
DryVR: Data-Driven Verification and
Compositional Reasoning for Automotive

Systems

Chuchu Fan(B), Bolun Qi, Sayan Mitra,
and Mahesh Viswanathan

University of Illinois at Urbana-Champaign,
Champaign, USA

{cfan10,bolunqi2,mitras,vmahesh}@illinois.edu

Abstract. We present the DryVR framework for verifying hybrid con-
trol systems that are described by a combination of a black-box simu-
lator for trajectories and a white-box transition graph specifying mode
switches. The framework includes (a) a probabilistic algorithm for learn-
ing sensitivity of the continuous trajectories from simulation data, (b) a
bounded reachability analysis algorithm that uses the learned sensitivity,
and (c) reasoning techniques based on simulation relations and sequen-
tial composition, that enable verification of complex systems under long
switching sequences, from the reachability analysis of a simpler system
under shorter sequences. We demonstrate the utility of the framework
by verifying a suite of automotive benchmarks that include powertrain
control, automatic transmission, and several autonomous and ADAS fea-
tures like automatic emergency braking, lane-merge, and auto-passing
controllers.

1 Introduction

The starting point of existing hybrid system verification approaches is the avail-
ability of nice mathematical models describing the transitions and trajecto-
ries. This central conceit severely restricts the applicability of the resulting
approaches. Real world control system “models” are typically a heterogeneous
mix of simulation code, differential equations, block diagrams, and hand-crafted
look-up tables. Extracting clean mathematical models from these descriptions is
usually infeasible. At the same time, rapid developments in Advanced Driving
Assist Systems (ADAS), autonomous vehicles, robotics, and drones now make
the need for effective and sound verification algorithms stronger than ever before.
The DryVR framework presented in this paper aims to narrow the gap between
sound and practical verification for control systems.

M. Viswanathan—This work is supported by the grants CAREER 1054247 and CCF
1422798 from the National Science Foundation.

c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 441–461, 2017.
DOI: 10.1007/978-3-319-63387-9 22

442 C. Fan et al.

Model Assumptions. Consider an ADAS feature like automatic emergency
braking system (AEB). The high-level logic deciding the timing of when and
for how long the brakes are engaged after an obstacle is detected by sensors is
implemented in a relatively clean piece of code and this logical module can be
seen as a white-box . In contrast, the dynamics of vehicle itself, with hundreds of
parameters, is more naturally viewed as a black-box . That is, it can be simulated
or tested with different initial conditions and inputs, but it is nearly impossible
to write down a nice mathematical model.

The empirical observation motivating this work is that many control systems,
and especially automotive systems, share this combination of white and black
boxes (see other examples in Sects. 2.1, 2.5, [21]). In this paper, we view hybrid
systems as a combination of a white-box that specifies the mode switches and
a black-box that can simulate the continuous evolution in each mode. Suppose
the system has a set of modes L and n continuous variables. The mode switches
are defined by a transition graph G—a directed acyclic graph (DAG) annotated
with allowed switching times. The black-box is a set of trajectories TL in R

n for
each mode in L.Instead of a closed form description of TL, we have a simulator ,
that can generate sampled data points on individual trajectories. Combining a
transition graph G, a set of trajectories TL, and a set of initial states, we obtain
a hybrid system for which executions, reachability, and trace containment can
be defined naturally.

A number of automotive systems we have studied are naturally represented
in the above style: in powertrain [30] and transmission [34] control systems the
mode transitions are brought about by the driver or the control algorithm,
and in either case it is standard to describe typical switching behavior using
time-triggered signals; in automatic emergency braking (AEB), merge and auto-
passing control, once the maneuver is activated, the mode transitions occur
within certain time intervals. Similar observations hold in other examples.

Safety Verification Algorithm. With black-box modules in our hybrid sys-
tems, we address the challenge of providing guaranteed verification. Our approach
is based on the idea of simulation-driven reachability analysis [15,16,22]. For a
given mode � ∈ L, finitely many simulations of the trajectories of � and a dis-
crepancy function bounding the sensitivity of these trajectories, is used to over-
approximate the reachable states. For the key step of computing discrepancy for
modes that are now represented by black-boxes, we introduce a probabilistic algo-
rithm that learns the parameters of exponential discrepancy functions from simu-
lation data. The algorithm transforms the problem of learning the parameters of
the discrepancy function to the problem of learning a linear separator for a set of
points in R

2 that are obtained from transforming the simulation data. A classi-
cal result in PAC learning, ensures that any such discrepancy function works with
high probability for all trajectories. We performed dozens of experiments with a
variety of black-box simulators and observed that 15–20 simulation traces typ-
ically give a discrepancy function that works for nearly 100% of all simulations.
The reachability algorithm for the hybrid system proceeds along the topologically

DryVR: Data-Driven Verification and Compositional Reasoning 443

sorted vertices of the transition graph and this gives a sound bounded verification
algorithm, provided the learned discrepancy function is correct.

Reasoning. White-box transition graphs in our modelling, identify the switch-
ing sequences under which the black-box modules are exercised. Complex sys-
tems have involved transition graphs that describe subtle sequences in which
the black-box modules are executed. To enable the analysis of such systems, we
identify reasoning principles that establish the safety of system under a com-
plex transition graph based on its safety under a simpler transition graph. We
define a notion of forward simulation between transition graphs that provides
a sufficient condition of when one transition graph “subsumes” another—if G1

is simulated by G2 then the reachable states of a hybrid system under G1 are
contained in the reachable states of the system under G2. Thus the safety of
the system under G2 implies the safety under G1. Moreover, we give a simple
polynomial time algorithm that can check if one transition graph is simulated
by another.

Our transition graphs are acyclic with transitions having bounded switching
times. Therefore, the executions of the systems have a time bound and a bounded
number of mode switches. An important question to investigate is whether estab-
lishing the safety for bounded time, enables one to conclude the safety of the
system for an arbitrarily long time and for arbitrarily many mode switches. With
this in mind, we define a notion of sequential composition of transition graphs
G1 and G2, such that switching sequences allowed by the composed graph are
the concatenation of the sequences allowed by G1 with those allowed by G2.
Then we prove a sufficient condition on a transition graph G such that safety
of a system under G implies the safety of the system under arbitrarily many
compositions of G with itself.

Automotive Applications. We have implemented these ideas to create the
Data-driven System for Verification and Reasoning (DryVR). The tool is able
to automatically verify or find counter-examples in a few minutes, for all the
benchmark scenarios mentioned above. Reachability analysis combined with
compositional reasoning, enabled us to infer safety of systems with respect to
arbitrary transitions and duration.

Related Work. Most automated verification tools for hybrid systems rely
on analyzing a white-box mathematical model of the systems. They include
tools based on decidability results [3,24,28], semi-decision procedures that over-
approximate the reachable set of states through symbolic computation [4,7,25],
using abstractions [1,5,8,38], and using approximate decision procedures for
fragments of first-order logic [33]. More recently, there has been interest in devel-
oping simulation-based verification tools [2,10–12,16,17,31]. Even though these
are simulation based tools, they often rely on being to analyze a mathematical
model of the system. The type of analysis that they rely on include instrumenta-
tion to extract a symbolic trace from a simulation [31], stochastic optimization

444 C. Fan et al.

to search for counter-examples [2,17], and sensitivity analysis [10–12,16]. Some
of the simulation based techniques only work for systems with linear dynam-
ics [26,27]. Recent work on the APEX tool [36] for verifying trajectory planning
and tracking in autonomous vehicles is related our approach in that it targets
the same application domain.

2 Modeling/Semantic Framework

We introduce a powertrain control system from [30] as a running example to
illustrate the elements of our hybrid system modeling framework.

2.1 Powertrain Control System

This system (Powertrn) models a highly nonlinear engine control system. The rel-
evant state variables of the model are intake manifold pressure (p), air-fuel ratio
(λ), estimated manifold pressure (pe) and intergrator state (i). The overall sys-
tem can be in one of four modes startup, normal, powerup, sensorfail. A Simulink R©

diagram describes the continuous evolution of the above variables. In this paper,
we mainly work on the Hybrid I/O Automaton Model in the suite of powertrain
control models. The Simulink R© model consists of continuous variables describ-
ing the dynamics of the powertrain plant and sample-and-hold variables as the
controller. One of the key requirements to verify is that the engine maintains the
air-fuel ratio within a desired range in different modes for a given set of driver
behaviors. This requirement has implications on fuel economy and emissions. For
testing purposes, the control system designers work with sets of driver profiles
that essentially define families of switching signals across the different modes.
Previous verification results on this problem have been reported in [14,18] on a
simplified version of the powertrain control model.

2.2 Transition Graphs

We will use L to denote a finite set of modes or locations of the system under
consideration. The discrete behavior or mode transitions are specified by what
we call a transition graph over L.

Definition 1. A transition graph is a labeled, directed acyclic graph G = 〈L,
V, E , vlab, elab〉, where (a) L is the set of vertex labels, also called the set of
modes, V the set of vertices, E ⊆ V×V is the set of edges, vlab : V → L is a vertex
labeling function that labels each vertex with a mode, and elab : E → R≥0×R≥0 is
an edge labeling function that labels each edge with a nonempty, closed, bounded
interval defined by pair of non-negative reals.

For cyclic graph with bounded number of switches and bounded time, we
can first unfold it to a required depth to obtain the DAG. Since G is a DAG,
there is a nonempty subset Vinit ⊆ V of vertices with no incoming edges and a

DryVR: Data-Driven Verification and Compositional Reasoning 445

nonempty subset Vterm ⊆ V of vertices with no outgoing edges. We define the set
of initial locations of G as Linit = {� | ∃ v ∈ Vinit, vlab(v) = �}. A (maximal) path
of the graph G is a sequence π = v1, t1, v2, t2, . . . , vk such that, (a) v1 ∈ Vinit,(b)
vk ∈ Vterm, and for each (vi, ti, vi+1) subsequence, there exists (vi, vi+1) ∈ E ,
and ti ∈ elab((vi, vi+1)). PathsG is the set of all possible paths of G. For a
given path π = v1, t1, v2, t2, . . . , vk its trace, denoted by vlab(π), is the sequence
vlab(v1), t1, vlab(v2), t2, . . . , vlab(vk). Since G is a DAG, a trace of G can visit
the same mode finitely many times. TraceG is the set of all traces of G.

0

startup

1

normal

2

normal

3

4

sensorfail

powerup

[5,10]

[10,15][5,10]

[5,10][10,15]

[20,25]

Fig. 1. A sample transition graph for Powertrain system.

An example transition
graph for the Powertrain
system of Sect. 2.1 is
shown in Fig. 1. The
set of vertices V =
{0, . . . , 4} and the vlab’s
and elab’s appear adja-
cent to the vertices and
edges.

Trace Containment. We will develop reasoning techniques based on reacha-
bility, abstraction, composition, and substitutivity. To this end, we will need
to establish containment relations between the behaviors of systems. Here
we define containment of transition graph traces. Consider transition graphs
G1, G2, with modes L1,L2, and a mode map lmap : L1 → L2. For a trace
σ = �1, t1, �2, t2, . . . , �k ∈ TraceG1 , simplifying notation, we denote by lmap(σ)
the sequence lmap(�1), t1, lmap(�2), t2, . . . , lmap(�k). We write G1 �lmap G2 iff
for every trace σ ∈ TraceG1 , there is a trace σ′ ∈ TraceG2 such that lmap(σ) is
a prefix of σ′.

Definition 2. Given graphs G1, G2 and a mode map lmap : L1 → L2, a relation
R ⊆ V1 × V2 is a forward simulation relation from G1 to G2 iff

(a) for each v ∈ V1init, there is u ∈ V2init such that (v, u) ∈ R,
(b) for every (v, u) ∈ R, lmap(vlab1(v)) = vlab2(u), and
(c) for every (v, v′) ∈ E1 and (v, u) ∈ R, there exists a finite set u1, . . . , uk such

that: (i) for each uj, (v, uj) ∈ R, and (ii) elab1((v, v′)) ⊆ ∪jelab2((u, uj)).

Proposition 1. If there exists a forward simulation relation from G1 to G2 with
lmap then G1 �lmap G2.

Sequential Composition of Graphs. We will find it convenient to define
the sequential composition of two transition graphs. Intuitively, the traces of the
composition of G1 and G2 will be those that can be obtained by concatenating
a trace of G1 with a trace of G2. To keep the definitions and notations simple,
we will assume (when taking sequential compositions) |Vinit| = |Vterm| = 1; this
is true of the examples we analyze. It is easy to generalize to the case when this

446 C. Fan et al.

does not hold. Under this assumption, the unique vertex in Vinit will be denoted
as vinit and the unique vertex in Vterm will be denoted as vterm.

Definition 3. Given graphs G1 = 〈L,V1, E1, vlab1, elab1〉 and G2 = 〈L,V2, E2,
vlab2, elab2〉 such that vlab1(v1term) = vlab2(v2init), the sequential composition
of G1 and G2 is the graph G1 ◦ G2 = 〈L,V, E , vlab, elab〉 where

(a) V = (V1 ∪ V2) \ {v2init)},
(a) E = E1 ∪ {(v1term, u) | (v2init, u) ∈ E2} ∪ {(v, u) ∈ E2 | v �= v2init},
(a) vlab(v) = vlab1(v) if v ∈ V1 and vlab(v) = vlab2(v) if v ∈ V2,
(a) For edge (v, u) ∈ E, elab((v, u)) equals (i) elab1((v, u)), if u ∈ V1, (ii)

elab2((v2init, u)), if v = v1term, (ii) elab2((v, u)), otherwise.

Given our definition of trace containment between graphs, we can prove a
very simple property about sequential composition.

Proposition 2. Let G1 and G2 be two graphs with modes L that can be sequen-
tial composed. Then G1 �id G1 ◦ G2, where id is the identity map on L.

The proposition follows from the fact that every path of G1 is a prefix of a
path of G1 ◦ G2. Later in Sect. 4.1 we see examples of sequential composition.

2.3 Trajectories

The evolution of the system’s continuous state variables is formally described
by continuous functions of time called trajectories. Let n be the number of
continuous variables in the underlying hybrid model. A trajectory for an n-
dimensional system is a continuous function of the form τ : [0, T] → R

n, where
T ≥ 0. The interval [0, T] is called the domain of τ and is denoted by τ.dom. The
first state τ(0) is denoted by τ.fstate, last state τ.lstate = τ(T) and τ.ltime = T .
For a hybrid system with L modes, each trajectory is labeled by a mode in L.
A trajectory labeled by L is a pair 〈τ, �〉 where τ is a trajectory and � ∈ L.

A T1-prefix of 〈τ, �〉, for any T1 ∈ τ.dom, is the labeled-trajectory 〈τ1, �〉
with τ1 : [0, T1] → R

n, such that for all t ∈ [0, T1], τ1(t) = τ(t). A set of labeled-
trajectories TL is prefix-closed if for any 〈τ, �〉 ∈ TL, any of its prefixes are also in
TL. A set TL is deterministic if for any pair 〈τ1, �1〉, 〈τ2, �2〉 ∈ TL, if τ1.fstate =
τ2.fstate and �1 = �2 then one is a prefix of the other. A deterministic, prefix-
closed set of labeled trajectories TL describes the behavior of the continuous
variables in modes L. We denote by TLinit,� = {τ.fstate | 〈τ, �〉 ∈ TL}, the set of
initial states of trajectories in mode �. Without loss generality we assume that
TLinit,� is a connected, compact subset of Rn. We assume that trajectories are
defined for unbounded time, that is, for each � ∈ L, T > 0, and x ∈ TLinit,�, there
exists a 〈τ, �〉 ∈ TL, with τ.fstate = x and τ.ltime = T .

In control theory and hybrid systems literature, the trajectories are assumed
to be generated from models like ordinary differential equations (ODEs) and
differential algebraic equations (DAEs). Here, we avoid an over-reliance on the
models generating trajectories and closed-form expressions. Instead, DryVR
works with sampled data of τ(·) generated from simulations or tests.

DryVR: Data-Driven Verification and Compositional Reasoning 447

Definition 4. A simulator for a (deterministic and prefix-closed) set TL of tra-
jectories labeled by L is a function (or a program) sim that takes as input a mode
label � ∈ L, an initial state x0 ∈ TLinit,�, and a finite sequence of time points
t1, . . . , tk, and returns a sequence of states sim(x0, �, t1), . . . , sim(x0, �, tk) such
that there exists 〈τ, �〉 ∈ TL with τ.fstate = x0 and for each i ∈ {1, . . . , k},
sim(x0, �, ti) = τ(ti).

The trajectories of the Powertrn system are described by a Simulink R© dia-
gram. The diagram has several switch blocks and input signals that can be set
appropriately to generate simulation data using the Simulink R© ODE solver.

For simplicity, we assume that the simulations are perfect (as in the last
equality of Definition 4). Formal guarantees of soundness of DryVR are not
compromised if we use validated simulations instead.

Trajectory Containment. Consider sets of trajectories, TL1 labeled by L1 and
TL2 labeled by L2, and a mode map lmap : L1 → L2. For a labeled trajectory
〈τ, �〉 ∈ TL1, denote by lmap(〈τ, �〉) the labeled-trajectory 〈τ, lmap(�)〉. Write
TL1 �lmap TL2 iff for every labeled trajectory 〈τ, �〉 ∈ TL1, lmap(〈τ, �〉) ∈ TL∈.

2.4 Hybrid Systems

Definition 5. An n-dimensional hybrid system H is a 4-tuple 〈L, Θ,G, TL〉,
where (a) L is a finite set of modes, (b) Θ ⊆ R

n is a compact set of initial
states, (c) G = 〈L,V, E , elab〉 is a transition graph with set of modes L, and (d)
TL is a set of deterministic, prefix-closed trajectories labeled by L.

A state of the hybrid system H is a point in R
n × L. The set of initial states

is Θ×Linit. Semantics of H is given in terms of executions which are sequences of
trajectories consistent with the modes defined by the transition graph. An exe-
cution of H is a sequence of labeled trajectories α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k

in TL, such that (a) τ1.fstate ∈ Θ and �1 ∈ Linit, (b) the sequence path(α)
defined as �1, τ1.ltime, �2, . . . �k is in TraceG, and (c) for each pair of consecutive
trajectories, τi+1.fstate = τi.lstate. The set of all executions of H is denoted by
ExecsH. The first and last states of an execution α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k

are α.fstate = τ1.fstate, α.lstate = τk−1.lstate, and α.fmode = �1 α.lmode = �k.
A state 〈x, �〉 is reachable at time t and vertex v (of graph G) if there exists
an execution α = 〈τ1, �1〉 . . . , 〈τk−1, �k−1〉, �k ∈ ExecsH, a path π = v1, t1, . . . vk

in PathsG, i ∈ {1, . . . k}, and t′ ∈ τi.dom such that vlab(π) = path(α), v = vi,
� = �i, x = τi(t′), and t = t′ +

∑i−1
j=1 tj .The set of reachable states, reach tube,

and states reachable at a vertex v are defined as follows.

ReachTubeH = {〈x, �, t〉 | for some v, 〈x, �〉 is reachable at time t and vertex v}
ReachH = {〈x, �〉 | for some v, t, 〈x, �〉 is reachable at time t and vertex v}
Reachv

H = {〈x, �〉 | for some t, 〈x, �〉 is reachable at time t and vertex v}

Given a set of (unsafe) states U ⊆ R
n × L, the bounded safety verification

problem is to decide whether ReachH∩U = ∅. In Sect. 3 we will present DryVR’s
algorithm for solving this decision problem.

448 C. Fan et al.

Remark 1. Defining paths in a graph G to be maximal (i.e., end in a vertex in
Vterm) coupled with the above definition for executions in H, ensures that for a
vertex v with outgoing edges in G, the execution must leave the mode vlab(v)
within time bounded by the largest time in the labels of outgoing edges from v.

An instance of the bounded safety verification problem is defined by (a) the
hybrid system for the Powertrn which itself is defined by the transition graph of
Fig. 1 and the trajectories defined by the Simulink R© model, and (b) the unsafe
set (Up): in powerup mode, t > 4 ∧ λ /∈ [12.4, 12.6], in normal mode, t > 4 ∧ λ /∈
[14.6, 14.8].

Containment between graphs and trajectories can be leveraged to conclude
the containment of the set of reachable states of two hybrid systems.

Proposition 3. Consider a pair of hybrid systems Hi = 〈Li, Θi, Gi, TLi〉, i ∈
{1, 2} and mode map lmap : L1 → L2. If Θ1 ⊆ Θ2, G1 �lmap G2, and TL1 �lmap

TL2, then ReachH1 ⊆ ReachH2 .

2.5 ADAS and Autonomous Vehicle Benchmarks

This is a suite of benchmarks we have created representing various common
scenarios used for testing ADAS and Autonomous driving control systems. The
hybrid system for a scenario is constructed by putting together several individual
vehicles. The higher-level decisions (paths) followed by the vehicles are captured
by transition graphs while the detailed dynamics of each vehicle comes from a
black-box Simulink R© simulator from Mathworks R© [35].

Each vehicle has several continuous variables including the x, y-coordinates of
the vehicle on the road, its velocity, heading, and steering angle. The vehicle can
be controlled by two input signals, namely the throttle (acceleration or brake)
and the steering speed. By choosing appropriate values for these input signals,
we have defined the following modes for each vehicle — cruise: move forward at
constant speed, speedup: constant acceleration, brake: constant (slow) decelera-
tion, em brake: constant (hard) deceleration. In addition, we have designed lane
switching modes ch left and ch right in which the acceleration and steering are
controlled in such a manner that the vehicle switches to its left (resp. right) lane
in a certain amount of time.

For each vehicle, we mainly analyze four variables: absolute position (sx) and
velocity (vx) orthogonal to the road direction (x-axis), and absolute position (sy)
and velocity (vy) along the road direction (y-axis). The throttle and steering are
captured using the four variables. We will use subscripts to distinguish between
different vehicles. The following scenarios are constructed by defining appropriate
sets of initial states and transitions graphs labeled by the modes of two or more
vehicles. In all of these scenarios a primary safety requirement is that the vehicles
maintain safe separation. See [21] for more details on initial states and transition
graphs of each scenario.

Merge: Vehicle A in the left lane is behind vehicle B in the right lane. A switches
through modes cruise, speedup, ch right, and cruise over specified intervals to

DryVR: Data-Driven Verification and Compositional Reasoning 449

merge behind B. Variants of this scenario involve B also switching to speedup
or brake.

AutoPassing: Vehicle A starts behind B in the same lane, and goes through a
sequence of modes to overtake B. If B switches to speedup before A enters
speedup then A aborts and changes back to right lane.

Merge3: Same as AutoPassing with a third car C always ahead of B.
AEB: Vehicle A cruises behind B and B stops. A transits from cruise to em brake

possibly over several different time intervals as governed by different sensors
and reaction times.

3 Invariant Verification

A subproblem for invariant verification is to compute ReachTubeH, or more
specifically, the reachtubes for the set of trajectories TL in a given mode, up to a
time bound. This is a difficult problem, even when TL is generated by white-box
models. The algorithms in [11,15,20] approximate reachtubes using simulations
and sensitivity analysis of ODE models generating TL. Here, we begin with a
probabilistic method for estimating sensitivity from black-box simulators.

3.1 Discrepancy Functions

Sensitivity of trajectories is formalized by the notion of discrepancy functions
[15]. For a set TL, a discrepancy function is a uniformly continuous function
β : Rn×R

n×R≥0 → R≥0, such that for any pair of identically labeled trajectories
〈τ1, �〉, 〈τ2, �〉 ∈ TL, and any t ∈ τ1.dom ∩ τ2.dom: (a) β upper-bounds the
distance between the trajectories, i.e.,

|τ1(t) − τ2(t)| ≤ β(τ1.fstate, τ2.fstate, t), (1)

and (b) β converges to 0 as the initial states converge, i.e., for any trajectory τ
and t ∈ τ.dom, if a sequence of trajectories τ1, . . . , τk, . . . has τk.fstate → τ.fstate,
then β(τk.fstate, τ.fstate, t) → 0. In [15] it is shown how given a β, condition (a)
can used to over-approximate reachtubes from simulations, and condition (b)
can be used to make these approximations arbitrarily precise. Techniques for
computing β from ODE models are developed in [19,20,29], but these are not
applicable here in absence of such models. Instead we present a simple method
for discovering discrepancy functions that only uses simulations. Our method is
based on classical results on PAC learning linear separators [32]. We recall these
before applying them to find discrepancy functions.

Learning Linear Separators. For Γ ⊆ R × R, a linear separator is a pair
(a, b) ∈ R

2 such that

∀(x, y) ∈ Γ. x ≤ ay + b. (2)

450 C. Fan et al.

Let us fix a subset Γ that has a (unknown) linear separator (a∗, b∗). Our
goal is to discover some (a, b) that is a linear seprator for Γ by sampling points
in Γ1. The assumption is that elements of Γ can be drawn according to some
(unknown) distribution D. With respect to D, the error of a pair (a, b) from
satisfying Eq. 2, is defined to be errD(a, b) = D({(x, y) ∈ Γ | x > ay + b}) where
D(X) is the measure of set X under distribution D. Thus, the error is the
measure of points (w.r.t. D) that (a, b) is not a linear separator for. There is
a very simple (probabilistic) algorithm that finds a pair (a, b) that is a linear
separator for a large fraction of points in Γ, as follows.

1. Draw k pairs (x1, y1), . . . (xk, yk) from Γ according to D; the value of k will
be fixed later.

2. Find (a, b) ∈ R
2 such that xi ≤ ayi + b for all i ∈ {1, . . . k}.

Step 2 involves checking feasibility of a linear program, and so can be done
efficiently. This algorithm, with high probability, finds a linear separator for a
large fraction of points.

Proposition 4. Let ε, δ ∈ R+. If k ≥ 1
ε ln 1

δ then, with probability ≥ 1 − δ, the
above algorithm finds (a, b) such that errD(a, b) < ε.

Proof. The result follows from the PAC-learnability of concepts with low VC-
dimension [32]. However, since the proof is very simple in this case, we reproduce
it here for completeness. Let k be as in the statement of the proposition, and
suppose the pair (a, b) identified by the algorithm has error > ε. We will bound
the probability of this happening.

Let B = {(x, y) | x > ay + b}. We know that D(B) > ε. The algorithm chose
(a, b) only because no element from B was sampled in Step 1. The probability
that this happens is ≤ (1 − ε)k. Observing that (1 − s) ≤ e−s for any s, we get
(1 − ε)k ≤ e−εk ≤ e− ln 1

δ = δ. This gives us the desired result.

Learning Discrepancy Functions. Discrepancy functions will be computed
from simulation data independently for each mode. Let us fix a mode � ∈ L,
and a domain [0, T] for each trajectory. The discrepancy functions that we will
learn from simulation data, will be one of two different forms, and we discuss
how these are obtained.

Global exponential discrepancy (GED) is a function of the form

β(x1, x2, t) = |x1 − x2|Keγt.

Here K and γ are constants. Thus, for any pair of trajectories τ1 and τ2 (for
mode �), we have

∀t ∈ [0, T]. |τ1(t) − τ2(t)| ≤ |τ1.fstate − τ2.fstate|Keγt.

1 We prefer to present the learning question in this form as opposed to one where we
learn a Boolean concept because it is closer to the task at hand.

DryVR: Data-Driven Verification and Compositional Reasoning 451

Taking logs on both sides and rearranging terms, we have

∀t. ln
|τ1(t) − τ2(t)|

|τ1.fstate − τ2.fstate| ≤ γt + lnK.

It is easy to see that a global exponential discrepancy is nothing but a linear
separator for the set Γ consisting of pairs (ln |τ1(t)=τ2(t)|

|τ1.fstate−τ2.fstate| , t) for all pairs
of trajectories τ1, τ2 and time t. Using the sampling based algorithm described
before, we could construct a GED for a mode � ∈ L, where sampling from Γ
reduces to using the simulator to generate traces from different states in TLinit,�.
Proposition 4 guarantees the correctness, with high probability, for any separator
discovered by the algorithm. However, for our reachability algorithm to not be
too conservative, we need K and γ to be small. Thus, when solving the linear
program in Step 2 of the algorithm, we search for a solution minimizing γT+lnK.

Piece-Wise Exponential Discrepancy (PED). The second form of discrepancy
functions we consider, depends upon dividing up the time domain [0, T] into
smaller intervals, and finding a global exponential discrepancy for each inter-
val. Let 0 = t0, t1, . . . tN = T be an increasing sequence of time points. Let
K, γ1, γ2, . . . γN be such that for every pair of trajectories τ1, τ2 (of mode �), for
every i ∈ {1, . . . , N}, and t ∈ [ti−1, ti], |τ1(t) = τ2(t)| ≤ |τ1(ti−1)−τ2(ti−1)|Keγit.
Under such circumstances, the discrepancy function itself can be seen to be
given as

β(x1, x2, t) = |x1 − x2|Ke
∑i−1

j=1 γj(tj−tj−1)+γi(t−ti−1) for t ∈ [ti−1, ti].

If the time points 0 = t0, t1, . . . tN = T are fixed, then the constants K, γ1, γ2, . . .
γN can be discovered using the learning approach described for GED; here, to
discover γi, we take Γi to be the pairs obtained by restricting the trajectories to
be between times ti−1 and ti. The sequence of time points ti are also dynamically
constructed by our algorithm based on the following approach. Our experience
suggests that a value for γ that is ≥ 2 results in very conservative reach tube
computation. Therefore, the time points ti are constructed inductively to be as
large as possible, while ensuring that γi < 2.

Experiments on Learning Discrepancy. We used the above algorithm to
learn discrepancy functions for dozens of modes with complex, nonlinear trajec-
tories. Our experiments suggest that around 10–20 simulation traces are ade-
quate for computing both global and piece-wise discrepancy functions. For each
mode we use a set Strain of simulation traces that start from independently drawn
random initial states in TLinit,� to learn a discrepancy function. Each trace may
have 100–10000 time points, depending on the relevant time horizon and sample
times. Then we draw another set Stest of 1000 simulations traces for validating
the computed discrepancy. For every pair of trace in Stest and for every time
point, we check whether the computed discrepancy satisfies Eq. 1. We observe
that for |Strain| > 10 the computed discrepancy function is correct for 96% of the
points Stest in and for |Strain| > 20 it is correct for more than 99.9%, across all
experiments.

452 C. Fan et al.

Algorithm 1. GraphReach(H) computes bounded time reachtubes for each
vertex of the transition G of hybrid system H.
1 RS ← ∅;VerInit ← {〈Θ, vinit〉};Order ← TopSort(G);
2 for ptr = 0 : len(Order) − 1 do
3 curv ← Order[ptr] ;
4 � ← vlab(curv);
5 dt ← max{t′ ∈ R≥0 | ∃vs ∈ V, (curv , vs) ∈ E , (t, t′) ← elab ((curv , vs))};
6 for Sinit ∈ {S | 〈S, curv〉 ∈ VerInit} do
7 β ← LearnDiscrepancy(Sinit, dt , �);
8 RT ← ReachComp(Sinit, dt , β);
9 RS ← RS ∪ 〈RT, curv〉;

10 for nextv ∈ curv .succ do
11 (t, t′) ← elab ((curv , nextv));
12 VerInit ← VerInit ∪ 〈Restr(RT, (t, t′)), nextv〉;
13 return RS ;

3.2 Verification Algorithm

In this section, we present algorithms to solve the bounded verification problem
for hybrid systems using learned exponential discrepancy functions. We first
introduce an algorithm GraphReach (Algorithm 1) which takes as input a hybrid
system H = 〈L, Θ,G, TL〉 and returns a set of reachtubes—one for each vertex
of G—such that their union over-approximates ReachTubeH.

GraphReach maintains two data-structures: (a) RS accumulates pairs of the
form 〈RT, v〉, where v ∈ V and RT is its corresponding reachtube; (b) VerInit
accumulates pairs of the form 〈S, v〉, where v ∈ V and S ⊂ R

n is the set of states
from which the reachtube in v is to be computed. Each v could be in multiple
such pairs in RS and VerInit . Initially, RS = ∅ and VerInit = {〈Θ, vinit〉}.

LearnDiscrepancy(Sinit, d , �) computes the discrepancy function for mode �,
from initial set Sinit and upto time d using the algorithm of Sect. 3.1.

ReachComp(Sinit, d, β) first generates finite simulation traces from Sinit and
then bloats the traces to compute a reachtube using the discrepancy function β.
This step is similar to the algorithm for dynamical systems given in [15].

The GraphReach algorithm proceeds as follows: first, a topologically sorted
array of the vertices of the DAG G is computed as Order (Line 1). The pointer
ptr iterates over the Order and for each vertex curv the following is computed.
The variable dt is set to the maximum transition time to other vertices from
curv (Line 5). For each possible initial set Sinit corresponding to curv in VerInit ,
the algorithm computes a discrepancy function (Line 7) and uses it to compute
a reachtube from Sinit up to time dt (Line 8). For each successor nextv of curv ,
the restriction of the computed reachtube RT to the corresponding transition
time interval elab((curv ,nextv)) is set as an initial set for nextv (Line 11–12).

The invariant verification algorithm VerifySafety decides safety of H with
respect to a given unsafe set U and uses GraphReach. This algorithm proceeds
in a way similar to the simulation-based verification algorithms for dynamical

DryVR: Data-Driven Verification and Compositional Reasoning 453

Algorithm 2. VerifySafety(H,U) verifies safety of hybrid system H with
respect to unsafe set U .
initially: I.push(Partition(Θ))

1 while I 	= ∅ do
2 S ← I.pop();
3 RS ← GraphReach(H) ;
4 if RS ∩ U = ∅ then
5 continue;
6 else if ∃(x, l, t) ∈ RT s.t. 〈RT, v〉 ∈ RS and (x, l, t) ⊆ U then
7 return UNSAFE, 〈RT, v〉
8 else
9 I.push(Partition(S)) ;

10 Or, G ← RefineGraph(G) ;

11 return SAFE

and hybrid systems [15,22]. Given initial set Θ and transition graph G of H, this
algorithm partitions Θ into several subsets, and then for each subset S it checks
whether the computed over-approximate reachtube RS from S intersects with
U : (a) If RS is disjoint, the system is safe starting from S; (b) if certain part
of a reachtube RT is contained in U , the system is declared as unsafe and RT
with the the corresponding path of the graph are returned as counter-example
witnesses; (c) if neither of the above conditions hold, then the algorithm performs
refinement to get a more precise over-approximation of RS. Several refinement
strategies are implemented in DryVR to accomplish the last step. Broadly, these
strategies rely on splitting the initial set S into smaller sets (this gives tighter
discrepancy in the subsequent vertices) and splitting the edge labels of G into
smaller intervals (this gives smaller initial sets in the vertices).

The above description focuses on invariant properties, but the algorithm and
our implementation in DryVR can verify a useful class of temporal properties.
These are properties in which the time constraints only refer to the time since the
last mode transition. For example, for the Powertrn benchmark the tool verifies
requirements like “after 4s in normal mode, the air-fuel ratio should be contained
in [14.6, 14.8] and after 4s in powerup it should be in [12.4, 12.6]”.

Correctness. Given a correct discrepancy function for each mode, we can prove
the soundness and relative completeness of Algorithm 2. This analysis closely
follows the proof of Theorem 19 and Theorem 21 in [13].

Theorem 1. If the β’s returned by LearnDiscrepancy are always discrepancy
functions for corresponding modes, then VerifySafety(H,U) (Algorithm 2) is
sound. That is, if it outputs “SAFE”, then H is safe with respect to U and
if it outputs “UNSAFE” then there exists an execution of H that enters U .

454 C. Fan et al.

3.3 Experiments on Safety Verification

The algorithms have been implemented in DryVR2 and have been used to
automatically verify the benchmarks from Sect. 2 and an Automatic Transmis-
sion System (detailed description of the models can be found in the appendix
of [21]). The transition graph, the initial set, and unsafe set are given in a text
file. DryVR uses simulators for modes, and outputs either “Safe” of “Unsafe”.
Reachtubes or counter-examples computed during the analysis are also stored
in text files.

(a) Safe reachtube. (b) Unsafe execution.

Fig. 2. AutoPassing verification.Vehicle A’s (red) modes are shown above each subplot.
Vehicle B (green) is in cruise. Top: sxA, sxB . Bottom: syA, syB . (Color figure online)

The implementation is in Python using the MatLab’s Python API for access-
ing the Simulink R© simulators. Py-GLPK [23] is used to find the parameters of
discrepancy functions; either global (GED) or piece-wise (PED) discrepancy can
be selected by the user. Z3 [9] is used for reachtube operations.

Figure 2 shows example plots of computed safe reachtubes and counter-
examples for a simplified AutoPassing in which vehicle B stays in the cruise
always. As before, vehicle A goes through a sequence of modes to overtake B.
Initially, for both i ∈ {A,B}, sxi = vxi = 0 and vyi = 1, i.e., both are cruising
at constant speed at the center of the right lane; initial positions along the lane
are syA ∈ [0, 2], syB ∈ [15, 17]. Figure 2a shows the lateral positions (sxA in red
and sxB in green, in the top subplot), and the positions along the lane (syA

in red and syB in green, in the bottom plot). Vehicle A moves to left lane (sx
decreases) and then back to the right, while B remains in the right lane, as A
overtakes B (bottom plot). The unsafe set (|sxA − sxB| < 2 & |syA − syB | < 2)
is proved to be disjoint from computed reachtube. With a different initial set,
syB ∈ [30, 40], DryVR finds counter-example (Fig. 2b).
2 The implementation of DryVR with the case studies can be found at https://github.

com/qibolun/DryVR. We have also moved the Autonomous vehicle benchmark mod-
els and all the scenarios to Python for faster simulation..

https://github.com/qibolun/DryVR
https://github.com/qibolun/DryVR

DryVR: Data-Driven Verification and Compositional Reasoning 455

Table 1. Safety verification results. Numbers below benchmark names: # vertices and
edges of G, TH: duration of shortest path in G, Ref: # refinements performed; Runtime:
overall running time.

Model TH Initial set U Ref Safe Runtime

Powertrn (5 vers, 6 edges) 80 λ ∈ [14.6, 14.8] Up 2 ✓ 217.4s

AutoPassing (12 vers, 13 edges) 50 syA ∈ [−1, 1] syB ∈ [14, 16] Uc 4 ✓ 208.4s

50 syA ∈ [−1, 1] syB ∈ [4, 6.5] Uc 5 ✗ 152.5s

Merge (7 vers, 7 edges) 50 sxA ∈ [−5, 5] syB ∈ [−2, 2] Uc 0 ✓ 55.0s

50 sxA ∈ [−5, 5] syB ∈ [2, 10] Uc - ✗ 38.7s

Merge3 (6 vers, 5 edges) 50 syA ∈ [−3, 3] syB ∈ [14, 23] syC ∈ [36, 45] Uc 4 ✓ 197.6s

50 syA ∈ [−3, 3] syB ∈ [14, 15] syC ∈ [16, 20] Uc - ✗ 21.3s

ATS (4 vers, 3 edges) 50 Erpm ∈ [900, 1000] Ut 2 ✓ 109.2s

Table 1 summarizes some of the verification results obtained using DryVR.
ATS is an automatic transmission control system (see [21] for more details).
These experiments were performed on a laptop with Intel Core i7-6600U CPU
and 16 GB RAM. The initial range of only the salient continuous variables are
shown in the table. The unsafe sets are discussed with the model description.
For example Uc means two vehicles are too close. For all the benchmarks, the
algorithm terminated in a few minutes which includes the time to simulate,
learn discrepancy, generate reachtubes, check the safety of the reachtube, over
all refinements.

For the results presented in Table 1, we used GED. The reachtube gener-
ated by PED for Powertrn is more precise, but for the rest, the reachtubes and
the verification times using both GED and PED were comparable. In addi-
tion to the VerifySafety algorithm, DryVR also looks for counter-examples by
quickly generating random executions of the hybrid system. If any of these exe-
cutions is found to be unsafe, DryVR will return “Unsafe” without starting the
VerifySafety algorithm.

4 Reasoning Principles for Trace Containment

For a fixed unsafe set U and two hybrid systems H1 and H2, proving ReachH1 ⊆
ReachH2 and the safety of H2, allows us to conclude the safety of H1. Proposi-
tion 3 establishes that proving containment of traces, trajectories, and initial sets
of two hybrid systems, ensures the containment of their respective reach sets.
These two observations together give us a method of concluding the safety of one
system, from the safety of another, provided we can check trace containment of
two graphs, and trajectory containment of two trajectory sets. In our examples,
the set of modes L and the set of trajectories TL is often the same between the
hybrid systems we care about. So in this section we present different reasoning
principles to check trace containment between two graphs.

Semantically, a transition graph G can be viewed as one-clock timed automa-
ton, i.e., one can construct a timed automaton T with one-clock variable such
that the timed traces of T are exactly the traces of G. This observation, coupled

456 C. Fan et al.

with the fact that checking the timed language containment of one-clock timed
automata [37] is decidable, allows one to conclude that checking if G1 �lmap G2

is decidable. However the algorithm in [37] has non-elementary complexity. Our
next observation establishes that forward simulation between graphs can be
checked in polynomial time. Combined with Proposition 1, this gives a simple
sufficient condition for trace containment that can be efficiently checked.

Proposition 5. Given graphs G1 and G2, and mode map lmap, checking if
there is a forward simulation from G1 to G2 is in polynomial time.

Proof. The result can be seen to follow from the algorithm for checking timed
simulations between timed automata [6] and the correspondence between one-
clock timed automata; the fact that the automata have only one clock ensures
that the region construction is poly-sized as opposed to exponential-sized. How-
ever, in the special case of transition graphs there is a more direct algorithm
which does not involve region construction that we describe here.

Observe that if {Ri}i∈I is a family of forward simulations between G1 and G2

then ∪i∈IRi is also a forward simulation. Thus, like classical simulations, there
is a unique largest forward simulation between two graphs that is the greatest
fixpoint of a functional on relations over states of the transition graph. Therefore,
starting from the relation V1×V2, one can progressively remove pairs (v, u) such
that v is not simulated by u, until a fixpoint is reached. Moreover, in this case,
since G1 is a DAG, one can guarantee that the fixpoint will be reached in |V1|
iterations.

Executions of hybrid systems are for bounded time, and bounded number of
mode switches. This is because our transition graphs are acyclic and the labels
on edges are bounded intervals. Sequential composition of graphs allows one to
consider switching sequences that are longer and of a longer duration. We now
present observations that will allow us to conclude the safety of a hybrid system
with long switching sequences based on the safety of the system under short
switching sequences. To do this we begin by observing simple properties about
sequential composition of graphs. In what follows, all hybrid systems we consider
will be over a fixed set of modes L and trajectory set TL. id is the identity
function on L. Our first observation is that trace containment is consistent with
sequential composition.

Proposition 6. Let Gi, G
′
i, i ∈ {1, 2}, be four transition graphs over L such

that G1 ◦ G2 and G′
1 ◦ G′

2 are defined, and Gi �id G′
i for i ∈ {1, 2}. Then

G1 ◦ G2 �id G′
1 ◦ G′

2.

Next we observe that sequential composition of graphs satisfies the “semi-
group property”.

Proposition 7. Let G1, G2 be graphs over L for which G1 ◦ G2 is defined. Let
v1term be the unique terminal vertex of G1. Consider the following hybrid systems:
H = 〈L, Θ,G1 ◦G2, TL〉, H1 = 〈L, Θ,G1, TL〉, and H2 = 〈L,Reachv1term

H1
,G2, TL〉.

Then ReachH = ReachH1 ∪ ReachH2 .

DryVR: Data-Driven Verification and Compositional Reasoning 457

Consider a graph G such that G ◦ G is defined. Let H be the hybrid system
with transition graph G, and H′ be the hybrid system with transition graph
G ◦ G; the modes, trajectories, and initial set for H and H′ are the same. Now
by Propositions 2 and 3, we can conclude that ReachH ⊆ ReachH′ . Our main
result of this section is that under some conditions, the converse also holds. This
is useful because it allows us to conclude the safety of H′ from the safety of H.
In other words, we can conclude the safety of a hybrid system for long, possibly
unbounded, switching sequences (namely H′) from the safety of the system under
short switching sequences (namely H).

Theorem 2. Suppose G is such that G ◦ G is defined. Let vterm be the unique
terminal vertex of G. For natural number i ≥ 1, define Hi = 〈L, Θ,Gi, TL〉,
where Gi is the i-fold sequential composition of G with itself. In particular, H1 =
〈L, Θ,G, TL〉. If Reachvterm

H1
⊆ Θ then for all i, ReachHi

⊆ ReachH1 .

Proof. Let Θ1 = Reachvterm

H1
. From the condition in the theorem, we know that

Θ1 ⊆ Θ. Let us define H′
i = 〈L, Θ1, G

i, TL〉. Observe that from Proposition 3,
we have ReachH′

i
⊆ ReachHi

.
The theorem is proved by induction on i. The base case (for i = 1) triv-

ially holds. For the induction step, assume that ReachHi
⊆ ReachH1 . Since

◦ is associative, using Proposition 7 and the induction hypothesis, we have
ReachHi+1 = ReachH1 ∪ ReachH′

i
⊆ ReachH1 ∪ ReachHi

= ReachH1 .

Theorem 2 allows one to determine the set of reachable states of a set of modes
L with respect to graph Gi, provided G satisfies the conditions in the statement.
This observation can be generalized. If a graph G2 satisfies conditions similar to
those in Theorem 2, then using Proposition 7, we can conclude that the reachable
set with respect to graph G1 ◦ Gi

2 ◦ G3 is contained in the reachable set with
respect to graph G1 ◦ G2 ◦ G3. The formal statement of this observation and its
proof is skipped in the interest of space, but we will use it in our experiments.

4.1 Experiments on Trace Containment Reasoning

Graph Simulation. Consider the AEB system of Sect. 2.5 with the scenario where
Vehicle B is stopped ahead of vehicle A, and A transits from cruise to em brake
to avoid colliding with B. In the actual system (G2 of Fig. 3), two different sensor
systems trigger the obstacle detection and emergency braking at time intervals
[1, 2] and [2.5, 3.5] and take the system from vertex 0 (cruise) to two different
vertices labeled with em brake.

To illustrate trace containment reasoning, consider a simpler graph G1 that
allows a single transition of A from cruise to em brake over the interval bigger
[0.5, 4.5]. Using Proposition 3 and checking that graph G2 �id G1, it follows
that verifying the safety of AEB with G1 is adequate to infer the safety with
G2. Figure 3c shows that the safe reachtubes returned by the algorithm for G1

in red, indeed contain the reachtubes for G2 (in blue and gray).

458 C. Fan et al.

(a) Transition graph G1. (b) Transition graph G2. (c) AEB Reachtubes.

Fig. 3. Graphs and reachtubes for the automatic emergency braking AEB system.
(Color figure online)

Sequential Composition. We revisit the Powertrn example of Sect. 2.1. The initial
set Θ and unsafe set are the same as in Table 1. Let GA be the graph (v0,startup)
[5,10]−−−→ (v1,normal)

[10,15]−−−−→ (v2,powerup), and GB be the graph (v0,powerup)
[5,10]−−−→

(v1,normal)
[10,15]−−−−→ (v2,powerup). The graph G1 = (v0,startup)

[5,10]−−−→ (v1,normal)
[10,15]−−−−→ (v2,powerup)

[5,10]−−−→ (v3,normal)
[10,15]−−−−→ (v4,powerup), can be expressed

as the composition G1 = GA ◦ GB . Consider the two hybrid systems Hi =
〈L, Θi, Gi, TL〉, i ∈ {A,B} with ΘA = Θ and ΘB = Reachv2

HA
. DryVR’s estimate

of ΘB had λ in the range from 14.68 to 14.71. The reachset Reachv2
HB

computed by
DryVR had λ from 14.69 to 14.70. The remaining variables also were observed
to satisfy the containment condition. Therefore, Reachv2

HB
⊆ ΘB . Consider the

two hybrid systems Hi = 〈L, Θ,Gi, TL〉, i ∈ {1, 2}, where G1 is (defined above)
GA◦GB , and G2 = GA◦GB ◦GB ◦GB . Using Theorem 2 it suffices to analyze H1

to verify H2. H1 was been proved to be safe by DryVR without any refinement.
As a sanity check, we also verified the safety of H2. DryVR proved H2 safe
without any refinement as well.

5 Conclusions

The work presented in this paper takes an alternative view that complete math-
ematical models of hybrid systems are unavailable. Instead, the available system
description combines a black-box simulator and a white-box transition graph.
Starting from this point of view, we have developed the semantic framework,
a probabilistic verification algorithm, and results on simulation relations and
sequential composition for reasoning about complex hybrid systems over long
switching sequences. Through modeling and analysis of a number of automo-
tive control systems using implementations of the proposed approach, we hope
to have demonstrated their promise. One direction for further exploration in
this vein, is to consider more general timed and hybrid automata models of the
white-box, and develop the necessary algorithms and the reasoning techniques.

DryVR: Data-Driven Verification and Compositional Reasoning 459

References

1. Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of
hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208–223. Springer, Heidelberg (2003)

2. Annapureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: a tool for
temporal logic falsification for hybrid systems. In: Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(2011)

3. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 30

4. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid
automata. In: Proceedings of the International Syposium on Mathematical Theory
of Networks and Systems. Citeseer (2006)

5. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C.S., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
10th International Haifa Verification Conference, pp. 116–131 (2014)

6. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). doi:10.1007/3-540-56496-9 24

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: International Conference on Computer Aided Verification, pp.
258–263 (2013)

8. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verifi-
cation of hybrid systems based on counterexample-guided abstraction refinement.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207.
Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 14

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

10. Deng, Y., Rajhans, A., Julius, A.A.: Strong: a trajectory-based verification toolbox
for hybrid systems. In: International Conference on Quantitative Evaluation of
SysTems, pp. 165–168 (2013)

11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

12. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp.
174–189. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4 16

13. Duggirala, P.S.: Dynamic analysis of cyber-physical systems. Ph.D. thesis, Univer-
sity of Illinois at Urbana-Champaign (2015)

14. Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a powertrain verifi-
cation challenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 536–543. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 37

15. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models
from executions. In: Proceedings of International Conference on Embedded Soft-
ware (EMSOFT 2013), Montreal, QC, Canada, pp. 1–10. ACM SIGBED, IEEE,
September 2013

http://dx.doi.org/10.1007/3-540-45657-0_30
http://dx.doi.org/10.1007/3-540-56496-9_24
http://dx.doi.org/10.1007/3-540-36577-X_14
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-540-71493-4_16
http://dx.doi.org/10.1007/978-3-319-21690-4_37

460 C. Fan et al.

16. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 5

17. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410, 4262–4291 (2009)

18. Fan, C., Duggirala, P.S., Mitra, S., Viswanathan, M.: Progress on powertrain veri-
fication challenge with C2E2. In: Workshop on Applied Verification for Continuous
and Hybrid Systems (ARCH 2015) (2015)

19. Fan, C., Kapinski, J., Jin, X., Mitra, S.: Locally optimal reach set over-
approximation for nonlinear systems. In: Proceedings of the 13th ACM-SIGBED
International Conference on Embedded Software (EMSOFT), EMSOFT 2016, pp.
6:1–6:10. ACM, New York (2016)

20. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
446–463. Springer, Cham (2015). doi:10.1007/978-3-319-24953-7 32

21. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DRYVR: data-driven verification and
compositional reasoning for automotive systems. arXiv preprint arXiv:1702.06902
(2017)

22. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachabil-
ity analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). doi:10.
1007/978-3-319-41528-4 29

23. Finley, T.: Python package PyGLPK. http://tfinley.net/software/pyglpk/
24. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:

Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31954-2 17

25. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid sys-
tems. In: International Conference on Computer Aided Verification, pp. 379–395.
Springer (2011)

26. Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari,
A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006).
doi:10.1007/11730637 22

27. Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for
incrementally stable switched systems. IEEE Trans. Autom. Contr. 55(1), 116–126
(2010)

28. Henzinger, T.A., Ho, P.-H.: HyTech: the cornell hybrid technology tool. In:
Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999,
pp. 265–293. Springer, Heidelberg (1995). doi:10.1007/3-540-60472-3 14

29. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification
of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Cham (2014). doi:10.
1007/978-3-319-08867-9 25

30. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pp. 253–262. ACM (2014)

31. Kanade, A., Alur, R., Ivančić, F., Ramesh, S., Sankaranarayanan, S., Shashidhar,
K.C.: Generating and analyzing symbolic traces of Simulink/Stateflow models. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 430–445. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02658-4 33

http://dx.doi.org/10.1007/978-3-662-46681-0_5
http://dx.doi.org/10.1007/978-3-319-24953-7_32
http://arxiv.org/abs/1702.06902
http://dx.doi.org/10.1007/978-3-319-41528-4_29
http://dx.doi.org/10.1007/978-3-319-41528-4_29
http://tfinley.net/software/pyglpk/
http://dx.doi.org/10.1007/978-3-540-31954-2_17
http://dx.doi.org/10.1007/11730637_22
http://dx.doi.org/10.1007/3-540-60472-3_14
http://dx.doi.org/10.1007/978-3-319-08867-9_25
http://dx.doi.org/10.1007/978-3-319-08867-9_25
http://dx.doi.org/10.1007/978-3-642-02658-4_33

DryVR: Data-Driven Verification and Compositional Reasoning 461

32. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

33. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for
hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 200–205. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 15

34. Mathworks: Modeling an Automatic Transmission and Controller. http://www.
mathworks.com/videos/modeling-an-automatic-transmission-and-controller-688
23.html

35. Mathworks. Simple 2D Kinematic Vehicle Steering Model and Animation. https://
www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-veh
icle-steering-model-and-animation?requestedDomain=www.mathworks.com

36. O’Kelly, M., Abbas, H., Gao, S., Shiraishi, S., Kato, S., Mangharam, R.: APEX:
autonomous vehicle plan verification and execution (2016)

37. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science, pp. 54–63. IEEE (2004)

38. Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for
hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 48

http://dx.doi.org/10.1007/978-3-662-46681-0_15
http://www.mathworks.com/videos/modeling-an-automatic-transmission-and-controller-68823.html
http://www.mathworks.com/videos/modeling-an-automatic-transmission-and-controller-68823.html
http://www.mathworks.com/videos/modeling-an-automatic-transmission-and-controller-68823.html
https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/54852-simple-2d-kinematic-vehicle-steering-model-and-animation?requestedDomain=www.mathworks.com
http://dx.doi.org/10.1007/978-3-662-49674-9_48
http://dx.doi.org/10.1007/978-3-662-49674-9_48

	DryVR: Data-Driven Verification and Compositional Reasoning for Automotive Systems
	1 Introduction
	2 Modeling/Semantic Framework
	2.1 Powertrain Control System
	2.2 Transition Graphs
	2.3 Trajectories
	2.4 Hybrid Systems
	2.5 ADAS and Autonomous Vehicle Benchmarks

	3 Invariant Verification
	3.1 Discrepancy Functions
	3.2 Verification Algorithm
	3.3 Experiments on Safety Verification

	4 Reasoning Principles for Trace Containment
	4.1 Experiments on Trace Containment Reasoning

	5 Conclusions
	References

