
GPUDrano: Detecting Uncoalesced Accesses in
GPU Programs

Rajeev Alur, Joseph Devietti, Omar S. Navarro Leija,
and Nimit Singhania(B)

University of Pennsylvania, Philadelphia, USA
nimits@seas.upenn.edu

Abstract. Graphics Processing Units (GPUs) have become widespread
and popular over the past decade. Fully utilizing the parallel compute
and memory resources that GPUs present remains a significant chal-
lenge, however. In this paper, we describe GPUDrano: a scalable static
analysis that detects uncoalesced global memory accesses in CUDA pro-
grams. Uncoalesced global memory accesses arise when a GPU program
accesses DRAM in an ill-structured way, increasing latency and energy
consumption. We formalize the GPUDrano static analysis and compare
it empirically against a dynamic analysis to demonstrate that false pos-
itives are rare for most programs. We implement GPUDrano in LLVM
and show that it can run on GPU programs of over a thousand lines of
code. GPUDrano finds 133 of the 143 uncoalesced static memory accesses
in the popular Rodinia GPU benchmark suite, demonstrating the preci-
sion of our implementation. Fixing these bugs leads to real performance
improvements of up to 25%.

1 Introduction

Graphics Processing Units (GPUs) are well-established as an energy-efficient,
data parallel accelerator for an increasingly important set of workloads including
image processing, machine learning, and scientific simulations. However, extract-
ing optimal performance and energy efficiency from a GPU is a painstaking
process due to the many sharp corners of current GPU programming models.
One particularly sharp corner arises when interacting with the memory hier-
archy. We propose the GPUDrano system, the first scalable static analysis to
identify an important class of memory hierarchy performance bugs for GPU
programs. To show what GPUDrano does, we first explain a bit about the GPU
memory hierarchy and the specific class of performance bugs, known as global
memory coalescing bugs, that GPUDrano targets.

Load and store instructions that reference the GPU’s DRAM (known as global
memory) must obey a certain structure to ensure that memory bandwidth is fully
utilized. Accesses that do not exhibit this structure result in underutilization and
can lead to significant performance problems. When a GPU program executes
a load or store instruction, the memory address(es) referenced are mapped to
aligned 128-byte cache blocks [18, Sect. 5.3.2], which is the physical granularity
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 507–525, 2017.
DOI: 10.1007/978-3-319-63387-9 25



508 R. Alur et al.

at which DRAM is accessed. GPUs bundle multiple threads together for single-
instruction multiple-data (SIMD) execution, and we say that a SIMD load/store
is coalesced if its accesses are contained within a single cache block, otherwise the
access is uncoalesced. Uncoalesced accesses are difficult to spot, even for seasoned
GPU developers, and in some cases rewriting can avoid such uncoalescing, as is
the case for many of our benchmarks from an established benchmark suite.

Fig. 1. Examples of coalesced and uncoalesced memory accesses.

Figure 1 shows simple examples of coalesced and uncoalesced memory
accesses. Each thread in the program executes the code shown (we explain the
GPU’s threading model in more detail in Sect. 2), and tid is a numeric thread id.
Memory accesses that involve each thread accessing the same address (Example
1) or consecutive threads accessing consecutive addresses (Example 2) fall within
a single cache line, and so are considered coalesced. Memory accesses that have
consecutive threads accessing non-consecutive addresses, as in Example 3, result
in significant slowdowns: Example 3 will run about 8x slower than the other
examples.

Discovering uncoalesced accesses statically introduces many challenges.
Expressions used for array indexing are often complex, and their coalesced or
uncoalesced nature must be propagated through arithmetic operations, to each
use. The size of the data types involved in a memory access affects coalescing.
The number of threads that actually execute a particular access affects coalesc-
ing as well; e.g., Example 3 in Fig. 1 is coalesced if only a single active thread
reaches this statement. In this paper, we define GPUDrano, a simple but effec-
tive abstraction for detecting uncoalesced accesses that uses intra-procedural
dataflow analysis to identify uncoalesced memory accesses in GPU programs
statically. We target GPU code written for Nvidia’s CUDA programming model.
GPUDrano makes the following contributions:

– To the best of our knowledge, GPUDrano is the first scalable static analysis
for uncoalesced global memory accesses in GPU programs.

– We provide a formal definition of both our analysis and the memory coalescing
bugs we wish to detect.

– GPUDrano leverages well-established program analysis techniques to improve
scalability and is able to analyze thousand-line CUDA programs in seconds,
while incorporating relevant information such as accounting for the set of
active threads to reduce the number of false positives.



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 509

Fig. 2. Kernel snippets from Gaussian Elimination program.

– We demonstrate that GPUDrano works in practice by implementing it in
LLVM and detecting over a hundred real uncoalesced accesses in the well-
established Rodinia benchmark suite. We also validate GPUDrano against a
dynamic analysis to show that GPUDrano has few or no false positives on
most programs.

The remainder of this paper is organized as follows. Section 2 describes the
CUDA programming model and a real memory coalescing bug from our bench-
marks. Section 3 presents our formalization of CUDA programs, their execu-
tions, and uncoalesced accesses. Section 4 describes the GPUDrano static analy-
sis. Section 5 describes the dynamic analysis we use to validate our GPUDrano
implementation. Section 6 discusses our experimental results, and Sect. 7 related
work. Finally, Sect. 8 concludes.

2 Illustrative Example

We use an example GPU program to briefly illustrate the GPU programming
model and the problem of uncoalesced accesses. GPUs follow an SIMT (Single
Instruction Multiple Thread) execution model, where multiple threads execute
the same sequence of instructions, often called a kernel. Figure 2a shows one
such kernel, Fan2, from Gaussian Elimination program in Rodinia benchmark
suite [5]. The comments in the kernel can be ignored for now. The kernel performs
row operations on matrix A (size N × N) and vector B (size N × 1) using the
tth column of a multiplier matrix M (size N × N) and the tth row of A and B.
The kernel is a sequential procedure that takes in a thread id, tid, to distinguish
executions of different threads. The kernel is executed for threads with ids in
range [0, N − t − 2]. Each thread is assigned a distinct row and updates row
(tid + t + 1) of matrix A and vector B. Note that A, B and M reside in global
memory and are shared across threads, while the remaining variables are private
to each thread.



510 R. Alur et al.

Fig. 3. The grammar for kernel K.

The GPU executes threads in bundles, or warps, where threads in each warp
consist of consecutive ids and execute instructions in lock-step. The above kernel,
for example, might be executed for warps w0 with ids [0, 31], w1 with ids [32, 63],
and so on . . . When a warp, say w0, accesses A using index xy in A[xy] for some
iteration of y, the elements A[N(t+1)+y], A[N(t+2)+y], . . . , A[N(t+32)+y]
are fetched simultaneously. The elements are at least N locations apart from
each other, and thus, separate transactions are required to access each element,
which takes significant time and energy. This is an uncoalesced access. Access to
M[xt] is similarly uncoalesced. Now, Fig. 2b shows a fixed version of the kernel,
where each thread is mapped to a column of the matrices A and M , instead of a
row. The access to A[xy] by warp w0 results in elements A[Nx + t], A[Nx + t +
1], . . . , A[Nx + t + 31] to be accessed. These are consecutive elements, and thus,
can be accessed in a single transaction. Access to M[xt] is similarly coalesced,
and our experiments show a 25% reduction in run-time for the fixed kernel, when
run for inputs with N = 1024.

3 Formalization of Uncoalesced Accesses

This section describes the GPU programming model and uncoalesced accesses
formally. A GPU program is a tuple 〈T, VL, VG,K〉, where T represents the set
of all threads; VL and VG represent the sets of variables residing in local and
global memories respectively; and K represents the kernel or the sequence of
instructions executed by the threads. The kernel K is defined by the grammar
in Fig. 3, and consists of assignments, conditionals and loops. The set VL further
contains a special read-only variable, tid, initialized with the thread id of the
thread. The variable can appear in the right-hand-side of assignments and helps
distinguish executions of different threads.

We next present a simple operational semantics for GPU programs. We use a
simplified execution model, where all threads in the program execute instructions
in lock-step. While the standard GPU execution model is more flexible, this
assumption simplifies the semantics without affecting the detection of memory
coalescing bugs, and has been used in a previous formalization [4].

Excluded GPU Features. The GPU programming model represents threads
in a two-level hierarchy, where a bunch of threads form a thread-block and the
thread-blocks together form the set of all threads. Further, threads have access
to a block-level memory space, shared memory, used to share data between



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 511

threads within a block. Lastly, threads within a block can synchronize on
a syncthreads() barrier. These features do not directly affect uncoalesced
accesses and have been excluded here for the ease of presentation.

3.1 Semantics

To describe the semantics, we define two entities: the state σ and the active set
of threads π. The state σ maps variables to a type-consistent value ν. It consists
of a copy of local variables per thread and a copy of global variables, and thus,
is a function (VL × T ) ∪ VG → V. We further use ⊥ to represent an undefined
or error state. The active set of threads π is a subset of T and defines a set of
threads for which the execution is active. Now, the semantics for a statement S
are given by the function �S�, where �S�(σ, π) = σ′ represents the execution of
statement S in state σ for threads in set π to generate a new state σ′.

Assignments. We first define the semantics for assignment statements when
executed by a single thread t i.e. �AS�(σ, t) = σ′. Let l ∈ VL and g ∈ VG

represent a local and global variable, respectively. Let v represent a generic
variable. Further, let the variables be either scalars or arrays. An assignment is
of the form [E := e], where E is the expression being updated, and consists of
either a scalar variable v or an array variable indexed by a local v(l); and e is an
expression whose value is assigned to E, and is built using scalar variables, array
variables indexed by locals, constants, and arithmetic and boolean operations on
them. Note that in an assignment at least one of E and e must be a local scalar
variable l. We distinguish two types of assignments: global array read [l′ := g(l)],
where the global array g indexed by l is read into l′, i.e. σ′(l′, t) = σ(g)(σ(l, t))
and σ′(v, t) = σ(v, t) for all v �= l ; and global array write [g(l) := l′], where g
indexed by l is written with value of l′, i.e. σ′(g)(σ(l, t)) = σ(l′, t), σ′(g)(ν) =
σ(g)(ν) for all ν �= σ(l, t), and σ′(v, t) = σ(v, t) for all v �= g.

We now define the semantics when an assignment is executed by a set of
threads π, i.e. �AS�(σ, π) = σ′. When the set π is empty, the state remains
unchanged i.e. �AS�(σ, φ) = σ. When π is non-empty i.e. π = {t} ∪ π′, the
desired update is obtained by first executing AS for thread t , and then the other
threads in π′. Thus, �AS�(σ, π) = �AS�(�AS�(σ, t), π′). Note that, if different
threads write to the same memory location, the execution is not deterministic
and the updated state is set to the undefined state, i.e. �AS�(σ, t) = ⊥.

Sequences. The execution of sequence of statements (S1;S2) is described by
first executing S1, followed by S2 i.e. �S1;S2�(σ, π) = �S2�(�S1�(σ, π), π).

Conditionals. Next consider �if l thenS1 elseS2�(σ, π) = σ′, where 〈test〉 con-
sists of a local boolean variable l. The semantics serializes the execution of state-
ments S1 and S2. Let the set of threads for which the predicate σ(l , t) is true be
π1. The threads in π1 first execute S1 to get the state σ1 i.e. �S1�(σ, π1) = σ1.
Next, the remaining threads execute S2 in state σ1 to get the final updated state
i.e. �S2�(σ1, π \ π1) = σ′. Note that, similar to assignments, if the same location



512 R. Alur et al.

is read or written by a thread executing the if branch and another thread exe-
cuting the else branch with one of the accesses being writes, there is a potential
conflict between the two accesses, and the final state σ′ is set to ⊥.

Loops. We next describe the semantics for loops �while ldoS�(σ, π) = σ′. We
first consider semantics for terminating loops. The loop execution terminates
when there are no threads active in the loop, and it is repeated until then.
Formally, if there exist σ1, π1, σ2, π2, . . . , σk, πk, such that σi and πi represent
the state and the active set of threads at the beginning of the ith iteration of
the loop, i.e. σ1 = σ, π1 = {t ∈ π : σ(l, t) = true}, σi+1 = �S�(σi, πi), and
πi+1 = {t ∈ πi : σi+1(l, t) = true}, and the last active set is empty, πk = φ, then
σ′ = σk. If the loop is non-terminating, σ′ is assigned the undefined state ⊥.

Reachable Configurations. We now define the set R of configurations reach-
able during a kernel’s execution. A configuration is a tuple (σ, π, S), where σ
is the current state, π is the current active set of threads, and S is the next
statement to be executed. We give a inductive definition for R. The initial con-
figuration (σ0, T,K) belongs to R, where σ0 is the initial state, T is the set of all
threads and K is the kernel. In the recursive case, suppose (σ, π, S) belongs to R.
When S = S1;S2, the configuration (σ, π, S1) belongs to R, since S1 is the next
statement to be executed. Further, if the state after executing S1, σ′ = �S1�(σ, π),
is not undefined i.e. σ′ �= ⊥, then (σ′, π, S2) also belongs to R. Similarly, when S
is a conditional [if l thenS1 elseS2], both if and else branches are reachable, and
thus, (σ, π1, S1) and (σ, π2, S2) belong to R, where π1 = {t ∈ π : σ(l, t) = true}
and π2 = π \ π1. Lastly, when S is a loop [while ldoS′], the configuration
(σ, π′, S′), where π′ = {t ∈ π : σ(l, t) = true}, is reachable. Further, if the state
after executing S′ is not undefined, the configuration (�S′�(σ, π′), π′, S) is also
reachable.

3.2 Uncoalesced Global Memory Accesses

To define uncoalesced global memory accesses, we first describe how the global
memory is accessed by a GPU. Let the memory bandwidth for global memory
be η bytes i.e. the GPU can access η contiguous bytes from the memory in one
transaction. When a warp of threads with consecutive thread indices W issues a
read or write to the global memory, the addresses accessed by the active threads
are coalesced together into as few transactions as possible. If the number of
transactions is above a threshold τ , there is an uncoalesced access.

We now define uncoalesced accesses formally. Consider the configuration
(σ, π,AS), where AS is a global array read [l′ := g(l)] or a global array write
[g(l) := l′] and g is a global array with each element of size k bytes. Let W be a
warp of threads with consecutive thread indices. Let the addresses accessed by
the warp, Γ(σ, π,AS,W ), be defined as,

Γ(σ, π,AS,W ) =
⋃

t∈W∩π

[
σ(l, t).k, σ(l, t).k + k − 1

]



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 513

Now, each contiguous set of η bytes is accessed in one transaction. Thus, the
number of transactions N(σ, π,AS,W ) required for the access equals the number
of unique elements in the set

{	a/η
 : a ∈ Γ(σ, π,AS,W )
}
. If N(σ, π,AS,W )

is greater than threshold τ for some warp W , the configuration (σ, π,AS) is
an “uncoalesced”configuration. A global array access AS is uncoalesced, if an
uncoalesced configuration involving the access is reachable.

For most current GPUs, the bandwidth η = 128 bytes, and warp size |W | =
32. We use the threshold τ = 1, so that accesses that require more than one
transaction are flagged as uncoalesced. Suppose the index variable l in a global
array access is a linear function of tid, i.e. l ≡ c.tid + c0. The range of addresses
accessed by a completely active warp W is (31|kc| + k − 1) bytes and thus, the
number of transactions N required is at least |kc|/4. If k ≥ 4 bytes and |c| ≥ 1
(with one of the inequalities being strict), N is greater than 1, and hence, the
access is uncoalesced. We refer to such uncoalescing, where the range of addresses
accessed by a warp is large, as range-based uncoalescing.

Alternately, an uncoalesced access can occur due to alignment issues, where
the range of accessed locations is small but mis-aligned with the cache block
boundaries. Suppose k = 4 and c = 1, but c0 = 8. The addresses accessed by a
warp W with tids [0, 31] are [32, 159] and require two transactions, even though
the range of locations is 127 bytes which is less than the bandwidth. We refer to
such accesses as alignment-based uncoalesced accesses.

4 Static Analysis

This section presents a static compile-time analysis to identify uncoalesced
accesses. We use abstract interpretation [8,17] for the analysis, where-in we first
define an abstraction of the state and the active set of threads. The abstrac-
tion captures features of the kernel execution essential to identify uncoalesced
accesses. It tracks values, particularly access indices, as a function of tid, and
for the indices with potentially large linear or non-linear dependence on tid, the
analysis flags the corresponding global array access as uncoalesced. Further, if a
segment of code is executed only by a single thread (which is often the case when
some sequential work needs to be done), a single transaction is required for an
access and it cannot be uncoalesced. Hence, our abstraction also tracks whether
single or multiple threads are active during the execution of a statement.

After defining the abstraction, we associate abstract semantics with the state-
ments in kernels, computable at compile-time, that preserve the abstraction. We
then present our algorithm to execute kernels abstractly and identify global
array accesses which can potentially be uncoalesced. Finally, we describe our
implementation for the analysis.

Example. Before diving into the details of the analysis, let’s consider the exam-
ple in Fig. 2a. Our abstraction tracks local variables as a function of tid. All
variables that are independent of tid are assigned value 0 in the abstraction.
Thus, variables t and N are assigned the value 0 initially (shown in comments).
Further, variables y and ty are constructed from tid-independent variables, and



514 R. Alur et al.

hence, assigned 0. Next, all variables that are linear function of tid with coeffi-
cient 1 (i.e. of the form tid+ c), are assigned value 1. The variable x is therefore
assigned 1. Lastly, all variables that are either non-linear function of tid or linear
function with possibly greater than one coefficient are assigned 
. Variable xt,
for example, is assigned the expression N(tid+t+1)+t, where the coefficient for
tid is N . Since N can be greater than one, xt is assigned 
. Similarly, variable
xy is assigned 
. Now, global array accesses where the index variable has value

, are flagged as uncoalesced. Hence, accesses A[xy] and M[xt] are flagged as
uncoalesced. Note that in the fixed kernel in Fig. 2b, none of the index variables
are 
, and hence, none of the accesses are flagged as uncoalesced.

4.1 Abstraction

We now formally define our abstraction. Let α() be the abstraction function.
The abstraction of state σ̂ only tracks values of local scalar variables. We observe
that indirect indexing through arrays is rare for coalesced accesses, and hence
we consevatively flag all such accesses as uncoalesced. Further, we use a different
abstraction for integer and boolean variables. We assign a single abstract value
to each local variable, that tracks its dependency on tid. For integer variables,
we use the set V̂int = {⊥, 0, 1,−1,
} to abstract values. The value ⊥ represents
undefined values, while 
 represents all values. The remaining values are defined
here. Let l be a local variable.

α(σ)(l) =

⎧
⎨

⎩

0, exists c0 s.t. for all t ∈ T, σ(l, t) = c0

1, exists c0 s.t. for all t ∈ T, σ(l, t) = tid(t) + c0

−1, exists c0 s.t. for all t ∈ T, σ(l, t) = −tid(t) + c0

i.e. the abstract value 0 represents values constant across threads; 1 represents
values that are a linear function of tid with coefficient 1; and, −1 represents values
that are a linear function with coefficent −1. This abstraction is necessary to
track dependency of access indices on tid.

We use the set V̂bool = {⊥,T,T−,F,F−,TF,TT−,FF−,
} to abstract boolean
variables. Again ⊥ and 
 represent the undefined value and all values, respec-
tively. The remaining values are defined here.

α(σ)(l) ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T, for all t ∈ T, σ(l, t) = true
T−, exists t ∈ T s.t. σ(l, t) = false

and for all t′ ∈ T \ t, σ(l, t′) = true
F, for all t ∈ T, σ(l, t) = false
F−, exists t ∈ T s.t. σ(l, t) = true

and for all t′ ∈ T \ t, σ(l, t′) = false

i.e. the abstract value T represents values true for all threads; T− represents
values true for all but one thread; F represents values false for all threads;
F− represents values false for all but one thread. Further, we construct three
additional boolean values: TF = {T,F} representing values true or false for all
threads, TT− = {T,T−} representing values false for at most one thread, and



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 515

FF− = {F,F−} representing values true for at most one thread. We only use
these compound values in our analysis, along with ⊥ and 
. We use them to
abstract branch predicates in kernels. This completes the abstraction for state.
Note that σ̂ is function VL → V̂int ∪ V̂bool.

Now, the active set of threads π can be seen as a predicate on the set of
threads T . We observe that if at most one thread is active for a global array
access, a single transaction is required to complete the access and hence, it is
always coalesced. Thus, in our abstraction for π, we only track if it consists of
at most one thread or an arbitrary number of threads. These can be abstracted
by boolean values FF− and 
 respectively, and thus, π̂ ∈ {FF−,
}.

Lastly, our abstraction for boolean and integer variables induces a natural
complete lattice on sets V̂int and V̂bool. These lattices can be easily extended to
complete lattices for the abstract states and active sets of threads.

Justification. We designed our abstraction by studying the benchmark pro-
grams in Rodinia. We have already motivated the abstract values 0, 1 and 

for integer variables in the example above. We found coefficient −1 for tid in a
few array indices, which led to the abstract value −1. There were also instances
where values 1 and −1 were added together to generate 0 or tid-independent
values. Next, the values FF− and TT− were motivated by the need to capture
predicates in conditionals where one of the branches consisted of at most one
active thread. Lastly, the value TF was necessary to distinguish conditionals with
tid-dependent and tid-independent predicates.

4.2 Abstract Semantics

We briefly describe the abstract semantics �̂S�(σ̂, π̂) = σ̂′ for a statement S,
which is the execution of S in an abstract state σ̂ for abstract active set π̂ to
generate the abstract state σ̂′. We first consider abstract computation of values
of local expressions e (involving only local scalar variables) in state σ̂, �̂e�(σ̂).
Local scalar variable l evaluates to its value in σ̂, σ̂(l). Constants evaluate to the
abstract value 0 (TF if boolean). Index tid evaluates to 1. Arithmetic operations
on abstract values are defined just as regular arithmetic, except all values that
do not have linear dependency on tid with coefficient 0, 1 or −1, are assigned

. For example, [1 + 1] = 
 since the resultant value has a dependency of 2 on
tid. Boolean values are constructed from comparison between arithmetic values.
Equalites [ν̂1 = ν̂2] are assigned a boolean value FF−, and inequalities [ν̂1 �= ν̂2]
a boolean value TT−, where one of ν1 and ν2 equals 1 or −1, and the other
0. Note that this is consistent with our abstraction. The equalities are of the
form [tid = c], for some constant c, and are true for at most one thread. The
inequalities are of the form [tid �= c] and are true for all except one thread.
For boolean operations, we observe that ¬TT− = FF−, [FF− ∧ b] = FF−, and
[TT− ∨ b] = TT−, for all b ∈ {TF,FF−,TT−,
}. Other comparison and boolean
operations are defined similarly.

We next define the abstract semantics for different types of assignments AS

in a state σ̂, ̂�AS�(σ̂) = σ̂′. For local assignments [l := e] where e is a local



516 R. Alur et al.

Fig. 4. Abstract semantics for compound statements.

expression, l is updated with value of expression e, �̂e�(σ̂). For reads [l := g],
where g is a global scalar variable, all threads receive the same value, and the
new value is tid-independent. Hence, l is updated to 0 (TF if boolean). For array
reads [l := v(l′)], where σ̂(l′) = 0, all threads access the same element in the
array v, and recieve the same value. Thus, the updated value is again 0 (TF if
boolean). Lastly for array reads where σ̂(l′) �= 0, the read could return values
that are arbitrary function of tid (since we do not track the values for arrays),
and hence, the updated value is 
.

We now define abstract semantics for the compound statements. We use
rules in Fig. 4 to describe them formally. Note that, our abstract semantics for
assignments are oblivious to the set of threads π̂, and thus, the [Assign] rule
extends these semantics to an arbitrary set of threads. The [Seq] rule similarly
extends the semantics to sequence of statements. The [ITE] rule describes the
semantics for conditionals. The sets π̂1 and π̂2 represent the new active set of
threads for the execution of S1 and S2. Note that π̂1 = [π̂ ∧ σ̂(l)], and gets a
value FF−, only if either π̂ or σ̂(l) is FF−. The new set of threads π1 has at most
one thread, only if either the incoming set π or the predicate σ(l, t) is true for
at most one thread. Hence, π̂1 correctly abstracts the new set of the threads for
which S1 is executed. A similar argument follows for π̂2. Now, the concrete value
for predicate σ(l, t) is not known at compile time, and a thread could execute
either of S1 or S2. Hence, our abstract semantics executes both, and merges the
two resulting states to get the final state, i.e. Φ

σ̂(l)
{S1,S2}(σ̂1, σ̂2).

The merge operation is a non-trivial operation and depends on the branch
predicate σ̂(l). If σ̂(l) is TF or tid-independent, all threads execute either the if
branch or the else branch, and final value of a variable l is one of the values
σ̂1(l) and σ̂2(l). In the merged state, our semantics assigns it a merged value
σ̂1(l) � σ̂2(l) or the join of the two values, a value that subsumes both these
values. When σ̂(l) is tid-dependent, however, this merged value does not suffice.
Consider, for example, y := (tid < N)? 10 : 20. While on both the branches, y
is assigned a constant (abstract value 0), the final value is a non-linear function
of tid (abstract value 
), even though the join of the two values is 0. Hence, in



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 517

such cases, when the predicate is tid-dependent and the variable l is assigned a
value in S1 or S2, the merged value is set to 
.

The [While] rule describes the abstract semantics for loops. Note that similar
to conditionals, it is not known whether a thread executes S or not. Thus, the
rule first transforms the original state σ̂ into the merge of σ̂ and the execution of
S on σ̂ and repeats this operation, until the fixed point is reached and the state
does not change on repeating the operation. Note that our abstract semantics for
different statements are monotonic. The merge operation Φ is also monotonic.
The abstract state can have only finite configurations, since each variable gets a
finite abstract value. Thus, the fixpoint computation always terminates.

4.3 Detecting Uncoalesced Accesses

We first define the set of abstract configurations that are reachable during the
abstract execution of the kernel. An abstract configuration is the tuple (σ̂, π̂, S).
The initial abstract configuration is (α(σ0),
,K), and is reachable. The other
abstract reachable configurations can be defined by a similar recursive definition
as that for reachable configurations.

Now, an abstract configuration (σ̂, π̂, AS) is “uncoalesced”, where AS is a
global array read [l′ := g(l)] or global array write [g(l) := l′] and g is a global
array with elements of size k, if both these conditions hold:

– π̂ = 
 i.e. the access is potentially executed by more than one thread.
– (σ̂(l) = 
) ∨ (σ̂(l) ∈ {1,−1} ∧ k > 4) i.e. l is a large linear or non-linear

function of tid, or it is a linear function of tid with unit coefficient and the
size of elements of array g is greater than 4 bytes.

The analysis computes the set of abstract reachable configurations by exe-
cuting the kernel using the abstract semantics, starting from the abstract initial
configuration. It reports a global array access AS as uncoalesced, if an abstract
uncoalesced configuration involving AS is reached during the abstract execution
of the kernel.

Correctness. We show that for all global array accesses AS, if a range-based
uncoalesced configuration involving a global array access AS is reachable, the
analysis identifies it as uncoalesced. We first note that our abstract semantics
preserve the abstraction. Hence, for any reachable configuration (σ, π,AS), there
exists an abstract reachable configuration (σ̂, π̂, AS) that is an overapproxima-
tion of its abstraction i.e. α(σ) � σ̂ and α(π) � π̂. Now, for a range-based
uncoalesced configuration to occur, the access needs to be executed by more
than one thread, and thus α(π) = 
. Further, the access index l either has non-
linear dependence on tid, in which case α(σ)(l) = 
, or as noted in Sect. 3.2,
the index has linear dependence with one of k > 4 or |c| > 1, which again
leads to an abstract uncoalesced configuration. Hence, GPUDrano identifies all
range-based uncoalesced configurations as uncoalesced. There are no guarantees
for alignment-based uncoalescing, however. This gives some evidence for the
correctness of the analysis.



518 R. Alur et al.

4.4 Implementation

We have implemented the analysis in the gpucc CUDA compiler [23], an open-
source compiler based on LLVM. We implement the abstract semantics defined
above. We work with an unstructured control flow graph representation of the
kernel, where conditionals and loops are not exposed as separate units. So, we
simplify the semantics at the cost of being more imprecise. We implement the
abstract computation of local expressions and the abstract semantics for assign-
ments exactly. We however differ in our implementation for the merge operation.
Consider a conditional statement [if l thenS1 elseS2]. Let the states after exe-
cuting S1 and S2 be σ̂1 and σ̂2. The merge of states Φ

σ̂(l)
{S1,S2}(σ̂1, σ̂2) after the

conditional is contigent on tid-dependence of the value of l at the beginning of
the conditional. This information requires path-sensitivity and is not available in
the control flow graph at the merge point. Therefore, we conservatively assume l
to be tid-dependent. We use the SSA representation of control flow graph, where
variables assigned different values along paths S1 and S2 are merged in special
phi instructions after the conditional. We conservatively set the merged value to

 for such variables. The values of remaining variables remain unchanged. This
completes the implementation of merge operation. We define the set of active
threads π̂′ after the conditional as π̂1 � π̂2, or the join of incoming active sets
from S1 and S2. The new active set π̂′ equals the active set π̂ before the con-
ditional. If π̂ = 
, it must be split into π̂1 and π̂2 such that at least one of the
values is 
 and hence, π̂′ = 
. Similarly, when π̂ = FF−, both π̂1 and π̂2 equal
FF−, and hence, π̂′ = FF−.

Limitations. Our implementation does not do a precise analysis of function
calls and pointers, which are both supported by CUDA. In the implementation,
we assume that call-context of a kernel is always empty, and function calls inside
a kernel can have arbitrary side-effects and return values. We support pointer
dereferencing by tracking two abstract values for each pointer variable, one for
the address stored in the pointer and the other for the value at the address.
We do not implement any alias analyses, since we observe that array indices
rarely have aliases. Our evaluation demonstrates that, despite these limitations,
our static analysis is able to identify a large number of uncoalesced accesses in
practice.

5 Dynamic Analysis

To gauge the accuracy of our GPUDrano static analysis, we have implemented a
dynamic analysis for uncoalesced accesses. Being a dynamic analysis, it has full
visibility into the memory addresses being accessed by each thread, as well as
the set of active threads. Thus, the dynamic analysis can perfectly distinguish
coalesced from uncoalesced accesses (for a given input). We use this to determine
(1) whether the static analysis has missed any uncoalesced accesses and (2) how
many of the statically-identified uncoalesced accesses are false positives.



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 519

The dynamic analysis is implemented as a pass in the gpucc CUDA com-
piler [23], which is based on LLVM. By operating on the LLVM intermediate
representation (a type of high-level typed assembly), we can readily identify the
instructions that access memory. So for every load and store in the program we
insert instrumentation to perform the algorithm described below. A single IR
instruction may be called multiple times in a program due to loops or recursion,
so every store and load instruction is assigned a unique identifier (analogous to
a program counter).

For every global memory access at runtime, we collect the address being
accessed by each thread. Within each warp, the active thread with the lowest id
is selected as the “computing thread” and it performs the bulk of the analysis.
All active threads pass their addresses to the computing thread. The computing
thread places all addresses into an array. This array will be at most of length n,
where n is the warp size (if there are inactive threads, the size may be smaller).
Next the computing thread determines all bytes that will be accessed by the
warp, taking the size of the memory access into account. Note that, due to the
SIMT programming model, the access size is the same for all threads in the warp
since all threads execute the same instruction. Each byte accessed is divided by
the size of the cache line using machine integer division. (for current generation
Nvidia GPUs this number is 128 [18, Sect. 5.3.2]). Conceptually this assigns each
address to a “bin” representing its corresponding cache line. For example, for
a cache line of 128 bytes, [0, 127] �→ 0, [128, 255] �→ 1, etc. Finally, we count
the number of unique bins, which is the total number of cache lines required.
The computing thread prints the number of required cache lines, along with the
assigned program counter, for post-processing.

A second, off-line step aggregates the information from each dynamic instance
of an instruction by averaging. For example, if a load l executes twice, first
touching 1 cache line and then touching 2 cache lines, the average for l will be
1.5 cache lines. If the average is 1.0 then l is coalesced, otherwise if the average
is > 1.0 l is uncoalesced. The specific value of the average is sometimes useful,
to distinguish accesses that are mildly uncoalesced (with averages just over 1.0),
as we explore more in Sect. 6.

6 Evaluation

This section describes the evaluation of GPUDrano on the Rodinia benchmarks
(version 3.1) [5]. Rodinia consists of GPU programs from various scientific
domains. We run our static and dynamic analyses to identify existing uncoa-
lesced accesses in these programs. We have implemented our analyses in LLVM
version 3.9.0, and compile with --cuda-gpu-arch=sm 30. We use CUDA SDK
version 7.5. We run our experiments on an Amazon EC2 instance with Amazon
Linux 2016.03 (OS), an 8-core Intel Xeon E5-2670 CPU running at 2.60 GHz,
and an Nvidia GRID K520 GPU (Kepler architecture).

Table 1 shows results of our experiments. It shows the benchmark name,
the lines of GPU source code analyzed, the manually-validated real uncoalesced



520 R. Alur et al.

Table 1. Results of GPUDrano’s static analysis (SA) and dynamic analysis (DA) on
Rodinia benchmark programs. “-” indicates the DA hit the 2-h timeout.

Benchmark LOC Real-bugs SA-bugs (real) SA-runtime (s) DA-bugs DA-runtime (s)

backprop 110 7 0 (0) 0.14 7 5.23

bfs 35 7 7 (7) 0.07 0–7 3.89

b+tree 115 19 19 (19) 0.35 7 16.71

CFD 550 0 22 (0) 12.41 - -

dwt2D 1380 0 16 (0) 5.99 n/a 3.72

gaussian 30 6 6 (6) 0.07 5–6 6.82

heartwall 1310 8 25 (8) 39.87 - -

hotspot 115 3 2 (0) 0.75 3 0.89

hotspot3D 50 2 12 (2) 0.21 2 327.00

huffmann 395 21 26 (21) 0.68 3 2.42

lavaMD 180 9 9 (9) 0.73 5 511.60

lud 160 3 0 (0) 0.34 3 0.83

myocyte 3240 19 19 (19) 1,813.72 0 134.13

nn 10 4 4 (4) 0.06 2 0.13

nw 170 7 2 (2) 0.41 6 4.17

particle filter 70 4 3 (2) 0.58 4 11.62

pathfinder 80 3 0 (0) 0.22 3 4.25

srad v1 275 2 14 (2) 0.33 2 185.00

srad v2 250 9 0 (0) 1.38 9 53.94

streamcluster 45 10 10 (10) 0.11 - -

143 180 (111) 69

accesses, and the number of uncoalesced accesses found and running time for each
analysis. The Rodinia suite consists of 22 programs. We exclude 4 (hybridsort,
kmeans, leukocyte, mummergpu) as they could not be compiled due to lack of sup-
port for texture functions in LLVM. We synonymously use “bugs” for uncoalesced
accesses, though sometimes they are fundamental to the program and cannot be
avoided. We next address different questions related to the evaluation.

Do Uncoalesced Accesses Occur in Real Programs? We found 143 actual
bugs in Rodinia benchmarks, with bugs in almost every program (Column “Real
bugs” in Table 1). A few of the bugs involved random or irregular access to global
arrays (bfs, particle filter). Such accesses are dynamic and data-dependent, and
difficult to fix. Next, we found bugs where consecutive threads access rows of
global matrices, instead of columns (gaussian). Such bugs could be fixed by
assigning consecutive threads to consecutive columns or changing the layout of
matrices, but this is possible only when consecutive columns can be accessed in
parallel. Another common bug occurred when data was allocated as an array of
structures instead of a structure of arrays (nn, streamcluster). A closely related
bug was one where the array was divided into contiguous chunks and each chunk
was assigned to a thread, instead of allocating elements in a round-robin fash-
ion (myocyte, streamcluster). There were some bugs which involved reduction
operations (for example, sum) on arrays (heartwall, huffmann). These bugs do
not have a standard fix, and some of the above techniques could be applicable.



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 521

A few bugs were caused by alignment issues where accesses by a warp did not
align with cache-block boundaries, and hence, got spilled over to multiple blocks.
These were caused, first, when the input matrix dimensions were not a multi-
ple of the warp size which led consecutive rows to be mis-aligned (backprop,
hotspot3D), or when the whole array was misaligned due to incorrect padding
(b+tree). These could be fixed by proper padding.

Which Real Bugs Does Static Analysis Miss? While the static analysis
catches a significant number of bugs (111 out of 143), it does miss some in
practice. We found two primary reasons for this. 22 of the missed bugs depend
on the second dimension of the tid vector, while we only considered the small-
est dimension in our analysis. Uncoalesced accesses typically do not depend on
higher dimensions unless the block dimensions are small or not a multiple of the
warp size. We modified our analysis to track the second dimension and observed
that all these bugs were caught by the static analysis, at the cost of 20 new false
positives. Eight of the remaining missed bugs were alignment bugs which were
caused by an unaligned offset added to tid. The actual offsets are challenging
to track via static analysis. Two missed bugs (particle filter) were due to an
implementation issue with conditionals which we will address in the future.

What False Positives Does Static Analysis Report? For most programs,
GPUDrano reports few or no false positives. The primary exceptions are CFD,
dwt2D and heartwall, which account for the bulk of our false positives. A com-
mon case occurred when tid was divided by a constant, and multiplied back by
the same constant to generate the access index (heartwall, huffman, srad v1).
Such an index should not lead to uncoalesced accesses. The static analysis, how-
ever, cannot assert that the two constants are equal, since we do not track exact
values, and hence, sets the access index to 
, and reports any accesses involving
the index as uncoalesced. Another type of false positive occurred when access
indices were non-linear function of tid, but consecutive indices differed by at
most one, and led to coalesced accesses. Such indices were often either gener-
ated by indirect indexing (CFD, srad v1) or by assigning values in conditionals
(heartwall, hotspot, hotspot3D). In both cases, our static analysis conservatively
assumed them to be uncoalesced. Lastly, a few false positives happened because
the access index was computed via a function call ( mul24) which returned a
coalesced index (huffmann), though we conservatively set the index to 
.

How Scalable is Static Analysis? As can be noted, the static analysis is quite
fast, and finishes within seconds for most benchmarks. The largest benchmark,
myocyte, is 3240 lines of GPU code, with the largest kernel containing 930 lines.
The kernels in myocyte consist of many nested loops, and it appears the static
analysis takes significant time computing fixed points for these loops.

How Does Static Analysis Compare with Dynamic Analysis? The
dynamic analysis misses nearly half the bugs in our benchmarks. We found
several benchmarks where different inputs varied the number of bugs reported
(bfs, gaussian, lud). Similarly, the analysis finds bugs along a single execution
path, so all bugs in unexecuted branches or uncalled kernels were not found.



522 R. Alur et al.

Due to compiler optimizations it can be difficult to map the results of dynamic
analysis back to source code. In dwt2D, we were unable to do so due to multiple
uses of C++ templates. Moreover, the dynamic analysis does not scale to long-
running programs, as it incurs orders of magnitude of slowdown. While none of
our benchmarks execute for more than 5 s natively, several did not finish with
the dynamic analysis within our 2-h limit (CFD, heartwall, streamcluster).

7 Related Work

While the performance problems that uncoalesced accesses cause are well under-
stood [18, Sect. 5.3.2], there are few static analysis tools for identifying them.

Several compilers for improving GPU performance [3,7,11,20,21,24] incor-
porate some static analysis for uncoalesced global memory accesses, but these
analyses are described informally and not evaluated for precision. Some of these
systems also exhibit additional restrictions, such as CuMAPz’s [11] reliance on
runtime traces, CUDA-lite’s [21] use of programmer annotations, or [3,20] which
are applicable only to programs with affine access patterns. Some systems for
optimizing GPU memory performance, like Dymaxion [6], eschew static analysis
for programmer input instead. GPUDrano’s precision could likely help improve
the performance of the code generated by these prior systems and reduce pro-
grammer effort. [1] describes in a short paper the preliminary implementation of
CUPL, a static analysis for uncoalesced global memory accesses. While CUPL
shares similar goals as GPUDrano, no formalization or detailed experimental
results are described.

GKLEE [15] is a symbolic execution engine for CUDA programs. It can
detect uncoalesced accesses to global memory (along with data races), but due
to the limitations of its underlying SMT solver it cannot scale to larger kernels
or large numbers of threads. The PUG verifier for GPU kernels [14] has also been
extended to detect uncoalesced memory accesses [10], but PUG is less scalable
than GKLEE. In contrast, GPUDrano’s static analysis can abstract away the
number of threads actually used by a kernel.

[9] uses dynamic analysis to identify uncoalesced global memory accesses, and
then uses this information to drive code transformations that produce coalesced
accesses. GPUDrano’s static analysis is complementary, and would eliminate
[9]’s need to be able to run the program on representative inputs.

There are many programming models that can generate code for GPUs,
including proposals to translate legacy OpenMP code [12,13] or C code [2,3,22],
and new programming models such as OpenACC [19] and C++ AMP [16]. An
analysis such as GPUDrano’s could help improve performance in such systems,
by identifying memory coalescing bottlenecks in the generated GPU code.

8 Conclusion

This paper presents GPUDrano, a scalable static analysis for uncoalesced global
memory accesses in GPU programs. We formalize our analysis, and implement



GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 523

GPUDrano in LLVM. We apply GPUDrano to a range of GPU kernels from the
Rodinia benchmark suite. We have evaluated GPUDrano’s accuracy by compar-
ing it to a dynamic analysis that is fully precise for a given input, and found
that the GPUDrano implementation is accurate in practice and reports few
false positives for most programs. Fixing these issues can lead to performance
improvements of up to 25% for the gaussian benchmark.

We would like to thank anonymous reviewers for their valuable feedback.
This research was supported by NSF awards CCF-1138996 and XPS-1337174.

References

1. Amilkanthwar, M., Balachandran, S.: CUPL: a compile-time uncoalesced memory
access pattern locator for CUDA. In: Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS 2013, pp. 459–
460. ACM, New York (2013). http://doi.acm.org/10.1145/2464996.2467288

2. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Roun-
tev, A., Sadayappan, P.: Automatic data movement and computation mapping
for multi-level parallel architectures with explicitly managed memories. In: Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2008, pp. 1–10. ACM, New York (2008). http://
doi.acm.org/10.1145/1345206.1345210

3. Baskaran, M.M., Bondhugula, U., Krishnamoorthy, S., Ramanujam, J., Rountev,
A., Sadayappan, P.: A compiler framework for optimization of affine loop nests
for GPGPUs. In: Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS 2008, pp. 225–234. ACM, New York (2008). http://doi.acm.
org/10.1145/1375527.1375562

4. Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson,
P., Wickerson, J.: The design and implementation of a verification technique
for GPU kernels. ACM Trans. Program. Lang. Syst. 37(3), 10:1–10:49 (2015).
http://doi.acm.org/10.1145/2743017

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pp. 44–54, October
2009

6. Che, S., Sheaffer, J.W., Skadron, K.: Dymaxion: optimizing memory access pat-
terns for heterogeneous systems. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
13:1–13:11. ACM, New York (2011). http://doi.acm.org/10.1145/2063384.2063401

7. Chen, G., Wu, B., Li, D., Shen, X.: PORPLE: an extensible optimizer for portable
data placement on GPU. In: Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-47, pp. 88–100. IEEE Computer
Society, Washington, DC (2014). http://dx.doi.org/10.1109/MICRO.2014.20

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1977, pp. 238–252. ACM, New York (1977). http://doi.acm.
org/10.1145/512950.512973

http://doi.acm.org/10.1145/2464996.2467288
http://doi.acm.org/10.1145/1345206.1345210
http://doi.acm.org/10.1145/1345206.1345210
http://doi.acm.org/10.1145/1375527.1375562
http://doi.acm.org/10.1145/1375527.1375562
http://doi.acm.org/10.1145/2743017
http://doi.acm.org/10.1145/2063384.2063401
http://dx.doi.org/10.1109/MICRO.2014.20
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973


524 R. Alur et al.

9. Fauzia, N., Pouchet, L.N., Sadayappan, P.: Characterizing and enhancing global
memory data coalescing on GPUs. In: Proceedings of the 13th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2015,
pp. 12–22. IEEE Computer Society, Washington, DC (2015). http://dl.acm.org/
citation.cfm?id=2738600.2738603

10. Lv, J., Li, G., Humphrey, A., Gopalakrishnan, G.: Performance degradation analy-
sis of GPU kernels. In: Workshop on Exploiting Concurrency Efficiently and Cor-
rectly (2011)

11. Kim, Y., Shrivastava, A.: CuMAPz: A tool to analyze memory access patterns in
CUDA. In: Proceedings of the 48th Design Automation Conference, DAC 2011, pp.
128–133. ACM, New York (2011). http://doi.acm.org/10.1145/2024724.2024754

12. Lee, S., Eigenmann, R.: OpenMPC: extended OpenMP programming and tuning
for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2010, pp.
1–11. IEEE Computer Society, Washington, DC (2010). https://doi.org/10.1109/
SC.2010.36

13. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. In: Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2009, pp. 101–110. ACM, New York (2009). http://doi.acm.org/10.1145/1504176.
1504194

14. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2010, pp. 187–196. ACM, New York
(2010). http://doi.acm.org/10.1145/1882291.1882320

15. Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: GKLEE:
concolic verification and test generation for GPUs. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2012, pp. 215–224. ACM, New York (2012). http://doi.acm.org/10.1145/
2145816.2145844

16. Microsoft: C++ Accelerated Massive Parallelism. https://msdn.microsoft.com/
en-us/library/hh265137.aspx

17. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
Publishing Company Incorporated, Heidelberg (2010)

18. Nvidia: CUDA C Programming Guide v7.5. http://docs.nvidia.com/cuda/cuda-c-
programming-guide/

19. OpenACC-standard.org: OpenACC: Directives for Accelerators. http://www.
openacc.org/

20. Sung, I.J., Stratton, J.A., Hwu, W.M.W.: Data layout transformation exploiting
memory-level parallelism in structured grid many-core applications. In: Proceed-
ings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT 2010, pp. 513–522. ACM, New York (2010). http://doi.
acm.org/10.1145/1854273.1854336

21. Ueng, S.Z., Lathara, M., Baghsorkhi, S.S., Wen-mei, W.H.: CUDA-Lite: Reduc-
ing GPU Programming Complexity, pp. 1–15. Springer, Heidelberg (2008).
http://dx.doi.org/10.1007/978-3-540-89740-8 1

22. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit.
Code Optim.9(4), 54:1–54:23 (2013). http://doi.acm.org/10.1145/2400682.2400713

http://dl.acm.org/citation.cfm?id=2738600.2738603
http://dl.acm.org/citation.cfm?id=2738600.2738603
http://doi.acm.org/10.1145/2024724.2024754
https://doi.org/10.1109/SC.2010.36
https://doi.org/10.1109/SC.2010.36
http://doi.acm.org/10.1145/1504176.1504194
http://doi.acm.org/10.1145/1504176.1504194
http://doi.acm.org/10.1145/1882291.1882320
http://doi.acm.org/10.1145/2145816.2145844
http://doi.acm.org/10.1145/2145816.2145844
https://msdn.microsoft.com/en-us/library/hh265137.aspx
https://msdn.microsoft.com/en-us/library/hh265137.aspx
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.openacc.org/
http://www.openacc.org/
http://doi.acm.org/10.1145/1854273.1854336
http://doi.acm.org/10.1145/1854273.1854336
http://dx.doi.org/10.1007/978-3-540-89740-8_1
http://doi.acm.org/10.1145/2400682.2400713


GPUDrano: Detecting Uncoalesced Accesses in GPU Programs 525

23. Wu, J., Belevich, A., Bendersky, E., Heffernan, M., Leary, C., Pienaar, J., Roune,
B., Springer, R., Weng, X., Hundt, R.: Gpucc: An open-source GPGPU compiler.
In: Proceedings of the 2016 International Symposium on Code Generation and
Optimization, CGO 2016, pp. 105–116. ACM, New York (2016). http://doi.acm.
org/10.1145/2854038.2854041

24. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory opti-
mization and parallelism management. In: Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2010,
pp. 86–97. ACM, New York (2010). http://doi.acm.org/10.1145/1806596.1806606

http://doi.acm.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/2854038.2854041
http://doi.acm.org/10.1145/1806596.1806606

	GPUDrano: Detecting Uncoalesced Accesses in GPU Programs
	1 Introduction
	2 Illustrative Example
	3 Formalization of Uncoalesced Accesses
	3.1 Semantics
	3.2 Uncoalesced Global Memory Accesses

	4 Static Analysis
	4.1 Abstraction
	4.2 Abstract Semantics
	4.3 Detecting Uncoalesced Accesses
	4.4 Implementation

	5 Dynamic Analysis
	6 Evaluation
	7 Related Work
	8 Conclusion
	References


