψ → 2D is a denotation function
such that (i) [[⊥]] = ∅, (ii) [[�]] = D, and (iii) for all ϕ,ψ ∈ Ψ , [[ϕ∨ψ]] = [[ϕ]]∪[[ψ]],
[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and [[¬ϕ]] = D \ [[ϕ]]. We also require that checking satisfi-
ability of ϕ—i.e., whether [[ϕ]] �= ∅—is decidable.
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In practice, an (effective) Boolean algebra is implemented as an API with
corresponding methods implementing the Boolean operations.

Example 1 (Equality Algebra). The equality algebra over an arbitrary set D has
an atomic predicate ϕa for every a ∈ D such that [[ϕa]] = {a} as well as predicates
⊥ and �. The set of predicates Ψ is the Boolean closure generated from the
atomic predicates—e.g., ϕa ∨ ϕb and ¬ϕa where a, b ∈ D are predicates in Ψ .

Example 2 (SMT Algebra). Consider a fixed type τ and let Ψ be the set of all
quantifier free formulas with one fixed free variable x of type τ . Intuitively, SMTτ

with is a Boolean algebra representing a restricted use of an SMT solver such
as Z3 [24]. Formally, SMTτ = (D, Ψ, [[ ]],⊥,�,∨,∧,¬), where D is the set of all
elements of type τ , Ψ is the set of all quantifier free formulas containing a single
uninterpreted constant x : τ , the true predicate � is x = x, the false predicate
⊥ is x �= x, and the Boolean operations are the corresponding connectives in
SMT formulas. The interpretation function [[ϕ]] is defined using the operations
of satisfiability checking and model generation provided by an SMT solver. For
example, we can imagine that SMTZ is the algebra in which elements have
type τ = Z and predicates are in integer linear arithmetic. Examples of such
predicates are ϕ>0(x) def= x > 0 and ϕodd(x) def= x%2 = 1.

We can now define symbolic finite automata, which are finite automata over
a symbolic alphabet, where edge labels are replaced by predicates.

Definition 1. A symbolic finite automaton (s-FA) is a tuple M=(A, Q, q0, F,Δ)
where A is an effective Boolean algebra, Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, and Δ ⊆ Q × ΨA × Q is a finite set
of transitions.

Elements of D are called characters and finite sequences of characters are
called strings—i.e., elements of D∗. A transition ρ = (q1, ϕ, q2) ∈ Δ, also denoted
q1

ϕ−→ q2, is a transition from the source state q1 to the target state q2, where ϕ
is the guard or predicate of the transition. For a character a ∈ D, an a-transition
of M , denoted q1

a−→ q2 is a transition q1
ϕ−→ q2 such that a ∈ [[ϕ]].

An s-FA M is deterministic if, for all transitions (q, ϕ1, q1), (q, ϕ2, q2) ∈ Δ,
if q1 �= q2 then [[ϕ1 ∧ ϕ2]] = ∅—i.e., for each state q and character a there is at
most one a-transition from q.

A string w = a1a2 . . . ak is accepted at state q iff, for 1 ≤ i ≤ k, there exist
transitions qi−1

ai−→ qi such that q0 = q and qk ∈ F . We refer to the set of
strings accepted at q as the language of M accepted at q, denoted as Lq(M); the
language accepted by M is L(M) = Lq0(M).

It is convenient to work with s-FAs that are normalized and have at most one
transition from any state to another. For any two states p and q in Q we define
Δ(p, q) def=

∨{ϕ | (p, ϕ, q) ∈ Δ} where
∨ ∅ def= ⊥. We can then define the normal-

ized representation of an s-FA where for every two states p and q, we assume a

single transition p
Δ(p,q)−−−−→ q. Equivalently, in this normalized representation Δ is
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a function from Q×Q to Ψ with Δ(p, q) = ⊥ when there is no transition from p

to q. We also define dom(p) def=
∨{ϕ | ∃q : (p, ϕ, q) ∈ Δ}, to denote the set of all

characters for which there exists a transition from a state p. A state p of M is
complete if [[dom(p)]] = DA; p is partial otherwise. Observe that p is partial iff
¬dom(p) is satisfiable. The s-FA M is complete if all states of M are complete;
M is partial otherwise.

Example 3. Examples of s-FAs are Mpos and Mev/odd in Fig. 1. These two s-
FAs have 1 and 2 states respectively, and they both operate over the Boolean
algebra SMTZ from Example 2. The s-FA Mpos accepts all strings consisting
only of positive numbers, while the s-FA Mev/odd accepts all strings of even
length consisting only of odd numbers. For example, Mev/odd accepts the string
[2, 4, 6, 2] and rejects strings [2, 4, 6] and [51, 26]. The product automaton of Mpos

and Mev/odd, Mev/odd × Mpos, accepts the language L(Mpos) ∩ L(Mev/odd).
Both s-FAs are partial—e.g., neither of them has transitions for character −1.

q0

ϕ>0

q0 q1
ϕodd

ϕodd
q0 q1

ϕodd ∧ ϕ>0

ϕodd ∧ ϕ>0

q0

ϕ>0

¬ϕ>0
s

�

(a) (b) (c) (d)

Fig. 1. Symbolic automata, (a) Mpos; (b) Mev/odd; (c) Mev/odd ×Mpos; (d) Mc
pos.

2.1 Interesting Properties

In this section, we illustrate some basic properties of s-FAs and show how these
models differ from finite automata. A key characteristic of all s-FAs algorithms
is that there is no explicit use of characters because D may be infinite and
the interface to the Boolean algebra does not directly support use of individual
characters.

Similarly to what happens for finite automata, nondeterminism does not add
expressiveness for s-FAs.

Theorem 1 (Determinizability [55]). Given an s-FA M one can effectively
construct a deterministic s-FA Mdet such that L(M) = L(Mdet).

The determinization algorithm is similar to the subset construction for automata
over finite alphabets, but also requires combining predicates appearing in differ-
ent transitions. If M contains k inequivalent predicates and n states, then the
number of distinct predicates in Mdet is at most 2k and the number of states is
at most 2n. In other words, in addition to the classic state space explosion risk
there is also a predicate space explosion risk.

Since s-FAs can be determinized, we can show that s-FAs are closed under
Boolean operations using variations of classic automata constructions.
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Theorem 2 (Boolean Operations [55]). Given s-FAs M1 and M2 one can
effectively construct s-FAs M c

1 and M1 × M2 such that L(M c
1 ) = D∗

A \ L(M1)
and L(M1 × M2) = L(M1) ∩ L(M2).

The intersection of two s-FAs is computed using a variation of the classic
product construction in which transitions are “synchronized” using conjunction.
For example, the intersection of Mpos and Mev/odd from Example 3 is shown
in Fig. 1(c).

To complement a deterministic partial s-FA M , M is first completed by
adding a new non-final state s with loop s

�−→ s and for each partial state p

a transition p
¬dom(p)−−−−−−→ s. Then the final states and the non-final states are

swapped in M c. Following this procedure, the complement of Mpos from Exam-
ple 3 is shown in Fig. 1(d).

Next, s-FAs enjoy the same decidability properties of finite automata.

Theorem 3 (Decidability [55]). Given s-FAs M1 and M2 it is decidable to
check if M1 is empty—i.e., whether L(M1) = ∅—and if M1 and M2 are language-
equivalent—i.e. whether L(M1) = L(M2).

Checking emptiness requires checking what transitions are satisfiable and, once
unsatisfiable transitions are removed, any path reaching a final state from an
initial state represents at least one accepting string. Equivalence can be reduce
to emptiness using closure under Boolean operations.

Algorithms have also been proposed for minimizing deterministic s-FAs [18],
for checking language inclusion [34], for computing forward bisimulations of s-
FAs [21], and for learning s-FAs from membership and equivalence queries [25].

Alphabet Equivalence Classes. Classic automata can only describe sequences
over finite alphabets. Despite this limitation, there is a way to convert every
s-FA M into a finite automaton that, in some sense, preserves the set of all
strings accepted by the s-FA. Although the set S of all predicates appearing
in a given s-FA (or finite collection of s-FAs over the same alphabet alge-
bra) operate over an infinite domain, the set of maximal satisfiable Boolean
combinations Minterms(S)—also called minterms—of such predicates induces
a finite set of equivalence classes. In order to perform operations over one
or more s-FAs M̄ by using classical automata algorithms, one can consider
Σ = Minterms(Predicates(M̄)) as the induced finite alphabet and replace each
original transition p

ϕ−→ q by the transitions {p
c−→ q | c ∈ Σ,SAT(c ∧ ϕ)} and

consequently treat the automata as classic finite automata over the alphabet Σ.

Example 4. Consider the two s-FAs Mpos and Mev/odd in Fig. 1. Then

S = Predicates(Mpos,Mev/odd) = {ϕ>0, ϕodd}
and

Σ = Minterms(S)={ϕodd ∧ ϕ>0︸ ︷︷ ︸
a

,¬ϕodd ∧ ϕ>0︸ ︷︷ ︸
b

, ϕodd ∧ ¬ϕ>0︸ ︷︷ ︸
c

,¬ϕodd ∧ ¬ϕ>0︸ ︷︷ ︸
d

}
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Then, as a DFA over the finite alphabet Σ, Mpos has the transitions
{(q0, a, q0), (q0, b, q0)} and Mev/odd has the transitions {(q0, a, q1), (q0, c, q1),
(q1, a, q0), (q1, c, q0)}. In the product Mpos × Mev/odd only the a-transitions
remain.

Intuitively, using only the predicates in Σ there is no way to, for example,
distinguish the number 1 from the number 3—i.e., given any string s, if one
replaces any element 1 in s with the element 3, the new sequence s′ is accepted
by the s-FA iff s is also accepted by the s-FA. �

Using this argument, every s-FA M can be compiled into a symbol-
ically equivalent finite automaton over any alphabet Minterms(S) where
Predicates(M) forms a subset of S and S is a finite subset of Ψ . This idea, also
referred to as predicate abstraction, is often used in program verification [26].

In general, computing the set Minterms(M) def= Minterms(Predicates(M))
is an expensive procedure that generate exponentially many predicates. The
following theorem exactly characterizes the size of the set Minterms(M).

Theorem 4 (Number of minterms). Let M be a complete and normalized
s-FA with n states. Then |Minterms(M)| ≤ 2(n

2). If M is deterministic then
|Minterms(M)| ≤ 2n log2 n.

Proof. Let S = Predicates(M). Since M is normalized we have |Δ| ≤ n2 and so
|S| ≤ n2, and since |Minterms(S)| ≤ 2|S| the first claim follows. Assume now
that M is deterministic. Then every source state pi of M , for i < n, defines a
partition Pi of D such that |Pi| ≤ n because M is normalized, where each part
of Pi is defined by the guard of a transition from pi. Given two partitions Pi

and Pj of D let Pi � Pj denote the coarsest partition of D that refines both Pi

and Pj . Then {[[μ]] | μ ∈ Minterms(S)} =
∏

i<n Pi. Since, for every i, |Pi| ≤ m

implies |∏i<n Pi| ≤ mn, the following holds: |Minterms(S)| ≤ nn = 2n log2 n. �

2.2 Parametric Complexities

In the previous paragraphs we did not discuss the complexities of the presented
algorithms. Since s-FAs are parametric in an underlying alphabet theory, the
complexities of the algorithms must in some way depend on the complexities of
performing certain operations in the alphabet theory.

For example, checking emptiness of an s-FA requires checking satisfiability of
all predicates in the s-FA and the complexity depends on “how costly” it is to
check satisfiability of such predicates. Another issue arises from algorithms that
generate new predicates that did not belong to the original s-FAs. In particu-
lar, repeated predicate conjunctions, unions, and complementations will cause
predicates to grow in size and might therefore result in satisfiability queries
with higher costs. This peculiar aspect of s-FAs opens a new set of complexity
questions that have not been studied in classic automata theory.

Let’s consider again the problem of checking emptiness of an s-FA. In classic
automata, this problem has complexity O(kn) where k is the size of the alphabet
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and n is the number of states in the automaton. For an s-FA M , if we assume that
the largest predicate in M has size 	 and f(x) is the cost of checking satisfiability
of predicates of size x in the underlying alphabet theory, then checking emptiness
has complexity O(m · f(	)), where m is the number of transitions in the s-
FA M . Observe also that for s-FAs it is reasonable to work with normalized
representations which implies that m is at most n2 and m is independent of the
alphabet size and the total size of M is O(m	).

For certain problems, the complexities can get more complicated and different
algorithms will have different incomparable complexities. For example, consider
the problem of minimizing a deterministic s-FA. For classic automata, there are
two algorithms for solving this problem: (i) Moore’s algorithm, which has com-
plexity O(kn2); (ii) Hopcroft’s algorithm, which has complexity O(kn log n).
It is therefore clear that Hopcroft’s algorithm has better asymptotic complexity
than Moore’s algorithm. In the case of s-FAs, the situation is more complicated.
For an s-FAs M with n states and m transitions, if we assume that the largest
predicate in M has size 	 and f(x) is the cost of checking satisfiability of pred-
icates of size x in the underlying alphabet theory, the symbolic adaptation of
Moore’s algorithm has complexity O(mn·f(	)), while the symbolic adaptation of
Hopcroft’s algorithm has complexity O(m log n ·f(n	)). For s-FAs, the two algo-
rithms have somewhat orthogonal theoretical complexities: Hopcroft’s algorithm
saves a logarithmic factor in terms of state complexity, but this saving comes
at the cost of running more expensive satisfiability queries on predicates of size
n	. Given the recent advances in satisfiability procedures, the second algorithm
behaves better in practice.

2.3 Variants

Symbolic automata have been extended in various ways. Symbolic alternating
automata (s-AFA) together with a practical equivalence algorithm are presented
in [17]. s-AFAs are equivalent in expressiveness to s-FAs, but achieve succinct-
ness by extending s-FAs with alternation [14] and, despite the high theoretical
complexity, this model can at times be more practical than s-FAs. A very com-
mon extension of s-FAs is to allow multiple initial states, in particular when
dealing with nondeterministic s-FAs [21].

Symbolic tree automata (s-TA) operate over trees instead of strings. s-FAs
are a special case of s-TAs in which all nodes in the tree have one child or are
leaves. s-TAs have the same closure and decidability properties as s-FAs [52].
Moreover, the minimization algorithms for s-FAs has been extended to s-TAs
[20].

Symbolic visibly pushdown automata (s-VPA) operate over nested words,
which are used to model data with both linear and hierarchical structure such—
e.g., XML documents and recursive program traces. s-VPAs can be determinized
and have the same closure and decidability properties of s-FAs [16].

All the previous extensions show cases in which adapting classic models to
the symbolic setting does not affect closure and decidability properties. This
is not the case for Symbolic Extended Finite Automata (s-EFA) [19]. s-EFAs
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are symbolic automata in which each transition can read more than a single
character. In this model, predicates apply to finite tuples of elements up to a
fixed length, but the semantics flattens the tuples.

Formally, the domain D of A is assumed to contain tuples to enable the use of
multiple variables in this setting. There are predicates IsTup k for checking if an
element is a k-tuple for k ≥ 1 and there are projection terms xi or variables such
that for a k-tuple a = (a1, . . . , ak), and 1 ≤ i ≤ k, [[xi]](a) = ai. For example,
using equality or disequality, one can relate elements of tuples. A predicate over
k-tuples is called k-ary.

Example 5. A predicate IsTup 2∧x1 �= x2 ∧ϕ is satisfiable iff there exists a ∈ D
such that a is a pair (a1, a2) and a1 �= a2, and [[ϕ]](a1, a2) holds. �

Thus, if [(a, b, c), (d), (e, f)] ∈ L(M) where M is a considered as an s-FA
then [a, b, c, d, e, f ] ∈ Le(M) when M is considered as an s-EFA. Each individual
transition guard must uniquely define the length k of the tuple that determines
its arity. For example, the following transition reads two adjacent symbols x1

and x2 and checks whether the two symbols are equal:

p
x1=x2−−−−→

2
q.

While for automata over finite alphabet adding the the ability to consume multi-
ple characters in a single transition does not increase expressiveness, s-EFAs are
strictly more expressive than s-FAs. Moreover, s-EFAs lack many of the desir-
able properties s-FAs enjoy: s-EFAs are not closed under Boolean operations,
nondeterministic s-EFAs are strictly more expressive than their deterministic
counterpart, it is undecidable to check whether two s-EFAs are equivalent, or
even to check whether their intersection is empty. An important subclass of s-
EFAs, called Cartesian s-EFAs [19], has the same expressive power as s-FAs
and allows transitions with lookahead but the guards must be predicates whose
atoms only mention one variable at a time. Thus the atom x1 = x2 would not
be allowed. A related problem, called monadic decomposition [54] arises if we
want to decide if a predicate can be effectively transformed into an equivalent
Cartesian form.

3 Symbolic Automata in Practice

The development of the theory of symbolic automata is motivated by concrete
practical problems. Here we discuss some of them.

3.1 Analysis of Regular Expressions

The connection between automata and regular expressions has been studied for
more than 50 years. However, real-world regular expressions are much more
complex than the simple model described in a typical theory of computation
course. In particular, in practical regular expressions the size of the alphabet
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is 216 due to the widely adopted UTF16 standard of Unicode characters. The
inability of classic automata to efficiently handle large alphabets is what started
the study of symbolic automata.

Using s-FAs, the alphabet of Unicode characters can be modeled as a the-
ory of bit-vectors where predicates are represented as Binary Decision Diagrams
(BDDs) over such bit-vectors [31] or using bit-vector arithmetic in Z3 [55]. These
representations turned out to be a viable way to model practical regular expres-
sions and led to advanced analysis in the context of parametrized unit testing in
the tool PEX [48], automatic SQL query exploration in QEX [56], and random
password generation [18].

In applications that perform many Boolean operations on the regular
expressions—e.g., in text processing and analysis of string-manipulating pro-
grams [7,57]—s-FAs may generate very large number of states despite their suc-
cinct alphabet representations. The extension of s-FAs with alternation, s-AFAs,
can succinctly represent Boolean combinations of s-FAs and it was shown to be
an effective model for checking equivalence of complex combinations of regular
expressions.

3.2 Other Applications

Thanks to the symbolic treatment of the alphabet, symbolic automata are an
executable model and can be used to generate efficient code. This idea has
been used to achieve speed-ups in regular expression processing [45] and XML
processing [16].

Recently, s-VPAs have been used in the context of static analysis of program
failures to succinctly model properties of control-flow graphs [40]. This model
is particularly helpful in modelling properties of inter-procedural programs with
many different functions. In this setting, a classic automaton will need to have
number of states and transitions proportional to the number of functions—i.e.,
when a function f is invoked, push a state remembering the name f on a stack
and pop it at the function return. On the other hand, symbolic visibly pushdown
automata can model this call/return interaction symbolically with a single tran-
sition that simply requires the function that is currently returning to have the
same name as the last called function.

4 Symbolic Transducers

In this section, we present symbolic finite transducers, which are symbolic
automata that can produce outputs. The presentation here follows the origi-
nal definition from [57] but omits type annotations. In addition to predicates
we use expressions for representing anonymous functions that we call function
terms. Let A be a Boolean algebra as defined in Sect. 2. The set of function terms
is denoted by Λ and a term f ∈ Λ denotes a function [[f ]] over D, such that if
f, g ∈ Λ then g(f) ∈ Λ and it is such that for every a ∈ D:

[[g(f)]](a) = [[g]]([[f ]](a)).
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Similarly, if ϕ ∈ Ψ and f ∈ Λ then ϕ(f) ∈ Ψ such that, for a ∈ D:

a ∈ [[ϕ(f)]] ⇔ [[f ]](a) ∈ [[ϕ]].

Moreover, f = g is an equality predicate in ΨA such that, for a ∈ D:

a ∈ [[f = g]] ⇔ [[f ]](a) = [[g]](a).

Observe that f = g does not mean [[f ]] = [[g]]. We write f �= g for ¬f = g. Thus,
f �= g is satisfiable iff [[f ]] �= [[g]].

Furthermore, there is an identity (function) term x ∈ Λ such that, for all
a ∈ D, [[x]](a) = a, and for all c ∈ D there is a constant term c ∈ Λ such that
for all a ∈ D, [[c]](a) = c.

Example 6. Predicate ϕ ∧ f �= g is satisfiable iff there exists a ∈ [[ϕ]] such that
[[f ]](a) �= [[g]](a)—i.e., when f and g are not equivalent wrt ϕ. Predicate f �= c
for a given c ∈ D is satisfiable iff f does not denote the constant function c. �

Terms are typically typed but we omit type annotations here. We call such an
extended (effective) Boolean algebra with the additional components an (effec-
tive) label algebra.

Definition 2. A Symbolic Finite Transducer (s-FT) T is a tuple (A, Q, q0,Δ, F )
where: A is an effective label algebra; Q is a finite set of states; q0 ∈ Q is the
initial state; Δ is a finite subset of Q × Ψ × Λ∗ × Q called transitions; F ⊆ Q is
the set of final states.

In a transition (p, ϕ, f̄ , q), also denoted p
ϕ/f̄−−→ q, f̄ is called the output.

Observe that an s-FT in which all the transitions output the empty list corre-
sponds to an s-FA. We also call the s-FA that is obtained from an s-FT T by
removing the output component its domain automaton, DOM (T ).

Example 7. Let A correspond to integer linear arithmetic. So Λ contains terms
such as x%2 (x modulo 2), and Ψ contains atomic predicates such as x > 0. Here
x has type Z. The following are two examples of s-FTs:

T1 = (A, {p}, p, {p
x>0/[x,x]−−−−−−→ p}, {p}),

T2 = (A, {q}, q, {q
x%2 �=0/[x]−−−−−−−→ q, q

x%2=0/[]−−−−−−→ q}, {q}).

Here, T1 accepts only positive numbers and duplicates them and T2 deletes all the
even numbers. For example, on input [1, 2, 3], the s-FT T1 outputs [1, 1, 2, 2, 3, 3],
while the s-FT T2 outputs [1, 3]. �

We now define the semantics of s-FTs. In the remainder of the section, let
T = (A, Q, q0,Δ, F ) be a fixed s-FT. For each transition r in Δ we define the
set [[r]] of corresponding concrete transitions as follows.

[[p
ϕ/[f1,...,fk]−−−−−−−→ q]] def= {(p, a) �→ ([[[f1]](a), . . . , [[fk]](a)], q) | a ∈ [[ϕ]]}
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Intuitively, a transition p
ϕ/f̄−−→ q reads one input symbol a in state p that satisfies

the guard ϕ and produces a sequence of output symbols by applying the output
functions in f̄ to a and enters state q. In the following, let [[Δ]] def=

⋃
r∈Δ[[r]] and

let s1 ·s2 denote the concatenation of two sequences s1 and s2. We let D∗ denote
a disjoint universe from D of sequences of elements over D, to avoid the possible
ambiguity as far as concatenation is concerned.

Definition 3. For u = [a1, a2, . . . , an], v ∈ D∗, q ∈ Q, q′ ∈ Q, define q
u/v−−→→T q′

iff either u = v = [] and q = q′, or there is n ≥ 1 and {(pi−1, ai) �→ (vi, pi)}n
i=1 ⊆

[[Δ]] such that v = v1 ·v2 · · · vn, q = p0, and q′ = pn. The transduction of T is the

relation TT ⊆ D∗ × D∗ such that TT (u, v) ⇔ ∃q ∈ F : q0
u/v−−→→ q. Let TT (u) def=

{v | TT (u, v)}. Finally, he domain of T is defined as dom(T ) def= {u ∈ D∗ | ∃v :
TT (u, v)}, and the range of T is defined as ran(T ) def= {v ∈ D∗ | ∃u : TT (u, v)}.

The s-FT T is deterministic when [[Δ]] is a partial function from Q × D to
D∗ ×Q. The s-FT T is single-valued or functional if, for all u, |TT (u)| ≤ 1—i.e.,
TT represents a partial function over D∗. Observe that if T is deterministic then
T is also functional. Both the s-FTs in Example 7 are deterministic.

4.1 Interesting Properties

In this section, we illustrate some of the basic properties of s-FTs and show
what aspects differentiate these models from finite transducers [38], their finite-
alphabet counterpart. First, while both the domain and the range of a finite
state transduction are definable using a finite automaton, this is not the case for
s-FTs. By a regular language here we mean a language accepted by an s-FA.

An s-FT T admits quantifier elimination if for every transition
(p, ϕ, [fi]ki=1, q) in T where k ≥ 1 one can effectively compute a predicate ψ ∈ Ψ
such that the following is true: for all b ∈ D, we have b ∈ [[ψ]] iff b is a k-tuple
(bi)k

i=1 such that there exists a ∈ [[ϕ]] such that bi = [[fi]](a) for 1 ≤ i ≤ k. In
other words, computation of ψ corresponds to eliminating the quantifier ∃y from
∃y : ϕ(y) ∧ ∧k

i=1 xi = fi(y). Note that the predicate ψ is a k-ary predicate.

Theorem 5 (Domain and Range Languages). Given an s-FT T , one can
compute an s-FA DOM (T ) such that L(DOM (T )) = dom(T ) and, provided
that T admits quantifier elimination, there is an s-EFA RAN (T ) such that
Le(RAN (T )) = ran(T ).

In general, the range of an s-FT is not regular.

Example 8. Take an s-FT T with a single transition q
ϕodd (x)/[x,x]−−−−−−−−→ q that dupli-

cates its input if the input is odd. Then ran(T ) is not regular, but it can be
accepted by the s-EFA with one transition q

x1=x2−−−−→
2

q. �

s-FTs are closed under sequential composition. This is a property that enables
several interesting program analyses [30] and optimizations.
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Theorem 6 (Closure under Composition [57]). Given two s-FTs T1 and
T2, one can compute an s-FT T2(T1) such that for u, v ∈ D∗,

TT2(T1)
(u, v) ⇔ ∃w : TT1

(u,w) ∧ TT2
(w, v).

We illustrate the role of the substitution operator ·(·) in a label algebra in

the context of computing T2(T1). Consider the transition p
ϕ/[f1,f2]−−−−−−→ p′ in T1

and the transitions q
ψ/[g]−−−→ q′ γ/[h]−−−→ q′′ in T2. The set of states QT2(T1) of the

composed transducer is a reachable subset of Q1×Q2. The initial state of T2(T1)
is (q0T1

, q0T2
). When a state (p, q) is explored then the transition

(p, q)
ϕ∧ψ(f1)∧γ(f2)/[g(f1),h(f2)]−−−−−−−−−−−−−−−−−−→ (p′, q′′)

is constructed from the above transitions where the substitution operator is
applied to construct the combined guard and output functions. The composed
transition is omitted if ϕ ∧ ψ(f1) ∧ γ(f2) is unsatisfiable.

Example 9. Recall T1 and T2 from Example 7. Consider T = T2(T1). Then
QT = {(p, q)}. There are four composed candidates for the transitions in ΔT

but only the following two have satisfiable guards:

(p, q)
x>0∧x%2 �=0∧x%2 �=0/[x,x]−−−−−−−−−−−−−−−−−→ (p, q), (p, q)

x>0∧x%2=0∧x%2=0/[]−−−−−−−−−−−−−−−→ (p, q)

Therefore T , given a list of positive numbers, duplicates all odd numbers and
deletes the even ones. For example, on input [1, 2, 3], T outputs [1, 1, 3, 3]. �

The following result follows from the closure properties of s-FAs and the
closure under composition of s-FTs.

Corollary 1 (Type-checking). Given an s-FTs T and s-FAs MI and MO,
the following problem is decidable: check if for all v ∈ L(MI): TT (v) ⊆ L(MO).

For example, using the type-checking algorithm one can prove that, for every
input list, the transducer T from Example 9 always outputs a list of odd numbers
of even length.

Checking whether two s-FTs are equivalent is in general undecidable (already
over finite alphabets [29]). However, the problem becomes decidable when the
two s-FTs are functional (single-valued), which is itself a decidable property to
check.

Theorem 7 (Decidable functionality [57]). Given an s-FTs T it is decidable
to check whether T is functional.

Theorem 8 (Decidable functional equivalence [57]). Given two functional
s-FTs T1 and T2 it is decidable to check whether TT1

= TT2
.
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Both theorems use a more general decision problem that decides for two s-
FTs T1 and T2, if for all u, v, w ∈ D∗ it is true that if TT1

(u, v) and TT2
(u,w) then

v = w. The algorithm of this decision problem [57, Fig. 3] uses the disequality
operator �= and, in particular, the predicates shown in Example 6.

We conclude this section with an interesting property that is decidable for
classic finite state transducers [27] but undecidable for s-FTs. We say that an
s-FT T is injective if for all u, v ∈ D∗ we have TT (u) ∩ TT (v) = ∅.

Theorem 9 (Undecidable injectivity [33]). Given a deterministic s-FT T ,
it is undecidable to check whether T is injective.

The proof of undecidability presented in [33, Theorem 4.8] is given for s-EFTs
and is based on showing that it is undecidable to check whether there exist two
different accepting paths for the same string in the s-EFA RAN (T ). It is easy
to show that the theorem also holds for s-FTs since every s-EFA in this theory
can be produced as the range language of some s-FT.

4.2 Variants

Symbolic finite transducers have been extended in various ways. The basic exten-
sion of s-FTs is to consider finalizers—i.e., specific transitions that are used to
output final sequences upon end of input. Finite state transducers with finalizers
are called subsequential [6,46]. Finalizers enable certain scenarios not possible
without sacrificing determinism. Consider for example a decoder that decodes a
string by replacing all patterns "&amp;" by the character "&". If the input string
ends with for example "&amp" the decoder will need to output "&amp" instead
of "&" upon reaching the end of the input and finding out that ";" is missing.
Similarly, for capturing minimality, s-FTs may also be extended with initial out-
puts [44]. For many purposes it is enough to imagine that D is extended with
two new symbols that are used exclusively to detect start and end of an input
sequence. In a typed universe this approach is cumbersome and complicates the
notion of composition by requiring bookkeeping and special treatment of the
extra symbols which have to be taken outside the type domain.

Similarly to how s-EFAs extend s-FAs, Symbolic Extended Finite Transduc-
ers (s-EFT) are symbolic transducers in which each transition can read more than
a single character. Essentially, the definition of TT changes to T e

T , similar to the
change from L(M) to Le(M), where the input is flattened. s-EFA already lack
many desirable properties and s-EFTs further add to this list. s-EFTs are not
closed under composition and equivalence is undecidable even for deterministic
s-EFTs. However, equivalence becomes decidable when for every transition that
reads n characters using a predicate ϕ(x1, . . . , xn), one can replace the predicate
with an equivalent disjunction of predicates of the form ϕ1(x1)∧. . .∧ϕn(xn) [19].

A further extension of s-FTs, called s-RTs, incorporates the notion of
bounded look-back and roll-back in form of roll-back-transitions, not present in
any other transducer formalisms, to accommodate default or exceptional behav-
ior [50]. The key application is to simplify handling of default transitions such
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as the followings: if none of those patterns matches then read and output the
next input character “as is”. Having to hand-code state machines for such cases
gets complicated and error prone very quickly—e.g., see [57, Fig. 7].

s-FTs have also been extended with registers [57] and are called symbolic
transducers. The key motivation is to support loop-carried data state, such as
the maximal number seen so far. This model is closed under composition, but
most decision problems for it are undecidable, even emptiness.

A further extension of symbolic transducers uses branching transitions, which
are transitions with multiple target states in form of if-then-else structures [45].
The purpose is to better facilitate code generation by maintaining code struc-
ture, sharing, and predicate evaluation order for deterministic transducers. For

example, instead of two separate transitions p
ϕ/f̄−−→ q and p

¬ϕ/ḡ−−−→ r, there is a

single branching transition p �→ if ϕ then (f̄ , q) else (ḡ, r). If there is one branch-
ing transition per state then determinism is built-in. One can of course apply
the same idea to s-FAs.

Symbolic tree transducers (s-TT) operate over trees instead of strings. s-FTs
are a special case of s-TTs in which all nodes in the tree have one child or are
leaves. s-TTs are only closed under composition when certain assumptions hold
and their properties are studied in [28]. Equivalence of a restricted class of s-TTs
is shown decidable in [51]. s-TTs with regular look-ahead are studied in [23].

5 Symbolic Transducers in Practice

Here we provide a high-level overview of the main applications involving symbolic
finite transducers and their variants.

5.1 Analysis of String Encoders and Sanitizers

The original motivation for s-FTs came from analysis of string sanitizers [30].
String sanitizers are particular string to string functions over Unicode designed
to encode special characters in text that may otherwise trigger malicious code
execution in certain sensitive contexts, primarily in HTML pages. Thus, sani-
tizers provide a first line of defence against cross site scripting (XSS) attacks.
When sanitizers can be represented as s-FTs, one can, for example, decide if
two sanitizers A and B commute—i.e., if TA(B) = TB(A)—if a sanitizer A is
idempotent—i.e., if TA(A) = TA—or if A cannot be compromised with an input
attack vector—i.e., if ran(A) ⊆ SafeSet. Checking such properties can help to
ensure the correct usage of sanitizers.

One drawback of s-FTs is that they consider one input element at a time.
While this is often sufficient for individual character-based transformations
appearing in common sanitizers, in more complex transformations, such as
BASE64 encoders and decoders, it is often necessary to be able to look at a
group of characters at once in order to decode them. For example, a BASE64
encoder reads three characters at a time and outputs complex combinations and
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bit-level transformations of the bits appearing in the characters. This is the orig-
inal motivation behind s-EFTs, which are studied in [19]. Using s-EFTs one can
prove that efficient implementations of BASE64 or UTF encoders and decoders
correctly invert each other. Recently, s-EFTs have been used to automatically
compute inverses of encoders that are correct by construction [33].

Variants of algorithms for learning symbolic automata and transducers have
been used to automatically extract models of PHP input filters [12] and string
sanitizers [8]. In these applications, symbolic automata and transducers have
enabled modelling of programs that were beyond the reach of existing automata-
learning algorithms.

Symbolic transducers have also been used to perform static analysis of func-
tional programs that operate over lists and trees [23]. In particular, symbolic
tree transducers were used to verify HTML sanitizers, to check interference of
augmented reality applications submitted to an app store, and to perform defor-
estation, a technique to speed-up function composition, in functional language
compilation.

5.2 Code Generation and Parallelization

Symbolic transducers can be used to expose data parallelism in computations
that may otherwise seem inherently sequential. This idea builds on the property
that the state transition function of a DFA can be viewed as a particular kind
of matrix multiplication operation which is associative and therefore lends itself
to parallelization [39]. This property can be lifted to the symbolic setting and
applied to many common string transformations expressed as symbolic trans-
ducers [58].

Using closure under composition, complex combinations of symbolic trans-
ducers can be composed in a manner that supports efficient code generation. The
main context where this has been evaluated is in log/data processing pipelines
that require loop-carried state for data processing [45]. In this context the sym-
bolic transducers have registers and use branching rules that are rules with
multiple target states in form of if-then-else structures. The main purpose of the
branching rules is to support serial code generation.

Symbolic automata and transducers also provide the backbone of DReX, a
declarative language for efficiently executing regular string transformations in
a single left-to-right pass over the input [7]. DReX has also been extended to
stream numerical data computations using a “numerical” extension of symbolic
transducers [36].

6 Open Problems and Future Directions

We conclude this paper with a list of open theoretical questions that are unique
to symbolic automata and transducers, as well as a summary of what unexplored
applications could benefit from these models.
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6.1 Adapting Efficient Algorithms for Finite Alphabets

Several algorithms for classic finite automata are based on efficient data struc-
tures that directly leverage the fact that the alphabet is finite. For example,
Hopcroft’s algorithm for automata minimization, at each step, iterates over the
alphabet to find potential ways to split state partitions [32]. It turns out that
this iteration can be avoided in symbolic automata using satisfiability checks on
certain carefully crafted predicates [18].

Paige-Tarjan’s algorithm for computing forward bisimulations of nondeter-
ministic finite automata is similar to Hopcroft’s algorithm for DFA minimiza-
tion [5,41]. The efficient implementation of Paige-Tarjan’s algorithm presented
in [5] keeps, for every symbol a in the alphabet, for every state q in the automa-
ton, and for every state partition P , a count of how many transitions from q
on symbol a reach the partition P . Using this data-structure, the algorithm can
compute the partition of forward-bisimilar states in time O(km log n). Unlike
Hopcroft’s algorithm, this algorithm is hard to adapt to the symbolic setting.
In fact, the current adaptation has complexity O(2m log n + 2mf(n	)) [21]. In
contrast, the simpler O(km2) algorithm for forward bisimulations can be easily
turned into a symbolic O(m2f(	)) algorithm [21]. This example shows how it
can be hard to convert the most efficient algorithms for automata over finite
alphabets to the symbolic setting. In fact, it remains open whether an efficient
symbolic adaptation of Paige-Tarjan’s algorithm exists.

Another example of this complexity of adaptation is the algorithm for check-
ing equivalence of two nondeterministic unambiguous finite automata [47]. This
algorithm checks equivalence of two automata in polynomial time by “counting”
how many strings of all lengths smaller or equal than some small length the two
automata accepts. These numbers can only be computed if the alphabet is finite
and it is unclear whether one can efficiently adapt this algorithm to the symbolic
setting.

Some symbolic models are still not well understood because they do not have
a finite automata counterpart. In particular, s-EFAs do not enjoy many good
properties, but it is possible that they have practical subclasses—e.g., determin-
istic, unambiguous, etc.—with good properties.

Finally, the problem of learning symbolic automata has only received limited
attention [25], and there is an opportunity to develop interesting new theories
in this domain. Classic learning algorithm require querying an oracle for all
characters in the alphabet and this is impossible for symbolic automata. On the
other hand, the learner simply needs to learn the predicates on each transition
of the s-FA, which might require a finite number of queries to the oracle [25].
This is a common problem in computational learning theory and there is an
opportunity to apply concepts from this domain to the problem of learning
symbolic automata.

6.2 Theoretical Treatments

Complexity and expressiveness. In classic automata theory, the complexities of
the algorithms are given with respect to the number of states and transitions
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in the automaton. We discussed in Sect. 2 how the complexities of symbolic
automata and transducers operations depend on the complexities of performing
certain operations in the alphabet theory. Existing structural complexity results
for automata algorithms only dwell on state size, but we showed how certain
algorithms pose trade-off between state complexity and alphabet complexity in
the case of symbolic automata. Exactly understanding these trade-offs is an
interesting research question.

There has been a lot of interest in providing algebraic and co-algebraic treat-
ments of classic automata theory [11]. These abstract treatments are helping us
understand the essence of classic algorithms and are simplifying complex proofs
that were otherwise tedious. It is unclear how to extend these notions to symbolic
models, making the problem intriguing from a theoretical standpoint.

Combination with Nominal Automata. In data words, each character is a pair
(a, d) where a is an element of the finite alphabet and d is a data element
over an infinite potentially ordered domain. Various models of automata have
been introduced for data words [9]. In these models, data elements at differ-
ent positions can be compared using a predefined operator—e.g., equality—but
individual data elements cannot be checked against predicates in a Boolean alge-
bra. Nominal automata [37] provide an elegant algebraic model for describing
computations on data words and combining nominal automata with symbolic
automata is an interesting research direction: on one hand we know that s-EFA
do not enjoy good theoretical properties because they allow comparisons between
different characters, and on the other hand nominal automata enjoy decidable
properties by restricting what operations one can use to compare data elements.

6.3 New Potential Applications

SMT Solving with Sequences. SMT solvers such as Z3 [24] have drastically
changed the world of programming languages and turned previously unsolvable
problems into feasible ones. The recent interest in verifying programs operating
over sequences has created a need for extending existing SMT solving techniques
to handle sequences over complex theories [22,53]. Solvers that are able to handle
strings, typically do so by building automata and then performing complex oper-
ations over such automata [35]. Existing solvers only handle strings over finite
small alphabets [35] and s-FAs have the potential to impact the way in which
such solvers for SMT are built. Recently, Z3 [24] has started incorporating s-FAs
to reason about sequences. The SMT community has also been discussing how
to integrate sequences and regular expressions into the SMT-lib standard [10].

Security. Dalla Preda et al. recently investigated how to use s-FAs to model
program binaries [15]. s-FAs can use their state space to capture the control
flow of a program and their predicates to abstract the I/O semantics of basic
blocks appearing in the programs. This approach unifies existing syntactic and
semantic techniques for similarity of binaries and has the promise to lead us to
better understand techniques for malware detection in low-level code. The same
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authors recently started investigating whether, using s-FTs, the same techniques
could be extended to perform analysis of reflective code—i.e., code that can self-
modify itself at runtime [42].

7 Conclusion

Symbolic automata and transducers have proven to be a versatile and power-
ful model to reason about practical applications that were beyond the reach of
models that operate over finite alphabets. In this paper, we summarized what
theoretical results are known for symbolic models, described the numerous exten-
sions of symbolic automata and transducers, and clarified why these models are
different from their finite-alphabet counterparts. We also presented the following
list of open problems we hope that the research community will help us solve:
Can we provide theoretical treatments of the complexities of the algorithms for
symbolic models? Can we extend algorithms for automata over finite alpha-
bets to the symbolic setting? Can we combine symbolic automata with other
automata models such as nominal automata? Can we use symbolic automata
algorithms to design decision procedures for the SMT theory of sequences?
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