
Context-Sensitive Dynamic Partial Order
Reduction

Elvira Albert1, Puri Arenas1(B), Maŕıa Garćıa de la Banda2,4,
Miguel Gómez-Zamalloa1, and Peter J. Stuckey3,4

1 DSIC, Complutense University of Madrid, Madrid, Spain
puri@sip.ucm.es

2 DCIS, University of Melbourne, Melbourne, Australia
3 Faculty of IT, Monash University, Melbourne, Australia

4 IMDEA Software Institute, Madrid, Spain

Abstract. Dynamic Partial Order Reduction (DPOR) is a powerful
technique used in verification and testing to reduce the number of equiv-
alent executions explored. Two executions are equivalent if they can be
obtained from each other by swapping adjacent, non-conflicting (inde-
pendent) execution steps. Existing DPOR algorithms rely on a notion
of independence that is context-insensitive, i.e., the execution steps
must be independent in all contexts. In practice, independence is often
proved by just checking no execution step writes on a shared variable.
We present context-sensitive DPOR, an extension of DPOR that uses
context-sensitive independence, where two steps might be independent
only in the particular context explored. We show theoretically and exper-
imentally how context-sensitive DPOR can achieve exponential gains.

1 Introduction

A fundamental challenge in the verification and testing of concurrent programs
arises from the combinatorial explosion that occurs when exploring the different
ways in which processes/threads can interleave. Partial-order reduction (POR)
[4,6,7] is a general theory that provides full coverage of all possible executions of
concurrent programs by identifying equivalence classes of redundant executions,
and only exploring one representative of each class. Two executions are said to
be equivalent if one can be obtained from the other by swapping adjacent, non-
conflicting (i.e., independent) execution steps. POR-based approaches avoid the
exploration of such equivalent executions thanks to the use of two complementary
sets: persistent sets and sleep sets. Intuitively, the former contains the execution
steps that must be explored (as they might lead to non-equivalent executions),
while the latter contain the steps that should no longer be explored (as they lead
to executions equivalent to others already explored).

In the state-of-the-art POR algorithm [5], called DPOR (Dynamic POR),
persistent sets are computed dynamically by only adding a step to the persis-
tent set (called backtracking set in DPOR terminology) if the step is proved to
be dependent on another previously explored step. Refining dependencies thus
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 526–543, 2017.
DOI: 10.1007/978-3-319-63387-9 26

Context-Sensitive Dynamic Partial Order Reduction 527

improves POR verification methods [8,15]. While very effective, DPOR is not
optimal, as it sometimes explores equivalent executions. Optimality was later
achieved by optimal -DPOR [1] thanks to the analysis of past explorations to
build source sets and wakeup trees. Intuitively, the former is a relaxation of per-
sistent sets that avoids exploring steps that will later be blocked by the sleep set.
The latter stores fragments of executions that are known not to end up being
blocked by the sleep set. Source sets and wakeup trees, respectively, replace per-
sistent sets and enhance the performance of sleep sets. Together, they ensure the
exploration of all equivalence classes with the minimum number of executions,
regardless of scheduling decisions.

Our work stems from the observation that source sets, and their predeces-
sors persistent sets, are computed dynamically based on a notion of context-
insensitive independence, which requires two steps be independent in all possi-
ble contexts. While optimal-DPOR has indeed been proved to be optimal, it is
so only under the assumption of context-insensitive independence. In existing
implementations of both DPOR and optimal-DPOR [1,5], context-insensitive
independence is over-approximated by requiring global variables accessed by
one execution step not to be modified by the other. The contribution of this
paper is to extend the DPOR framework to take advantage of context-sensitive
independence, that is, of two steps being independent for a given state encoun-
tered during the execution, rather than for all possible states. For example, steps
{if (cond) f = 0} and {f+ = 3} are independent for states where cond fails, but
not for states where it holds.

Context-sensitiveness is a general, well-known concept that has been inten-
sively studied and applied in both static analyses [13] and dynamic analyses [11].
The challenge is in incorporating this known concept into a sophisticated frame-
work like DPOR. We do so by adding to the computation of the standard sleep
sets any sequence of steps that are independent in the considered context, so
that the exploration of such sequence is later avoided. Our extension is orthogo-
nal to the previous improvements of source sets and wakeup trees, and can thus
be used in conjunction with them.

Importantly, our method also provides an effective technique to improve the
traditional over-approximation of context-insensitive independence. Consider,
for example, the simple case where two steps add a certain amount to the value
of a variable, or the more complex case of an agent-based implementation of
merge sort, where each agent splits their input into two parts, gives them to
child agents to sort, and then merges the result. Both cases will give the same
result regardless of the execution order, and at least the merge case will be
difficult to prove. Our context-sensitive approach can easily determine in both
cases that the orders lead to the same result (for each particular input being
tested) and, hence, only consider one execution order of the processes. Without
this, the algorithm will need to consider an exponential number of executions for
the merge case, even though they are all equivalent. Our experimental results
confirm our method achieves exponential speedups.

528 E. Albert et al.

2 Preliminaries

Following [1], we assume our concurrent system is composed of a finite set of
processes (or threads) and has a unique initial state s0. Each process is a sequence
of atomic execution steps that are globally relevant, that is, might depend on
and affect the global state of the system. Each such step represents the combined
effect of a global statement and a finite sequence of local statements, ending just
before the next global statement in the process. The set of processes enabled
by state s (that is, that can perform an execution step from s) is denoted by
enabled(s).

An execution sequence E is a finite sequence of execution steps performed
from the initial state s0. For example, q.r.r is an execution sequence that executes
the first step of process q, followed by two steps of process r. The state reached
by execution sequence E is unique and denoted by s[E]. Executions sequences
E and E′ are equivalent if they reach the same state: s[E] = s[E′]. An execution
sequence is complete if it exhausts all processes (that is, there is no possible
further step).

An event (p, i) denotes the i-th occurrence of process p in an execution
sequence, and proc(e) denotes the process of event e. The set of events in exe-
cution sequence E is denoted by dom(E), and contains event (p, i) iff p appears
at least i times in E. We use e <E e′ to denote that event e occurs before
event e′ in E, and E ≤ E′ to denote that sequence E is a prefix of sequence
E′. Note that <E establishes a total order between events in E. Let dom[E](w)
denote the set of events in execution sequence E.w that are in sequence w, that
is, dom(E.w)\dom(E). If w is a single process p, we use next[E](p) to denote
dom[E](p).

The core concept in POR is that of the happens-before partial order among
the events in execution sequence E, denoted by →E . This relation defines a sub-
set of the <E total order, such that any two sequences with the same happens-
before order are equivalent. POR algorithms use this relation to reduce the
number of equivalent execution sequences explored, with Optimal-DPOR ensur-
ing that only one execution sequence in each equivalence class is explored. The
happens-before partial order has traditionally been defined in terms of a depen-
dency relation between the execution steps associated to those events [7]. Intu-
itively, two steps p and q are dependent if there is at least one execution sequence
E for which they do not commute, either because one enables the other or
because s[E.p.q] �= s[E.q.p]. Instead, the Optimal-DPOR algorithm is based on a
very general happens-before relation that is not defined in terms of a dependency
relation [1]. It simply requires it to satisfy the following seven properties for all
execution sequences E:

1. →E is a partial order on dom(E), which is included in <E .
2. The execution steps of each process are totally ordered, i.e. (p, i) →E (p, i+1)

whenever (p, i + 1) ∈ dom(E), as one enables the other.
3. If E′ is a prefix of E, then →E and →E′ are the same on dom(E′). That is,

adding more events cannot change the order among previous events.

Context-Sensitive Dynamic Partial Order Reduction 529

4. Any linearization E′ of →E on dom(E) is an execution sequence with exactly
the same happens-before relation →E′ as →E . Thus, →E induces a set of
equivalent execution sequences, all with the same happens-before relation.
We use E � E′ to denote that E and E′ are linearizations of the same
happens-before relation, and [E]� to denote the equivalence class of E.

5. If E � E′, then s[E] = s[E′], thus ensuring equivalent sequences commute.
6. For any sequences E, E′ and w, such that E.w is an execution sequence, we

have E � E′ iff E.w � E′.w.
7. If p, q, and r are different processes, then if next[E](p) →E.p.r next[E.p](r)

and next[E](p) �E.p.q next[E.p](q), then next[E](p) →E.p.q.r next[E.p.q](r).
This ensures that if the next step of p happens-before the next step of r, this
will still be the case if we add in the middle a step independent of p.

The above relation is used for defining the concept of a race between two
events. Event e is said to be in race with event e′ in execution E, if the events
have different processes, e happens-before e′ in E (e →E e′), and the two events
are “concurrent”, i.e. there exists an equivalent execution sequence E′ � E where
the two events are adjacent. We write e �E e′ to denote that e is in race with e′

and that the race can be reversed (i.e., the events can be executed in reversed
order).

3 The Happens-Before Relation is Not Context-Sensitive

One could think the generality of the above happens-before definition allows it
to capture context-sensitive independence and, thus, there is no need to modify
DPOR to achieve context-sensitivity. The following example shows this is not
the case and explains why Optimal-DPOR might explore sequences avoided by
our method. Consider three simple processes defined by:

p: write(x=5) q: write(x=5) r: read(x)

All three pairs of associated execution steps will usually be considered as depen-
dent, which means traditional DPOR methods will process the 6 sequences
resulting for all permutations of {p, q, r}. However, there are only 2 different
resulting states, one where r is executed after q and/or p thus reading 5, and
one where it is executed before the others, thus reading 0. Let us construct
a minimal (i.e., least restrictive) happens-before partial order for all execution
sequences of {p, q, r}. For sequences of length 2, the only properties that need
to be considered are 1, 4 and 5 (all others deal with at least three events in the
execution). A minimal partial order that satisfies these three properties is:

(a) (b) (c) (d) (e) (f)

p

��

p

����

q

��

q

�� ��

r

�� ��

r

�� ��
q r p r p q

530 E. Albert et al.

where the dotted arrows indicate a happens-before order between the two process
steps, and the continuous arrows indicate the <E total order within the execution
sequence. That is, the following relations hold: (a) p �→p.q q, (b) p →p.r r,
(c) q �→q.p p, (d) q →q.r r, (e) r →r.p p, (f) r →r.q q. Note that (b), (d), (e)
and (f) are needed as, otherwise, properties (4) and (5) of the happens-before
definition above would require (b) and (e) to be equivalent, as well as (d) and
(f). As given, only (a) and (c) are equivalent.

For sequences of length 3, all properties need to be considered, although
our example makes property 2 directly satisfied, as each process has only one
execution step. Property (6) requires p →p.q.r r to hold, due to (a) and (b).
Similarly, q →q.p.r r must hold due to (c) and (d). However, these cannot be
the only happens-before relations for sequences p.q.r and q.p.r, as this would
contradict property (4): q.p.r is a linearization of the happens-before for p.q.r
and, hence, must have identical happens-before relations. Hence, q →p.q.r r
and p →q.p.r r must also hold. Consider now sequence p.r.q. By property (3),
p →p.r.q r must hold. Again, this cannot be the only relation for the sequence
as, by (4), it would also be the only relation for sequence p.q.r. Hence, r →p.r.q q
must also hold. Similarly, q →q.r.p r and r →q.r.p p must also hold. A similar
reasoning can be done for sequences r.p.q and r.q.p, obtaining the following
minimal happens-before relation for sequences of length 3:

(g) (h) (i) (j) (k) (l)

p

��

��

p

�� ��

q

��

��

q

�� ��

r

�� ��

��

r

�� ��

��

q

�� ��

r

�� ��

p

�� ��

r

�� ��

p

��

q

��
r q r p q p

Since g � i and k � l, Optimal-DPOR must explore at least 4 different
sequences with this minimal happens-before relation. Furthermore, it would
need to explore all 6 sequences using the traditional happens before over-
approximation. In contrast, using context-sensitivity we can determine that
s[d] = s[h] = s[i] = s[j] and s[k] = s[l]. Hence, only two sequences must be
explored. As we will see later, our algorithm explores 3 sequences when using
the traditional happens-before relation.

4 Context-Sensitivity Can Give Exponential Gains

Let us motivate the relevance of our work by means of a typical producer-
consumer interaction where we can see that the gain of using context-sensitive
independence can be exponential. Consider two processes, a producer (p) that
stores results in a bounded buffer (a FIFO queue), and a consumer (c) that takes
them from the buffer, defined as follows:

Context-Sensitive Dynamic Partial Order Reduction 531

produce(Q,v)
if Q not full

Q := Q ++[v]

consume(Q)
if Q not empty

let Q = [v] + +Q′

Q := Q′

return v
else return ⊥

Let us, for simplicity, assume that calls to produce and consume are atomic,
that is, locks are used to prevent their concurrent execution. In any sequence E
containing events (p, i) and (c, j), either (p, i) →E (c, j) or (c, j) →E (p, i) must
hold, even in a minimal happens-before relation. However, as long as the buffer
is neither empty, nor full, both orders lead to the same state.

Given n occurrences of the producer and n of the consumer, a context-
insensitive algorithm will need to explore all their interleavings, since each occur-
rence happens-before the other. This means exploring

(
2n
n

)
executions. However,

most of these lead to the same state: if the size k of the buffer is k ≥ n, the state
is determined by the subset of consumers that read an empty buffer and, hence,
there are exactly 2n different states.

Consider an example where n = 3, k = 5, and p stores 1, 2, 3 in sequence.
A DAG representing all execution sequences is given in Fig. 1. For clarity, edges
for the consumer appear as dotted and labeled by the value consumed. Nodes
represent states and are labeled by the number of elements in the buffer. For
brevity, we denote events (p, i) and (c, j) as pi and cj , respectively.

Fig. 1. All interleavings of consumers (dotted) and producers for n = 3 and k = 5.

532 E. Albert et al.

Note that there are only 23 = 8 non-equivalent execution sequences, rather
than

(
6
3

)
= 20. The reduction given by context-sensitive independence is expo-

nential, since each state labeled from 1 to k − 1 has two paths leading to the
same state, hence reducing the number of leaves of the resulting subtree by a
factor of 2 (modulo some edge effects). Section 6.1 gives experimental results on
the application of our context-sensitive method to this example.

5 Context-Sensitive DPOR

We will use the Source-DPOR algorithm [1] both to explain and to implement
our method. This is because Source-DPOR is usually faster than Optimal-DPOR
in practice, and its algorithm (and thus our extension) is much easier to under-
stand. Both the original algorithm and our extension are formulated in a general
setting, which only assumes the existence of a happens-before relation between
the events of an execution. It can thus be used both for computational models
where dependency of concurrent threads is based on modifying shared variables,
and for those where dependency of asynchronous message-passing processes is
based on modifying shared messages. Most examples in the paper use shared
variables, as traditional in the DPOR literature, while our implementation is
developed for an asynchronous message-passing language (see Sect. 6).

5.1 The Extended Algorithm

Source-DPOR can be obtained from Algorithm1 by removing lines 11–14 and
line 16, which provide our extension. Note also that we have made the sleep

Algorithm 1. Context-sensitive DPOR
1: procedure explore(E,Sleep)
2: sleep(E) := Sleep;
3: if (∃p ∈ (enabled(s[E])\Sleep)) then
4: backtrack(E) := {p};
5: while (∃p ∈ (backtrack(E)\sleep(E))) do
6: for all (e ∈ dom(E) such that e �E.p next[E](p)) do
7: let E′ = pre(E, e);
8: let v = notdep(e, E).p;
9: if (I[E′](v) ∩ backtrack(E′) = ∅) then

10: add some q′ in I[E′](v) to backtrack(E′)
11: let u = dep(e, E)
12: if (� ∃w ∈ sleep(E′) where w ≤ v.u) then
13: if (s[E.p] = s[E′.v.u]) then
14: add v.u to sleep(E′);
15: Sleep′ := {v | v ∈ sleep(E), E |= p � v}
16: ∪ {v | p.v ∈ sleep(E)};
17: explore(E.p, Sleep′);
18: sleep(E) := sleep(E) ∪ {p};

Context-Sensitive Dynamic Partial Order Reduction 533

set for each sequence E, sleep(E), global in line 2, as our modifications require
the addition of new elements to previous sleep sets. Let us first describe the
behaviour of the original Source-DPOR algorithm. As shown in Algorithm1,
Source-DPOR extends an execution sequence E with current sleep set Sleep,
which contains the set of processes that previous executions have determined do
not need to be explored yet from E. Initially, the algorithm starts with an empty
sequence and an empty sleep set. In general, the algorithm starts by selecting
any process p that is enabled by the state reached after executing E and is not
already in Sleep. If it does not find any such process p, it stops. Otherwise, it
initiates the backtrack set of E (i.e., the set of processes that must be explored
from E) to be the singleton {p}, and starts exploring every element p in this set
that is not in sleep(E) (which is the same as Sleep in the original algorithm).
Note that the backtrack set of E might grow as the loop progresses (due to later
executions of line 10).

For each such p, Source-DPOR performs two phases: race detection (lines 6
to 10) and state exploration (lines 15, 17 and 18). The race detection starts by
finding all events e in dom(E) such that e �E.p next[E](p). For each such e, it
sets E′ to pre(E, e), i.e., to be the prefix of E up to, but not including e. It also
sets v to notdep(e,E).p, where notdep(e,E) is the subsequence of events of E
that occur after e but do not “happen after” e (i.e., every e′ such that e <E e′

and e �→E e′). It then checks whether there is any process in the backtrack set
of E that appears also in I[E′](v), where I[E′](v) denotes the set of processes
that perform events in dom[E′](v) that have no happens-before predecessors in
dom[E′](v). If there is no such process, it adds any process in I[E′](v) to the
backtrack set of E′. Note that this has the effect of adding new processes to
the backtrack sets of earlier parts of the exploration tree (right before e was
explored in E). After this, Source-DPOR continues with the state exploration
phase for E.p, by retaining in its sleep set Sleep′ any element v in sleep(E) that
is independent of p in E (denoted as E |= p 	 v), i.e., any v such that the next
event next[E](p) would not happen-before any event in dom[E.p](v). After this,
the algorithm explores E.p with sleep set Sleep′, and finally it adds p to Sleep
to ensure p is not selected again.

Let us now explain the new lines added by our method. We start during the
race detection phase, where event e has been detected in the original Source-
DPOR to be in a reversible race with the next event next[E](p). We first set u
to be dep(e,E), i.e., to be the sub-sequence of E that starts with e and contains
all events that “happen after” e in E. We then simply need to check (line 13)
whether inverting the sequences of events v and u after E′ will lead to the same
state and, if so, add v.u to sleep(E′). However, none of this is needed if there
is already something in sleep(E′) that will by itself prevent us from exploring
the reversed sequence v.u. This is why we first check, in line 12, whether v.u
has a prefix w (w ≤ v.u) in sleep(E′) and, if so, do nothing. The only other
change occurs during the exploration phase. In the sleep set propagation step
that computes Sleep′, any sequence p.v in sleep(E) that starts with the process
p we are about to explore, is replaced by v in the initial sleep set of the new

534 E. Albert et al.

state. This is not needed in the original Source-DPOR, because its Sleep set
only has processes, not sequences.

Fig. 2. Context-sensitive DPOR with initial sleep sets for each state. The dotted com-
ponents would be visited by optimal-DPOR with the traditional happens-before.

Example 1. Let us follow the algorithm’s execution on the example of Sect. 3
(Fig. 2) but using the traditional happens-before approximation where all p, q
and r are dependent to each other. Since all processes have only one execution
step, by an abuse of notation, we will refer to events by their process name.
The algorithm starts with sequence ε and an empty sleep set, denoted as state
0 in Fig. 2. The execution first chooses p, detects no races and explores sequence
p with an empty sleep set to state 1. The execution then chooses q, detects a
reversible race with p, and adds q to backtrack(ε), i.e., state 0 in the figure. At
this point our method confirms that s[p.q] = s[q.p], and thus adds q.p to sleep(ε),
i.e., state 0, indicating there is no need to explore q from it. The execution
proceeds by exploring sequence p.q with an empty sleep set to state 2. Now
only r can be chosen. The execution detects a reversible race with q, and adds
r to backtrack(p), i.e., state 1. Our method confirms that s[p.q.r] = s[p.r.q], thus
adding r.q to sleep(p), i.e., state 1. The execution then explores sequence p.q.r
to state 3 and finds the first solution, where r reads x as 5. It then backtracks to
state 1, adding r to sleep(p.q) and q to sleep(p) on the way. Next, it chooses r,
and finds a reversible race with p which adds r to backtrack(ε). Our method also
realises s[p.r] �= s[r.p], which means nothing needs to be added to sleep(ε). The
execution then explores p.r to state 4 with the sleep set sleep(p.r) initialized to q.
Thanks to this, q cannot be selected at this point and the execution backtracks
to state 0, adding r to sleep(p) and p to sleep(ε) on the way. In the original
source-DPOR algorithm q would not have been in sleep(p.r), since r.q would
not have been in sleep(p). Hence, it would have explored the full sequence p.r.q.

The execution then backtracks to state 0 and explores sequence q to state
5, with sleep(q) initially set to {p} (since sleep(ε) was {p, q.p} at this point).

Context-Sensitive Dynamic Partial Order Reduction 535

The execution can then only choose r. It finds a reversible race but does not
add anything to backtrack(ε) since r is already there. Our method also realises
s[q.r] �= s[r.q]. It then explores q.r to state 6. The execution chooses p detects a
reversible race with r at state 5, and adds p to backtrack(q). Since p is already
in sleep(q), it does not check for equivalence. The method finds an equivalent
solution at state 7. In the original Source-DPOR algorithm p would not have
been in sleep(q), since q.p would not have been in sleep(ε). Hence, it would have
explored the full sequence q.p.r.

The execution now backtracks to state 0 and explores sequence r to state 8
with sleep(r) initially empty. The execution then chooses p, finds a reversible
race with r, but does not update anything, as the tests in lines 9 and 12 fail. The
execution explores r.p to state 9 with sleep(r.p) initially empty. It then chooses
q, finds a reversible race with p, and adds q to backtrack(r). Our method then
confirms s[r.p.q] = s[r.q.p], and adds q.p to sleep(r). The execution then explores
sequence r.p.q to state 10, and finds the second solution where r reads x as
0. The execution then backtracks to state 8, adding q to sleep(r.p) and p to
sleep(r) on the way. The execution then chooses q and finds a reversible race
with r which produce no effects. It then explores r.q to state 11 with sleep(r.q)
initially set to {p}. Since nothing can be selected, the execution terminates. In
the original Source-DPOR p would not have been in sleep(r.q), since q.p would
not have been in sleep(r). Hence, it would have explored the full sequence r.q.p.

The execution has explored 3 complete sequences rather than the minimal
2, whereas the original Source-DPOR would have explored 6 (rather than its
minimal 4). Note that while some redundant executions are not detected until
their last steps, others are detected earlier, as is the case for sequence q.p.r.
�

The above example shows in detail how the context-sensitive DPOR algo-
rithm works step by step, and how it can detect equivalent execution sequences.
However, the example is too simple to show how the algorithm can make real
reductions in the exploration. Note that the dotted derivations that the original
Source-DPOR algorithm would have explored, have also been executed by our
algorithm in order to do the context-sensitive checks in line 13. Hence, though
the context-sensitive DPOR algorithm has obtained less solutions, it has not
been able to reduce the exploration, and it has performed some recomputations.
The following example illustrates how context-sensitive DPOR is able to achieve
reductions while exploring execution sequences.

Example 2. Let us consider the execution of our algorithm on the producer-
consumer example of Sect. 3, and let us assume it first explores the execu-
tion sequence p1.p2.p3, shown as the leftmost sequence in Fig. 1. Up to this
point no race has been detected. Now the algorithm can only select c1 and
detects a reversible race with p3 adding c1 to backtrack(p1.p2). It then confirms
s[p1.p2.p3.c1] = s[p1.p2.c1.p3] and, hence, adds c1.p3 to sleep(p1.p2). After explor-
ing the complete leftmost branch, it backtracks to state p1.p2 and selects c1.
It then detects the race with p2, adding c1 to backtrack(p1). It then confirms
s[p1.p2.c1] = s[p1.c1.p2] and, hence, adds c1.p2 to sleep(p1). It then executes c1,

536 E. Albert et al.

reaching state p1.p2.c1 with p3 in its sleep set. At this point the algorithm can
only select c2. The important point to note is that the algorithm has been able
to avoid exploring the equivalent sub-sequence p3.c2.c3 that the original DPOR
algorithm would have had to explore. The reduction is made more apparent if
we continue some more steps. Let us assume the algorithm has already found the
second solution and backtracks to state p1 to select c1. After managing the race
with p1, and executing c1, it will reach state p1.c1 with p2 in its sleep set. Impor-
tantly, this will prevent our algorithm from exploring the whole execution tree
below p1.c1.p2. As we will see later in Sect. 6.1, our algorithm is able to obtain
the minimal number of 2n solutions for this example and, more importantly, it
is able to reduce exponentially the number of states explored.
�

5.2 Soundness

Soundness relies on showing that any omitted Mazurkiewicz trace, i.e., the
happens-before order of a complete execution sequence, is equivalent to an
explored one in terms of the final state.

Lemma 1. If the context-sensitive DPOR algorithm discovers that s[E.p] =
s[E′.v.u], for any complete sequence C of the form C = E′.v.u.w there is a com-
plete sequence C ′ = E.p.w that defines a different Mazurkiewicz trace T ′ =→C′

and leads to the same final state.

Proof. Let C = E′.v.u.w be a complete execution sequence. Since s[E.p] =
s[E′.v.u], we have that s[C] = s[C′] where C ′ = E.p.w. Note that for C, next[E](p)
→C e, while in C ′, e →C′ next[E](p).
�
Theorem 1. For each Mazurkiewicz trace T defined by the happens-before rela-
tion, Explore(ε, ∅) explores a complete execution sequence that either implements
T , or reaches the same state as one that implements T .

Proof. Consider an execution of Explore(ε, ∅) without the additions for context-
sensitivity, and assuming we always choose an enabled process that would not be
sleep set blocked in the extended algorithm, wherever possible. This is exactly the
source-DPOR algorithm of [1] and, hence, is guaranteed to explore a complete
execution sequence that implements each T [12].

Suppose that some Mazurkiewicz trace T is omitted by our context-sensitive
DPOR, C is the complete execution sequence that implements T (T =→C) and is
explored by the original source-DPOR algorithm. This sequence must be cut by
our algorithm. Thus, it must be of the form C = E′.v′.u′.y, where our algorithm
added v.u to sleep(E′) after finding s[E.p] = s[E′.v.u], and v′.u′ is v.u possibly
with some events added that do not depend on any event in dom[E′](v.u), as
otherwise the sleep set entry would have been removed. Hence, there exists a
complete execution sequence E′.v.u.w.y with the same happens-before relation
as C, obtained by moving events independent of v.u (those with processes in w)
after v.u. By Lemma 1 there is a different trace T ′ which leads to the same state
as C. Since the source-DPOR tree explores a complete execution sequence for

Context-Sensitive Dynamic Partial Order Reduction 537

each Mazurkiewicz trace, it must include a complete execution sequence C ′ that
implements T ′. Note that C ′ has the same happens before relation as E.p.w.y.

We now show that C ′ appears to the left of C in the source-DPOR tree.
Sequence E.p clearly appears to the left of C in the source-DPOR tree, or it
could not be used to add the sleep set entry that blocked C. Suppose to the
contrary that C ′ appears to the right of C. Let E′′ be the largest common prefix
of C and C ′. Now C = E′′.q.w′ for some q. Since C ′ appears to the right of C,
then q will be in the sleep sets for (the remainder of) sequence C ′ unless it is
removed by some dependent event. Let e′ = next[E′′](q).

Suppose that E′′.q ≤ E′ then the first change is above E′. The happens-
before relation for C ′ must then have some event e′′ (after E′′.q) such that
e′′ →C′ e′, but this cannot be the case since →C′=→E.p.w.y where this does not
occur.

Suppose that E′ ≤ E′′ and, thus, the first change is at or after the place
where E.p and E′.v.u differ. Clearly C ′ must appear to the right of E′.proc(e)
(otherwise it would be left of C). Hence, proc(e) is in the sleep set (for the
remainder) of C ′ after E′ until removed by dependent events. Suppose event e′′

removes proc(e). Then, we have that e′′ →C′ e. This is a contradiction since this
does not occur in E.p.w.y.

Hence, C ′ must appear to the left of C in the source-DPOR tree. If C ′ exists
in the tree visited by context-sensitive DPOR we are done, since we have found
an equivalent complete sequence. Otherwise, we can apply the same construction
to discover an equivalent complete sequence that occurs to the left in the original
source-DPOR tree. The procedure must terminate since, eventually, we reach the
left most branch, which cannot be removed by the context-sensitive additions to
the algorithm.
�

5.3 Optimizations

Let us now discuss two possible optimizations that are crucial to fully exploit
the algorithm’s potential, as our experiments in Sect. 6.3 show.

1. Anticipating Cuts: Consider a very frequent situation, where E is an execu-
tion sequence with state s and enabled steps p1, p2, q1, . . . , qn. Steps p1 and p2
are independent in the context of s, but considered as dependent, either because
there is a context in which they are, or because of a loss of precision in the
dependency over-approximation (e.g., they both increment the same variable).
Steps q1, . . . , qn might have some dependencies among them but none is depen-
dent with p1 nor p2. Let us assume our algorithm selects first p1 and then p2.
At this point, p2 is added to the backtrack set of E (line 10), and the sequence
p2.p1 added to the sleep set of E (line 14). When the algorithm backtracks to E,
the sleep set contains p1 (due to line 18) and p2.p1. Let us assume it selects p2.
The sleep set is updated to include p1, since line 15 removes p1 but line 16 puts
it there again. Thus, our algorithm reaches a sequence E′ with enabled steps
p1, q1, . . . , qn and p1 in the sleep set. If none of the steps q1, . . . , qn transitively
generates a step that is dependent on p1, then all execution sequences coming

538 E. Albert et al.

from this point will be sleep set blocked (since p1 will always remain in the sleep
set) and many useless computations will be performed. If we can compute a set
O that over-approximates the set of steps that can arise in any future execu-
tion from the current state, and none of these depend on p, we can then block
sequence E′. In general, whenever a sequence in the sleep set (added by line 14
due to a context-sensitive check) is consumed except for its last step l (by the
successive executions of line 16), if no step in O is dependent on l, we block
the execution at this point. Section 6 describes the analysis we implemented to
compute such O for actors.

2. Guiding with Sleep Sequences: The algorithm makes three arbitrary selections:
the first step to explore (line 3); the next step to backtrack with (line 5); and a
step for the backtrack set (line 10). Implementations should make these selections
such that the shortest sequences in the sleep set are explored first. This allows
context-sensitive equivalent explorations to be discarded as soon as possible.
Otherwise, potentially good sleep sequences (i.e. those that will be responsible
for important exploration reductions) could be discarded.

6 Implementation and Experimental Evaluation

We have implemented and experimentally evaluated our method for actor pro-
grams within the tool SYCO [3], a systematic testing tool for ABS programs [10].
SYCO can be used online through its web interface available at http://costa.ls.fi.

upm.es/syco.

6.1 Producer-Consumer with Actors

Actor programs consist of computing entities called actors, each with its own
local state and thread of control, that communicate by exchanging messages
asynchronously. The actor concurrency model [2,9] has been regaining popularity
lately and is used in many systems such as Go, ActorFoundry, Asynchronous
Agents, Charm++, E, ABS, Erlang, and Scala. It is also influencing commercial
practice, with Twitter using actors for scalability and Microsoft using them in
the development of its asynchronous agents library.

An actor configuration consists of the local state of the actors and a set
of pending tasks. In response to receiving a message (or task), an actor can
update its local state, send messages (tasks) to another actor or itself (using
the ! function), or create new actors (using the instruction new). Actor lan-
guages often have instructions to await for an asynchronous call to terminate.
The actor model is characterized by inherent concurrency of computation within
and among actors (note that tasks within each actor work on a locally shared
memory), dynamic creation of actors, and interaction only through direct asyn-
chronous message passing with no restriction on message arrival order. In the
computation of an actor system, there are two non-deterministic choices: select-
ing an actor and scheduling one of its pending tasks.

http://costa.ls.fi.upm.es/syco
http://costa.ls.fi.upm.es/syco

Context-Sensitive Dynamic Partial Order Reduction 539

Fig. 3. Actor-based producer-consumer program

Figure 3 shows an actor-based version of the producer-consumer program
provided in Sect. 4. The execution starts from an (initially empty) actor that
executes the main block, shown at the top, to create three concurrent actors
representing the buffer of size MAX, the consumer and the producer. The last
two receive a reference to the buffer b used for the communication. The main
block then performs two asynchronous calls to add tasks on the producer and
consumer to execute the corresponding methods. These tasks will in turn make
asynchronous calls on the buffer to create the tasks that consume and produce
data on it. The search tree that results from the execution of the main block
has the same shape as the one in Fig. 1. Basically, the actor program for one
producer and one consumer creates 4 tasks: consumeN, produceN, store and take.
As consumeN and produceN do not modify the shared data (i.e., the buffer),
they are trivially independent from all others. In contrast, store and take are
detected as conflicting due to their write accesses to the buffer. As in the thread-
based version, most steps lead to the same state, i.e., they are context-sensitive
independent.

Table 1 experimentally compares Source-DPOR and context-sensitive DPOR
(CDPOR) on the producer-consumer problem. Column Execs gives the num-
ber of complete executions sequences explored, Time the total time taken in

540 E. Albert et al.

Table 1. Reduction gains on consumer-producer

N Source-DPOR CDPOR Red. gains

Execs Time States Execs Time States Execs Time

3 20 5 69 8 6 52 2.5x 0.9x

5 252 100 923 32 58 324 7.9x 1.8x

7 3432 1663 12869 128 357 1712 26.9x 4.7x

9 48620 30856 184755 512 2284 8428 95.0x 13.6x

milliseconds, and States the number of explored states obtained when executing
the above example with our context-sensitive DPOR algorithm and with the
original Source-DPOR algorithm, for an increasing number N of elements pro-
duced and consumed, and a buffer of size MAX ≥ N . The last two columns show
the reduction gains in Execs and Time obtained by our algorithm. Times are
obtained on an Intel Core I7 at 3.4 GHz with 16 GB of RAM (Linux Kernel 4.4).
Our algorithm is able to obtain the exact number (2N) of non-equivalent exe-
cutions. Furthermore, it is able to detect the equivalent sequences of executions
as soon as they happen. For instance, in the example of Fig. 1, it detects that
sequence p1.c1.p2 leads to the same state as the previously explored p1.p2.c1,
and thus blocks it at this point. We therefore observe the claimed exponential
reductions, not only in number of explored sequences, but also in the number of
explored states and execution time.

6.2 Implementation Details

Computing the Over-Approximation for Optimization 1: Our analysis computes
the over-approximation O of possibly reachable tasks from the current state s as
follows: Using the flow graph of the program, we compute the set of task names
reachable from the enabled tasks in s. We also compute the set of references
of alive actors in s, which includes the references of actors with pending tasks,
actors in parameters of pending tasks, and actors stored in fields. The set O
of reachable tasks from s is obtained by combining each task name with each
compatible alive actor.

Avoiding Recomputations: Our algorithm recomputes sub-sequences due to the
context-sensitive equivalence check between the current sequence E.p and the
one E′.v.u that reverses the race (line 13). When the algorithm later backtracks
to E′, it may eventually recompute the same sequence E′.v.u, except for the last
step if the check succeeded. Our implementation avoids these recomputations as
follows: In line 13, instead of checking the context sensitive equivalence of v.u,
it adds v.u together with the state S[E.p] to the sleep set of E′. For efficiency, in
our implementation this is done right after executing event p, so that the state
stored is the current one. Hence, a sequence t in the sleep set with attached state
s is interpreted as “if we execute t and reach state s, then we block the sequence

Context-Sensitive Dynamic Partial Order Reduction 541

and add an enabled event to the backtrack set of the previous state if possible”.
This guarantees we do not recompute any single step due to context-sensitive
checks. Note that in actor based systems the shared state between actors is
typically small, therefore we never store full states, only local ones. Also, our
experiments show that the peak numbers of stored local states remains quite
low (see column M in Table 2). Alternatively, the check can be implemented by
recording the state changes from E′ to E.p and comparing them against those
from E′ to E′.v.u. This would require a bounded amount of memory which can
be reused for every equivalence check.

6.3 Experimental Evaluation

Table 2 shows our experimental results, which compare the performance of the
original source-DPOR algorithm with three versions of our context-sensitive
approach: CDPOR1 is the basic algorithm without any of the optimizations in
Sect. 5.3, CDPOR2 applies the first optimization, while CDPOR3 applies both
optimizations. The comparison is performed on 6 classical concurrent actor pro-
grams, borrowed from [14], each executed with 3 (size increasing) input parame-
ters. All benchmarks can be found at the SYCO web interface. The data shown
in each set of columns (Execs, Time) is computed as before. For CDPOR3 we
include an additional column (M) to show the peak amount of additional mem-
ory used (measured in number of stored local states) due to the avoiding recom-
putations approach mentioned above.

The last three columns show the gains in time obtained by each version of
our algorithm over the original source-DPOR algorithm. A timeout of 120 s is
used and, when reached, we write >X to indicate that for the corresponding
measure we encountered X units up to that point. Thus, >X indicates that the
measure is at least X.

Table 2 shows that the less optimized implementation CDPOR1 is at least
1.3 times faster (Reg(5)) than Source-DPOR, and can be almost 3 orders of
magnitude (PSort(5)) faster. The gain is much larger using the optimizations, in
which case we achieve up to 4 orders of magnitude speedups. In some cases, the
main reduction is achieved by the first optimization (e.g., compare G2 and G3 in
PSort), while in most cases it is achieved by the second one (e.g., see Reg). The
most important observation, however, is that the gain increases exponentially in
all examples with the size of the input, in all three versions of our implementa-
tion. This experimentally justifies our claims about the exponential gains made
in Sect. 4.

7 Conclusions

We have presented a novel technique that can be incorporated to state-of-the-art
DPOR algorithms [1,7,14] to further reduce the number of redundant sequences
explored. The crux of our method is the dynamic detection and use of context-
sensitive independence, which allows proving independence of execution steps

542 E. Albert et al.

Table 2. Experimental evaluation

Bench. Source-DPOR CDPOR1 CDPOR2 CDPOR3 Reduction gains

Execs Time Execs Time Execs Time Execs Time M G1 G2 G3

Fib(5) 94 93 26 64 26 50 1 39 7 1.5x 1.9x 2.4x

Fib(6) 2148 2935 256 1407 256 683 1 39 12 2.1x 4.3x 75.3x

Fib(7) 56735 >120 s 7929 >120 s 11924 43637 1 124 20 − >2.7x >967.7x

QSort(9) 84 99 13 57 7 20 1 23 7 1.7x 5.0x 4.3x

QSort(12) 280 356 26 176 26 68 1 24 9 2.0x 5.2x 14.8x

QSort(15) 3166 3940 177 1132 87 249 1 40 12 3.5x 15.8x 98.5x

MSort(9) 256 259 14 84 14 32 1 18 8 3.1x 8.1x 14.4x

MSort(12) 912 1187 33 470 23 98 1 37 11 2.5x 12.1x 32.1x

MSort(15) 15872 36653 135 2051 135 374 1 51 14 17.9x 98.0x 718.7x

Pi(5) 120 83 9 26 9 17 9 15 21 3.2x 4.9x 5.5x

Pi(6) 720 556 24 51 24 60 24 43 35 10.9x 9.3x 12.9x

Pi(7) 5040 4673 74 146 74 150 74 149 53 32.0x 31.2x 31.4x

PSort(4) 288 109 8 14 2 12 2 4 13 7.8x 9.1x 27.2x

PSort(5) 34560 11921 64 128 8 15 8 15 28 93.1x 794.7x 794.7x

PSort(6) 275358 >120 s 1224 2598 72 128 72 129 53 >46.2x >937.5x >930.2x

Reg(4) 384 214 148 178 71 68 1 4 11 1.2x 3.1x 53.5x

Reg(5) 3840 2357 1047 1465 449 498 1 6 16 1.6x 4.7x 392.8x

Reg(6) 46080 39769 7920 13916 3145 4337 1 7 22 2.9x 9.2x 5681.3x

for the particular context encountered. As our experiments show, our method
achieves exponential gains in a message-passing concurrency model. Although
we have not yet evaluated it, we believe the benefits of our method for shared-
memory programs with synchronized blocks of code should be similar as for
message passing.

While our extension was performed on the Source-DPOR algorithm, in prac-
tice Optimal-DPOR is usually slower than Source-DPOR. Hence, we expect our
context-sensitive algorithm to also be significantly faster than Optimal-DPOR.

Note that our context-sensitive extension could be applied directly to
Optimal-DPOR. However, Optimal-DPOR only checks races at leaf nodes, which
is unsuitable for our context sensitive check, since its too late to gain benefit.
Efficiently combining them is not straightforward and it is left as future work.
Further, we have shown our context-sensitive DPOR algorithm can achieve expo-
nential gains over Source-DPOR (e.g., for the producer-consumer example).

Acknowledgments. This work was funded partially by the Spanish MINECO
projects TIN2012-38137 and TIN2015-69175-C4-2-R and by the CM project
S2013/ICE-3006.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.F.: Optimal dynamic partial
order reduction. In: Proceedings of POPL 2014, pp. 373–384. ACM (2014)

Context-Sensitive Dynamic Partial Order Reduction 543

2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Albert, E., Gómez-Zamalloa, M., Miguel Isabel, S.: A systematic testing tool for
concurrent objects. In: Proceedings of CC 2016, pp. 269–270. ACM (2016)

4. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.A.: State space reduction using
partial order techniques. STTT 2(3), 279–287 (1999)

5. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Proceedings of POPL 2005, pp. 110–121. ACM (2005)

6. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). doi:10.1007/BFb0023731

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Sys-
tems - An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer,
Heidelberg (1996)

8. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993). doi:10.1007/3-540-56922-7 36

9. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

10. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core
language for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

11. Katz, S., Peled, D.A.: Defining conditional independence using collapses. Theoret.
Comput. Sci. 101(2), 337–359 (1992)

12. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 30

13. Nielson, F., Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis.
Springer, Heidelberg (1999). doi:10.1007/978-3-662-03811-6

14. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.:
TransDPOR: a novel dynamic partial-order reduction technique for testing actor
programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol.
7273, pp. 219–234. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30793-5 14

15. Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.)
CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993). doi:10.1007/
3-540-56922-7 33

http://dx.doi.org/10.1007/BFb0023731
http://dx.doi.org/10.1007/3-540-56922-7_36
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-642-30793-5_14
http://dx.doi.org/10.1007/3-540-56922-7_33
http://dx.doi.org/10.1007/3-540-56922-7_33

	Context-Sensitive Dynamic Partial Order Reduction
	1 Introduction
	2 Preliminaries
	3 The Happens-Before Relation is Not Context-Sensitive
	4 Context-Sensitivity Can Give Exponential Gains
	5 Context-Sensitive DPOR
	5.1 The Extended Algorithm
	5.2 Soundness
	5.3 Optimizations

	6 Implementation and Experimental Evaluation
	6.1 Producer-Consumer with Actors
	6.2 Implementation Details
	6.3 Experimental Evaluation

	7 Conclusions
	References

