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Abstract. We introduce LRT, a new Lagrangian-based ReachTube
computation algorithm that conservatively approximates the set of reach-
able states of a nonlinear dynamical system. LRT makes use of the
Cauchy-Green stretching factor (SF), which is derived from an over-
approximation of the gradient of the solution-flows. The SF measures
the discrepancy between two states propagated by the system solution
from two initial states lying in a well-defined region, thereby allowing
LRT to compute a reachtube with a ball-overestimate in a metric where
the computed enclosure is as tight as possible. To evaluate its perfor-
mance, we implemented a prototype of LRT in C++/Matlab, and ran
it on a set of well-established benchmarks. Our results show that LRT
compares very favorably with respect to the CAPD and Flow* tools.

1 Introduction

Bounded-time reachability analysis is an essential technique for ensuring the
safety of emerging systems, such as cyber-physical systems (CPS) and controlled
biological systems (CBS). However, computing the reachable states of CPS and
CBS is a very difficult task as these systems are most often nonlinear, and their
state-space is uncountably infinite. As such, these systems typically do not admit
a closed-form solution that can be exploited during their analysis.

For CPS/CBS, one can therefore only compute point solutions (trajectories)
through numerical integration and for predefined inputs. To cover the infinite
set of states reachable by the system from an initial region, one needs to conser-
vatively extend (symbolically surround) these pointwise solutions by enclosing
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them in reachtubes. Moreover, the starting regions of these reachtubes have to
cover the initial states region.

The class of continuous dynamical systems we are interested in this paper
are nonlinear, time-variant ordinary differential equations (ODEs):

x′(t) = F (t, x(t)), (1a)
x(t0) = x0, (1b)

where x : R → R
n. We assume that F is a smooth function, which guarantees

short-time existence of solutions. The class of time-variant systems includes the
class of time-invariant systems. Time-variant equations may contain additional
terms, e.g. an excitation variable, and/or periodic forcing terms.

For a given initial time t0, set of initial states X ⊂ R
n, and time bound

T > t0, our goal is to compute conservative reachtube of (1), that is, a sequence
of time-stamped sets of states (R1, t1), . . . , (Rk, tk) satisfying:

Reach ((t0,X ) , [ti−1, ti]) ⊂ Ri for i = 1, . . . , k,

where Reach ((t0,X ) , [ti−1, ti]) denotes the set of reachable states of (1) in the
interval [ti−1, ti]. Whereas there are many sets satisfying this requirement, of
particular interest to us are reasonably tight reachtubes; i.e. reachtubes whose
over-approximation is the tightest possible, having in mind the goal of proving
that a certain region of the phase space is (un)safe, and avoiding false positives.
In practice and for the sake of comparision with other methods, we compute a
discrete-time reachtube; as we discuss, a continuous reachtube can be obtained
using our algorithm.

Existing tools and techniques for conservative reachtube computation can be
classified by the time-space approximation they perform into three categories:
(1) Taylor-expansion in time, variational-expansion in space (wrapping-effect
reduction) of the solution set (CAPD [4,32,33], VNode-L [25,26], (2) Taylor-
expansion in time and space of the solution set (Cosy Infinity [3,21,22], Flow* [5,
6]), and (3) Bloating-factor-based and discrepancy-function-based [10,11]. The
last technique computes a conservative reachtube using a discrepancy function
(DF) that is derived from an over-approximation of the Jacobian of the vec-
tor field (usually given by the RHS of the differential equations) defining the
continuous dynamical system.

This paper proposes an alternative (and orthogonal to [10,11]) technique for
computing a conservative reachtube, by using a stretching factor (SF) that is
derived from an over-approximation of the gradient of the solution-flows, also
referred to as the sensitivity matrix [8,9], and the deformation tensor. An illus-
tration of our method is given in Fig. 1. BM0(x0, δ0) is a well-defined initial
region given as a ball in metric space M0 centered at x0 of radius δ0. The SF Λ
measures the discrepancy of two states x0, y0 in BM0 propagated by the solution
flow induced by (1), i.e. φt1

t0 . We can thus use the SF to bound the infinite set
of reachable states at time t1 with the ball-overestimate BM1(φ

t1
t0(x0), δ1) in an

appropriate metric (which may differ from the initial M0), where δ1 = Λ · δ0.
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Fig. 1. An overview of LRT. The figure shows one execution step of the LRT described
in detail in Sect. 3. The dashed arrows reflect the solution flow φ and the evolution of
state discrepancy.

Similar to [10], this metric is based on a weighted norm, yielding a tightest-
possible enclosure of the reach-set [7,17,19,20]. For two-dimensional system, we
present an analytical method to compute M1, but for higher dimensional sys-
tem, we solve a semi-definite optimization problem. Analytical formulas derived
for 2d case allow for faster computation. We point out that the output provided
by LRT can be used to compute a validated bound for the so-called finite-time
Lyapunov exponent (FTLE = 1

T ln(SF )) for a whole set of solutions. FTLE are
widely computed in e.g. climate research in order to detect Lagrangian coherent
structures.

We call this approach and its associated the LRT, for Lagrangian Reachtube
computation. The LRT uses analogues of Cauchy-Green deformation tensors
(CGD) from finite strain theory (FST) to determine the SF of the solution-flows,
after each of its time-step iterations. The LRT algorithm is described thoroughly
in Sect. 3.

To compute the gradient of the flows, we currently make use of the CAPD
C1 routine, which propagates the initial ball (box) using interval arithmetic.
The CAPD library has been certified to compute a conservative enclosure of the
true solution, and it has been used in many peer-reviewed computer proofs of
theorems in dynamical systems, including [12,15,31].

To evaluate the LRT’s performance, we implemented a prototype in
C++/Matlab and ran it on a set of eight benchmarks. Our results show that the
LRT compares very favorably to a direct use of CAPD and Flow* (see Sect. 4),
while still leaving room for further improvement. In general, we expect the LRT
to behave favorably on systems that exhibit long-run stable behavior, such as
orbital stability.

We did not compare the LRT with the DF-based tools [10,11], although
we would have liked to do this very much. The reason is that the publicly-
available DF-prototype has not yet been certified to produce conservative results.
Moreover, the prototype only considers time-invariant systems.
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The rest of the paper is organized as follows. Section 2 reviews finite-strain
theory and the Cauchy-Green-deformation tensor for flows. Section 3 presents
the LRT, our main contribution, and proves that it conservatively computes the
reachtube of a Cauchy system. Section 4 compares our results to CAPD and
Flow* on six benchmarks from [6,10], the forced Van der Pol oscillator (time-
variant system) [30], and the Mitchell Schaeffer cardiac cell model [23]. Section 5
offers our concluding remarks and discusses future work.

2 Background on Flow Deformation

In this section we present some background on the LRT. First, in Sect. 2.1 we
briefly recall the general FST, as in the LRT we deal with matrices analogous
to Cauchy-Green deformation tensors. Second, in Sect. 2.2 we show how the
Cauchy-Green deformation tensor can be used to measure discrepancy of two
initial states propagated by the flow inducted by Eq. (1).

2.1 Finite Strain Theory and Lagrangian Description of the Flow

In classical continuum mechanics, finite strain theory (FST) deals with the defor-
mation of a continuum body in which both rotation and strain can be arbitrarily
large. Changes in the configuration of the body are described by a displacement
field. Displacement fields relate the initial configuration with the deformed con-
figuration, which can be significantly different. FST has been applied, for exam-
ple, in stress/deformation analysis of media like elastomers, plastically-deforming
materials, and fluids, modeled by constitutive models (see e.g., [13], and the refer-
ences provided there). In the Lagrangian representation, the coordinates describe
the deformed configuration (in the material-reference-frame spatial coordinates),
whereas in the Eulerian representation, the coordinates describe the undeformed
configuration (in a fixed-reference-frame spatial coordinates).

Notation. In this section we use the standard notation used in the literature on
FST. We use X to denote the position of a particle in the Eulerian coordinates,
and x to denote the position of a particle in the Lagrangian coordinates. The
Lagrangian coordinates depend on the initial (Eulerian) position, and the time t,
so we use x(X, t) to denote the position of a particle in Lagrangian coordinates.

The displacement field from the initial configuration to the deformed config-
uration in Lagrangian coordinates is given by the following equation:

u(X, t) = x(X, t) − X. (2)

The dependence ∇Xu of the displacement field u(X, t) on the initial condition
X is called the material displacement gradient tensor, with

∇Xu(X, t) = ∇Xx(X, t) − I, (3)

where ∇Xx is called the deformation gradient tensor.
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We now investigate how an initial perturbation X + dX in the Eulerian
coordinates evolves to the deformed configuration dx(X + dX, t) in Lagrangian
coordinates by using (2). This is called a relative displacement vector:

dx(X + dX, t) = x(X + dX, t) − x(X, t) = u(X + dX, t) + dX − u(X, t),

As a consequence, for small dX we obtain the following approximate equality:

dx(X + dX, t) ≈ u(X + dX, t) − u(X, t). (4)

Now let us compute u(X+dX, t) by expressing du(X+dX, t) as with x(X+dX, t)
above. One obtains:

u(X + dX, t) = u(X, t) + du(X + dX, t) = u(X, t) + ∇Xu(X + dX, t)dX.

Now by replacing u(X +dX, t) in Eq. (4) above, one obtains the following result:

dx(X + dX, t) ≈ ∇Xx(X + dX, t)dX.

Several rotation-independent tensors have been introduced in the literature.
Classical examples include the right Cauchy-Green deformation tensor:

C = (∇Xx)T · ∇Xx. (5)

2.2 Cauchy-Green Deformation Tensor for Flows

Notation. By [x] we denote a product of intervals (a box), i.e. a compact and
connected set [x] ⊂ R

n. We will use the same notation for interval matrices. By
‖ · ‖2 we denote the Euclidean norm, by ‖ · ‖∞ we denote the max norm, we
use the same notation for the inducted operator norms. Let B(x, δ) denote the
closed ball centered at x with the radius δ. It will be clear from the context in
which metric space we consider the ball. By φt1

t0 we denote the flow inducted
by (1), by Dxφt1

t0 we denote the partial derivative in x of the flow with respect
to the initial condition, at time t1, which we call the gradient of the flow, also
refereed to as the sensitivity matrix [8,9].

Let us now relate the finite strain theory presented in Sect. 2.1 to the study
of flows inducted by the ODE (1). For expressing deformation in time of a con-
tinuum we first consider the set of initial conditions (e.g. a ball), which is being
evolved (deformed) in time by the flow φ. For the case of flows we have that
the positions in Eulerian coordinates are coordinates of the initial condition
(denoted here using lower case letters with subscript 0, i.e. x0, y0). The equiva-
lent of x(X, t) – the Lagrangian coordinates of X at time t is φt

t0(x0). Obviously,
the equivalent of u(X, t) is (φt

t0(x0) − x0), and the deformation gradient ∇Xx
here is just the derivative of the flow with respect to the initial condition Dxφt

t0
(sensitivity matrix).

In this section we show that deformation tensors arise in a study of discrep-
ancy of solutions of (1). First, we provide some basic lemmas that we use in
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the analysis of our reachtube-computation algorithm. We work with the metric
spaces that are based on weighted norms. We aim at finding weights, such that
the inducted matrix measures (also known as logarithmic norms for particular
cases) [7,17,19,20] provides to be smaller than those in the Euclidean norm for
the computed gradients of solutions.

Definition 1. Given positive-definite symmetric matrix M ∈ R
n×n we define

the M -norm of Rn vectors by

‖y‖M =
√

yT My. (6)

Given the decomposition
M = CT C,

the matrix norm inducted by (6) is

‖A‖M =
√

λmax ((CT )−1 · AT · M · A · C−1), (7)

where λmax(·) denotes the maximal eigenvalue of the matrix A.
Observe that the square-root is well defined, as λmax > 0, M is symmetric

positive definite, and hence, the matrix (CT )−1 ·AT ·M ·A·C−1 is also symmetric
positive definite.

Lemma 1. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial

conditions at time t0. Let M ∈ R
n×n be a positive-definite symmetric matrix

and CT C = M be its decomposition. For t1 ≥ t0, it holds that

‖φt1
t0(x0)−φt1

t0(y0)‖M ≤
√

λmax

(
(CT )−1Dxφt1

t0(ξ)
T M Dxφt1

t0(ξ)C
−1

) ‖x0 − y0‖M

(8)

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1]. For the particular case of the
Euclidean norm, (8) takes the form

‖φt1
t0(x0) − φt1

t0(y0)‖2 ≤
√

λmax

((
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
)

‖x0 − y0‖2. (9)

A proof can be found in AppendixA.

Remark 1. Let ξ ∈ R be a given vector. Observe that
(
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
appearing in (9) is the right Cauchy-Green deformation tensor (5) for two given
initial vectors x0 and y0. We call the value

√
λmax appearing in (9) Cauchy-

Green stretching factor for given initial vectors x0 and y0, which is necessarily
positive as the CG deformation tensor is positive definite

√
λmax(·) > 0.

Lemma 1 is used when both of the discrepancy of the solutions at time t1 as
well as the initial conditions is measured in the same M -norm. In the practical
Lagrangian Reachtube Algorithm the norm used is being changed during the
computation. Hence we need another version of Lemma 1, where the norm in
which the discrepancy of the initial condition in measured differs from the norm
in which the discrepancy of the solutions at time t1 is measured.
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Lemma 2. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial con-

ditions at time t0. Let M0,M1 ∈ R
n×n be positive-definite symmetric matrices,

and CT
0 C0 = M0, CT

1 C1 = M1 their decompositions respectively. For t1 ≥ t0, it
holds that

‖φt1
t0(x0) − φt1

t0(y0)‖M1

≤
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
‖x0 − y0‖M0 ,

(10)

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1].

A proof can be found in Appendix A.

Remark 2. Given a positive-definite symmetric matrix M . We call the value
appearing in (10) (CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0 as the M0/M1-

deformation tensor, and the value
√

λmax as the M0/M1-stretching factor.

The idea behind using weighted norms in our approach is that the stretching
factor in M -norm (10) is expected to be smaller than that in the Euclidean norm
(9). Ultimately, this permits a tighter reachtube computation, whose complete
procedure is presented in Sect. 3.3.

3 Lagrangian Reachtube Computation

3.1 Reachtube Computation: Problem-Statement

In this section we provide first some lemmas that we then use to show that
our method-and-algorithm produces a conservative output, in the sense that it
encloses the set of solutions starting from a set of initial conditions. Precisely,
we define what we mean by conservative enclosures.

Definition 2. Given an initial set X , initial time t0, and the target time t1 ≥ t0.
We call the following compact sets:

– W ⊂ R
n a conservative, reach-set enclosure, if φt1

t0(x) ∈ W for all x ∈ X .
– D ⊂ R

n×n a conservative, gradient enclosure, if Dxφt1
t0(x) ∈ D for all x ∈ X .

Following the notation used in [10], and extending the corresponding definitions
to our time variant setting, we introduce the notion of reachability as follows:
Given an initial set X ⊂ R

n and a time t0, we call a state x in R
n as reachable

within a time interval [t1, t2], if there exists an initial state x0 ∈ X at time t0 and
a time t ∈ [t1, t2], such that x = φt

t0(x0). The set of all reachable states in the
interval [t1, t2] is called the reach set and is denoted by Reach((t0,X ), [t1, t2]).

Definition 3 ([10] Definition 2.4). Given an initial set X , initial time t0, and
a time bound T , a ((t0,X), T )-reachtube of System (1) is a sequence of time-
stamped sets (R1, t1), . . . , (Rk, tk) satisfying the following: (1) t0 ≤ t1 ≤ · · · ≤
tk = T , (2) Reach((t0,X ), [ti−1, ti]) ⊂ Ri,∀i = 1, . . . , k.
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Definition 4. Whenever the initial set X and the time horizon T are known
from the context we will skip the (X , [t0, T ]) part, and will simply use the name
(conservative) reachtube over-approximation of the flow defined by (1).

Observe that we do not address here the question what is the exact structure of
the solution set at time t initiating at X . In general it could have, for instance, a
fractal structure. We aim at constructing an over-approximation for the solution
set, and its gradient, which is amenable for rigorous numeric computations.

In the theorems below we show that the method presented in this paper can
be used to construct a reachtube over-approximation R. The theorems below is
the foundation of our novel Lagrangian Reachtube Algorithm (LRT) presented
in Sect. 3.3. In particular, the theorems below provide estimates we use for con-
structing R. First, we present a theorem for the discrete case.

3.2 Conservative Reachtube Construction

Theorem 1. Let t0 ≤ t1 be two time points. Let φt1
t0(x) be the solution of (1)

with the initial condition (t0, x) at time t1, let Dxφt1
t0 be the gradient of the flow.

Let M0,M1 ∈ R
n×n be positive-definite symmetric matrices, and CT

0 C0 = M0,
CT

1 C1 = M1 be their decompositions respectively. Let X = BM0(x0, δ0) ⊂ R
n

be a set of initial states for the Cauchy problem (1) (ball in M0-norm with the
center at x0, and radius δ0). Assume that there exists a compact, conservative
enclosure D ⊂ R

n×n for the gradients, such that:

Dxφt1
t0(x) ∈ D for all x ∈ X . (11)

Suppose Λ > 0 is such that:

Λ ≥
√

λmax

(
(CT

0 )−1DT M1DC−1
0

)
, for all D ∈ D. (12)

Then it holds that:

φt1
t0(x) ∈ BM1(φ

t1
t0(x0),Λ · δ0).

Proof. Let x0 be the center of the ball of initial conditions X = BM0(x0, δ0),
and let us pick x ∈ X . From Lemma 4 the discrepancy of the solutions initiating
at x0 and x at time t1 is bounded in M1-norm by:

‖φt1
t0(x0)−φt1

t0(x)‖M1 ≤ δ0

√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
,

where ξ = ωx0 +(1−ω)x for some ω ∈ [0, 1]. Obviously, ξ ∈ BM0(x0, δ0). Hence,
Dxφt1

t0(ξ) ∈ D. Moreover, if Λ > 0 satisfies (12), then

Λ ≥
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
,

and φt1
t0(x) ∈ BM1(φ

t1
t0(x0),Λδ0). As x was chosen in an arbitrary way, we are

done. �
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The next theorem is the variant of Theorem 1 for obtaining a continuous
reachtube.

Theorem 2. Let φt1
t0(x) be the solution of (1) with the initial condition (t0, x)

at time t1, let Dxφt1
t0 be the gradient of the flow. Let M0,M1 ∈ R

n×n be positive
definite symmetric matrices, and CT

0 C0 = M0, CT
1 C1 = M1 be their decompo-

sitions respectively. Let X = BM0(x0, δ0) ⊂ R
n be a set of initial conditions for

the Cauchy problem (1) (ball in M0-norm). Assume that there exists {Dt}t∈[t0,t1]

– a compact t-parametrized set, such that

Dt ⊂ R
n×n for t ∈ [t0, t1],

Dxφt
t0(x) ∈ Dt for all x ∈ X , and t ∈ [t0, t1].

If Λ > 0 is such that for all D : D ∈ Dt for some t ∈ [t0, t1]

Λ ≥
√

λmax

(
(CT

0 )−1DT M1DC−1
0

)

Then for all t ∈ [t0, t1] it holds that

φt
t0(x) ∈ BM1(φ

t
t0(x0),Λ · δ0). (13)

Proof. It follows from the proof of Theorem 1 applied to all times t ∈ [t0, t1]. �
Corollary 1. Let T ≥ t0. Assume that that there exists {Dt}t∈[t0,T ] – a compact
t-parametrized set, such that

Dt ⊂ R
n×n for t ∈ [t0, T ],

Dxφt
t0(x) ∈ Dt for all x ∈ X , and t ∈ [t0, T ].

Then the existence of a ((t0,X), T )-reachtube of the system described
in Eq. (1) in sense of Definition 3, i.e. a sequence of time-stamped sets
(R1, t1), . . . , (Rk, tk) is provided by an application of Lemma 2. We provide an
algorithm computing the reachtube in Sect. 3.3.

Proof. Immediate application of Theorem2 shows that if the first segment
(R1, t1) is defined

(R1, t1) :=
⋃

t∈[t0,t1]

BM1(φ
t
t0(x0),Λ · δ0),

then it satisfies
Reach((t0,X ), [t0, t1]) ⊂ (R1, t1),

which is exactly provided by (13). The j-th segment (Rj , tj) for j = 2, . . . , k is
obtained by replacing in Theorem2 the time interval [t0, t1] with the interval
[tj−1, tj ] (Observe that the norm may be different in each step). �
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3.3 LRT: A Rigorous Lagrangian Computation Algorithm

We now present a complete description of our algorithm. In the next section we
prove its correctness. First let us comment on how in practice we compute a
representable enclosure for the gradients (11).

– First, given an initial ball BM0(x0, δ0) we compute its representable over-
approximation, i.e., a product of intervals (a box in canonical coordinates
[X] ⊂ R

n), such that BM0(x0, δ0) ⊂ [X].
– Next, using the C1-CAPD algorithm [32,33] all trajectories initiating in [X]

are rigorously propagated forward in time, in order to compute a conserv-
ative enclosure for

{
Dxφt1

t0(ξ)| ξ ∈ [X]
}

, the gradients. We use the notation
[Dxφt1

t0([X])] ⊂ R
n×n, to denote a representable enclosure (an interval matrix)

for the set of gradients
{
Dxφt1

t0(ξ)| ξ ∈ [X]
}

.

The norm of an interval vector ‖[x]‖ is defined as the supremum of the norms
of all vectors within the bounds [x]. For an interval set [x] ⊂ R

n we denote by
R

n ⊃ BM ([x], r) :=
⋃

x∈[x] BM (x, r), the union of the balls in M -norm of radius
r having the center in [x]. Each product of two interval matrices is overestimated
by using the interval-arithmetic operations.

Definition 5. We will call the rigorous tool the C1-CAPD algorithm, which is
currently used to generate conservative enclosures for the gradient in the LRT.

The output of the LRT are discrete-time reachtube over-approximation
cross-sections {t0, t1, . . . , tk}, tk = t0 + kT , i.e., reachtube over-approximations
BMj

(xj , δj) of the flow induced by (1) at time tj . We note that the algorithm
can be easily modified to provide a validated bounds for the finite-time Laypunov
exponent. We use the discrete-time output for the sake of comparison. However,
as a byproduct, a continuous reachtube over-approximation is obtained by means
of rough enclosures (Fig. 2) produced by the rigorous tool used and by applying
Theorem 2. The implementation details of the algorithm can be found in Sect. 4.

Fig. 2. Fine bounds provided at equally spaced time steps (colored), and coarse bounds
provided for the intermediate times by the rough enclosure (dotted boxes). (Color figure
online)

We are now ready to give the formal description of the LRT: (1) its inputs,
(2) its outputs, and (3) its computation.
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LRT: The Lagrangian Reachtube Algorithm
Input:

– ODE s (1): time-variant ordinary differential equations,
– T : time horizon, t0: initial time, k: number of steps, h = T/k: time step
– M0: initial positive-definite symmetric matrix defining the norm (6),
– [x0] ⊂ R

n: the initial bounds for the position of the center of the ball at t0,
– δ0 > 0: the radius of the ball (in M0 norm) about x0 at t0.

Output:

– {[xj ]}k
j=1 ⊂R

n×k: interval enclosures for ball centers xj at time t0 + jh,
– {Mj}k

j=1: norms defining metric spaces for the ball enclosures,
– {δj}k

j=1 ∈R
k
+: radiuses of the ball enclosures at xj for j = 1, . . . , k1.

Begin LRT

1. Set t1 = t0 +h. Propagate the center of the ball [x0] forward in time by the
time-step h, using the rigorous tool. The result is a conservative enclosure
for the solutions [φt1

t0([x0])] and the gradients [Dxφt1
t0([x0])].

2. Choose a matrix D ∈ [Dxφt1
t0([x0])], and compute a symmetric positive-

definite matrix M1, and its decomposition M1 = CT
1 C1, such that, it mini-

mizes the stretching factor for D. In other words, it holds that:
√

λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤
√

λmax

(
(C̃T )−1DT M̃DC̃−1

)
, (14)

for all positive-definite symmetric matrices M̃ . In the actual code we find
the minimum with some resolution, i.e., we compute M1, such that it is
close to the optimal in the sense of (18), using the procedure presented in
Subsect. 3.6.

3. Decide whether to change the norm of the ball enclosure from M0 to M1 (if
it leads to a smaller stretching factor). If the norm is to be changed keep M1

as it is, otherwise M1 = M0,
4. Compute an over-approximation for BM0([x0], δ0), which is representable

in the rigorous tool employed by the LRT, and can be used as input to
propagate forward in time all solutions initiating in BM0([x0], δ0). This is a
product of intervals in canonical coordinates [X] ⊂ R

n, such that:

BM0([x0], δ0) ⊂ [X].

We compute the over-approximation using the interval arithmetic expression:

C−1
0 (C0 · [x0] + [−δ0, δ0]n)

1 Observe that the radius is valid for the Mj norm, BMj ([xj ], δj) ⊂ R
n for j = 1, . . . , k

is a conservative output, i.e. BMj ([xj ], δj) is an over-approximation for the set of
states reachable at time t1 starting from any state (t0, x), such that x ∈ X

Reach((t0, X ), tj) ⊂ BMj ([xj ], δj), for j = 1, . . . , k.

.
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5. Rigorously propagate [X] forward in time, using the rigorous tool over the
time interval [t0, t1]. The result is a continuous reachtube, providing bounds
for [Φt

t0([X])], and [DxΦt
t0([X])] for all t ∈ [t0, t1]. We employ an integration

algorithm with a fixed time-step h. As a consequence “fine” bounds are
obtained for t = t1. We denote those bounds by:

[φt1
t0([X])], [Dxφt1

t0([X])].

We remark that for the intermediate time-bounds, i.e., for:

[φt
t0([X])], for t ∈ (t0, t1) , (15)

the so-called rough enclosures can be used. These provide coarse bounds, as
graphically illustrated in Fig. 2 in the appendix.

6. Compute interval matrix bounds for the M0/M1 Cauchy-Green deformation
tensors:

[(
(CT

0 )−1 · [
Dxφt1

t0([X])
]T · CT

1

)
· (

C1 · [
Dxφt1

t0([X])
] · C−1

0

)]
, (16)

where CT
0 , C0 are s.t. CT

0 C0 = M0, and CT
1 , C1 are s.t. CT

1 CT = M1. The
interval matrix operations are executed in the order given by the brackets.

7. Compute a value Λ > 0 (M0/M1 stretching factor) as an upper bound for
the square-root of the maximal eigenvalue of each (symmetric) matrix in
(16):

Λ ≥
√

λmax (C),

for all C ∈
[(

(CT
0 )−1 · [

Dxφt1
t0([X])

]T · CT
1

)
· (

C1 · [
Dxφt1

t0([X])
] · C−1

0

)]
.

This quantity Λ can be used for the purpose of computation of validated
bound for the finite-time Lyapunov exponent

FTLE(BM0([x0], δ0)) =
1

t1 − t0
ln(Λprev · Λ),

where Λprev is the product of all stretching factors computed in previous
steps.

8. Compute the new radius for the ball at time t1 = t0 + h:

δ(t1) = Λ · δ(t0),

9. Set the new center of the ball at time t1 as follows:

[x1] = [φt1
t0([x0])].

10. Set the initial time to t1, the bounds for the initial center of the ball to
[x1], the current norm to M1, the radius in M1-norm to δ1 = Λ · δ0, and the
ball enclosure for the set of initial states to BM1([x1],Λ · δ(t0)). If t1 ≥ T
terminate. Otherwise go back to 1.

End LRT
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3.4 LRT-Algorithm Correctness Proof

In this section we provide a proof that the LRT, our new reachtube-computation
algorithm, is an overapproximation of the behavior of the system described by
Eq. (1). This main result is captured by the following theorem.

Theorem 3 (LRT-Conservativity). Assume that the rigorous tool used in the
Lagrangian Reachtube Algorithm (LRT) produces conservative gradient enclo-
sures for system (1) in the sense of Definition 2, and it guarantees the existence
of the solutions within time intervals. Assume also that the LRT terminates on
the provided inputs.

Then, the output of the LRT is a conservative reachtube over-approximation
of (1) at times {tj}k

j=0, that is:

Reach((t0,X ), tj) ⊂ BMj
([xj ], δj), for j = 1, . . . , k,

bounded solutions exists for all intermediate times t ∈ (tj , tj+1).

Proof. Let X = BM0([x0], δ0) be a ball enclosure for the set of initial states.
Without loosing generality we analyze the first step of the algorithm. The same
argument applies to the consecutive steps (with the initial condition changed
appropriately, as explained in the last step of the algorithm).

The representable enclosure [X] ⊂ R
n (product of intervals in canonical

coordinates) computed in Step 4 satisfies BM0([x0], δ0) ⊂ [X]. By the assumption
the rigorous-tool used produces conservative enclosures for the gradient of the
flow induced by ODEs (1). Hence, as the set [X] containing BM0([x0], δ0) is
the input to the rigorous forward-time integration procedure in Step 5, for the
gradient enclosure [Dxφt1

t0([X])] computed in Step 5, it holds that
{
Dxφt1

t0(x) for all x ∈ X} ⊂ [Dxφt1
t0([X])].

Therefore, the set [Dxφt1
t0([X])] can be interpreted as the set D, i.e., the compact

set containing all gradients of the solution at time t1 with initial condition in
BM0([x0], δ0) appearing in Theorem 1, see (11). As a consequence, the value Λ
computed in Step 7 satisfies the following inequality:

Λ ≥
√

λmax

(
(CT

1 )−1DT M0DC−1
1

)
, for all D ∈ D.

From Theorem 2 it follows that:

φt1
t0(x) ∈ BM1(φ

t1
t0([x0]),Λ · δ(t0)) for all x ∈ X ,

which implies that:

Reach((t0,X ), t1) ⊂ BM1([φ
t1
t0([x0])],Λ · δ(t0))

which proves our overapproximation (conservativity) claim. Existence of the
solutions for all times t ∈ (t0, t1) is guaranteed by the assumption about the
rigorous tool (in the step 5 of the LRT algorithm we use rough enclosures, see
Fig. 2). �
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3.5 Wrapping Effect in the Algorithm

A very important precision-loss issue of conservative approximations, and there-
fore of validated methods for ODEs, is the wrapping effect. This occurs when
a set of states is wrapped (conservatively enclosed) within a box defined in a
particular norm. The weighted M -norms technique the LRT uses (instead of the
standard Euclidean norm) is a way of reducing the effect of wrapping. More
precisely, in Step 7 of every iteration, the LRT finds an appropriate norm which
minimizes the stretching factor computed from the set of Cauchy-Green defor-
mation tensors.

However, there are other sources of the wrapping effect in the algorithm. The
discrete reachtube bounds are in a form of a ball in appropriate metric space,
which is an ellipsoidal set in canonical coordinates, see example on Fig. 3(a). In
Step 4 of the LRT algorithm, a representable enclosure in canonical coordinates
for the ellipsoidal reachtube over-approximation is computed. When the ellip-
soidal set is being directly wrapped into a box in canonical coordinates (how it is
done in the algorithm currently), the wrapping effect is considerably larger than
when the ellipsoidal set is wrapped into a rectangular set reflecting the eigen-
coordinates. We illustrate the wrapping effect using the following weighted norm
(taken from one of our experiments):

M =
[

7 −9.5
−9.5 19

]
(17)

Figure 3 shows the computation of enclosures for a ball represented in the
weighted norm given by M . It is clear from Fig. 1(c) that the box enclosure
of the ball in the eigen-coordinates (blue rectangle) is much tighter than the box
enclosure of it in the canonical coordinates (green square).

Fig. 3. (a) A ball in the weighted norm given by M of radius 1 (the ellipsoidal set).
(b) The ellipsoidal set in its eigen-coordinates (unrotated). (c) Wrapping the ellip-
soidal set in a box: blue rectangle in eigen-coordinates and green square in canonical-
coordinates. (Color figure online)

Step 6 of the LRT is another place where reducing the wrapping effect has the
potential to considerably increase the precision of the LRT. This step computes
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the product of interval matrices, which results in large overapproximations for
wide-intervals matrices. In fact, in the experiments considered in Sect. 4, if the
initial-ball radius is large, we observed that the overestimate of the stretching fac-
tor tends to worsen the LRT performance in reachtube construction, when com-
pared to a direct application of CAPD and Flow*. We plan to find workarounds
for this problem. One possible solution would be to use matrix decomposition,
and compute the eigenvalues of the matrix by using this decomposition.

3.6 Direct Computation of the Optimal M-norm

The computation of the optimal M -norm enables the estimation of the streching
factor. Step 7 of the LRT finds norm M1 and decomposes it as M1 = CT

1 C1,
such that, for a gradient matrix D the following inequality holds for all positive-
definite symmetric matrices M̃ :

√
λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤
√

λmax

(
(C̃T )−1DT M̃DC̃−1

)
, (18)

Below we illustrate how to compute M1 for 2D systems. This can be gener-
alized to higher-dimensional systems.

(I) D has complex conjugate eigenvalues λ = α ± iβ. In this case w± iv is
the associated pair of complex conjugate eigenvectors, where w, v ∈ R

2. Define:

C =
[
w v

]−1

As a consequence we have the following equations:

CDC−1 =
[

α β
−β α

]
, and (CT )−1DT CT =

[
α −β
β α

]
,

Thus, one obtains the following results:

(CT )−1DT MAC−1 = ((CT )−1DT CT )(CDC−1) =
[
α2 + β2 0

0 α2 + β2

]
,

Clearly, one has that:

λmax((CT )−1DT MDC−1) = α2 + β2.

As the eigenvalues of (CT )−1DT MDC−1 are equal, it follows from the identity
of the determinants that the inequality below holds for any M̃ = C̃T C̃:

λmax((CT )−1DT MDC−1) ≤ λmax((C̃T )−1DT M̃DC̃−1)

(II) D has two distinct real eigenvalues λ1 �= λ2. In this case we do not find
a positive-definite symmetric matrix. However, we can find a rotation matrix,
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defining coordinates in which the stretching factor is smaller than in canonical
coordinates (M -norm). Let B ∈ R

2×2 be the eigenvectors matrix of D. Denote:

B−1DB = D̃ =
[
λ1 0
0 λ2

]
.

Let R be the rotation matrix

R =
[
c −s
s c

]
, c, s �= 0, hence, R−1D̃R =

[
λ1c2+λ2s2

c2+s2
(λ1−λ2)cs

c2+s2

− (λ1−λ2)cs
c2+s2

λ1c2+λ2s2

c2+s2

]

.

For s, c = 1 we have RT D̃T (RT )−1R−1D̃R =

[(
λ1+λ2

2

)2
0

0
(

λ1+λ2
2

)2

]

.

Therefore, we may set C = (BR)−1, which for λ1 < λ2 results in
λmax(CT DT (CT )−1C−1DC) < λmax(DT D), because

(
λ1+λ2

2

)2
< λ2

2.

(III) D ∈ R
n×n, where n > 2. In this case we call the Matlab engine part of

our code. Precisely, we use the external linear-optimization packages [16,24]. We
initially set γ = (λ1λ2 · · · λn)1/n. Then, using the optimization package, we try
to find M1 and its decomposition, such that:

√
λmax

(
(CT

1 )−1DT M1DC−1
1

) ≤ γ, (19)

If we are not successful, we increase γ until an M1 satisfying (19) is found.

4 Implementation and Experimental Evaluation

Prototype Implementation. Our implementation is based on interval arith-
metic, i.e. all variables used in the algorithm are over intervals, and all compu-
tations performed are executed using interval arithmetic. The main procedure
is implemented in C++, which includes header files for the CAPD tool (imple-
mented in C++ as well) to compute rigorous enclosures for the center of the ball
at time t1 in step 1, and for the gradient of the flow at time t1 in step 5 of the
LRT algorithm (see Sect. 3.3).

To compute the optimal norm and its decomposition for dimensions higher
than 2 in step 2 of the LRT algorithm, we solve a semidefinite optimization
problem. We found it convenient to use dedicated Matlab packages for that
purpose [16,24], in particular for Case 3 in Sect. 3.6.

To compute an upper bound Λ for the square-root of the maximal eigenvalue
of all symmetric matrices in some interval bounds, we used the VERSOFT pack-
age [27,28] implemented in Intlab [29]. To combine C++ and the Matlab/Intlab
part of the implementation, we use an engine that allows one to call Matlab
code within C++ using a special makefile. The source code, numerical data, and
readme file describing compilation procedure for LRT can be found online [14].

We remark that the current implementation is a proof of concept; in particu-
lar, it is not optimized in terms of the runtime—a direct CAPD implementation
is an order of magnitude faster. We will investigate ways of significantly improv-
ing the runtime of the implementation in future work.
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Experimental Evaluation. We compare the results obtained by LRT with
direct CAPD and Flow* on a set of standard benchmarks [6,10]: the Brussela-
tor, inverse-time Van der Pol oscillator, the Lorenz equations [18], a robot arm
model [2], a 7-dimensional biological model [10], and a 12-dimensional polyno-
mial [1] system. Additionally, we consider the forced Van der Pol oscillator [30]
(a time-variant system), and the Mitchell Schaeffer [23] cardiac cell model.

Our results are given in Table 1, and were obtained on a Ubuntu 14.04 LTS
machine, with an Intel Core i7-4770 CPU 3.40 GHz x 8 processor and 16 GB
memory. The results presented in the columns labeled (direct) CAPD and Flow*
were obtained using the CAPD software package and Flow*, respectively. The
internal parameters used in the codes can be checked online [14]. The com-
parison metric that we chose is ratio of the final and initial volume, and ratio
of the average and initial volume. We compute directly volumes of the reach-
tube over-approximations in form of rectangular sets obtained using CAPD,
and Flow* software. Whereas, the volumes of the reachtube over-approximations
obtained using the LRT algorithm are approximated by the volumes of the tight-
est rectangular enclosure of the ellipsoidal set, as illustrated on Fig. 3(c). The
results in nLRT column were obtained using a naive implementation of the LRT
algorithm, in which the metric space is chosen to be globally Euclidean, i.e.,
M0 = M1 = · · · = Mk = Id. For MS model the initial condition (i.c.) is in stable
regime. For Lorenz i.c. is a period 2 unstable periodic orbit. For all the other
benchmark equations the initial condition was chosen as in [10].

Some interesting observations about our experiments are as follows. Figure 4
illustrates that the volumes of the LRT reachtube of the forced Van der Pol
oscillator increase significantly for some initial time-steps compared to CAPD
reachtube (nevertheless reduce in the long run). This initial increase is related

Table 1. Performance comparison with Flow* and CAPD. We use the following abbre-
viations: B(2)-Brusselator, I(2)-Inverse Van der Pol oscillator, L(3)-Lorenz attractor,
F(2)-Forced Van der Pol oscillator, M(2)-Mitchell Schaeffer cardiac cell model, R(4)-
Robot arm, O(7)-Biology model, A(12)-Polynomial system (number inside parenthesis
denotes dimension). T: time horizon, dt: time step, ID: initial diameter in each dimen-
sion, (F/I)V: ratio of final and initial volume, (A/I)V: ratio of average and initial
volume. NA: Not applicable, Fail: Volume blow-up.

BM dt T ID LRT Flow* (direct) CAPD nLRT

(F/I)V (A/I)V (F/I)V (A/I)V (F/I)V (A/I)V (F/I)V (A/I)V

B(2) 0.01 20 0.02 7.7e−5 0.09 7.9e−5 0.15 Fail Fail Fail Fail

I(2) 0.01 20 0.02 4.3e−9 0.09 5e−9 0.12 7.4e−9 0.10 1.45 1.31

L(3) 0.001 2 1.4e−6 1.6e5 9.0e3 2.1e13 7.1e12 4.5e4 1.7e3 1.2e22 4.9e19

F(2) 0.01 40 2e−3 1.2e−42 1.01 NA NA 6.86e−4 0.18 5.64e7 3.21e5

M(2) 0.001 4 2e−3 0.006 0.22 0.29 0.54 0.29 0.52 4.01 2.24

R(4) 0.01 20 1e−2 2.2e−19 0.07 2.4e−15 0.31 2.9e−11 0.23 Fail Fail

O(7) 0.01 4 2e−4 71.08 34.35 272 5.1e4 4.3e3 620 Fail Fail

P(12)) 5e−4 0.1 0.01 5.25 4.76 290 64.6 280 62.4 19.4 6.2
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Fig. 4. Volume comparison for forced Van der Pol Oscillator.

to the computation of new coordinates, which are significantly different from
the previous coordinates, resulting in a large stretching factor in step 7 of the
LRT algorithm. Namely, we observed that it happens when the coordinates are
switched from Case II to Case I, as presented in Sect. 3.6. We, however, observe
that this does not happen in the system like MS cardiac model (see Fig. 5(a)).
We believe those large increases of stretching factors in systems like fVDP can
be avoided by smarter choices of the norms. We will further investigate those
possibilities in future work.

Table 1 shows that LRT does not perform well for Lorentz attractor compared
to CAPD (see also Fig. 5(b)), as the CAPD tool is current state of the art for
such chaotic systems. LRT, however, performs much better than Flow* for this
example. In all other examples, the LRT algorithm behaves favorably (outputs
tighter reachtube, compare (F/I)V) in the long run.

Fig. 5. Volume comparison in two important benchmarks
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5 Conclusions

We presented LRT, a rigorous procedure for computing ReachTube overapprox-
imations based on Cauchy-Green stretching factor computation, in Lagrangian
coordinates. We plan to pursue further research on our algorithm. One appeal-
ing possibility is to extend LRT to hybrid systems widely used in research on
cardiac dynamics, and many other fields of study.

We also plan to implement LRT with forward-in-time integration and
conservative-enclosures computation of the gradient, by just using a simple inde-
pendent code (instead of CAPD). By such a code we mean a rigorous integration
procedure based, for example, on the Taylor’s method. This code would directly
compute an interval enclosure for the Cauchy-Green deformation tensors in an
appropriate metric space. It would then be interesting to compare the wrapping-
reduction performance of such a code with the procedure described above.

Acknowledgments. Research supported in part by the following grants: NSF IIS-
1447549, NSF CPS-1446832, NSF CPS-1446725, NSF CNS-1445770, NSF CNS-
1430010, AFOSR FA9550-14-1-0261 and ONR N00014-13-1-0090.

A Proofs of the Lemmas in Sect. 2

Lemma 3. Consider the Cauchy problem (1). Let x0, y0 ∈ R
n be two initial

conditions at time t0. Let M ∈ R
n×n be a positive-definite symmetric matrix

and CT C = M be its decomposition. For t1 ≥ t0, it holds that

‖φt1
t0(x0)−φt1

t0(y0)‖M ≤
√

λ̂
(
(CT )−1

(
Dxφt1

t0(ξ)
)T

M Dxφt1
t0(ξ)C

−1
)

‖x0 − y0‖M

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1]. For the particular case of the
Euclidean norm, (8) takes the form

‖φt1
t0(x0) − φt1

t0(y0)‖2 ≤
√

λmax

((
Dxφt1

t0(ξ)
)T · Dxφt1

t0(ξ)
)

‖x0 − y0‖2.

Proof. Let ξ(ω) = ωx0 + (1 − ω)y0. From

∫ 1

0

Dxφt1
t0(ξ(ω)) dω =

1
x0 − y0

(
φt1

t0(x0) − φt1
t0(y0)

)
,

and the well known mean value theorem for integrals, it holds that

φt1
t0(x0) − φt1

t0(y0) = Dxφt1
t0(ξ̂)(x0 − y0)

for some ω̂ ∈ [0, 1], ξ(ω̂) = ξ̂. From taking norms in above equation we obtain

‖φt1
t0(x0) − φt1

t0(y0)‖ = ‖Dxφt1
t0(ξ̂)(x0 − y0)‖ ≤ ‖Dxφt1

t0(ξ̂)‖‖x0 − y0‖.



398 J. Cyranka et al.

Replacing ‖Dxφt1
t0(ξ̂)‖2 with the inducted Euclidean matrix norm we obtain (9).

If we use the weighted M -norm (6) we have for the matrix norm (7)

‖φt1
t0

(x0)−φt1
t0

(y0)‖M ≤
√

λmax((CT )−1
(
Dxφt1

t0
(ξ̂)
)T

M Dxφt1
t0

(ξ̂)C−1) ‖x0 − y0‖M

�
Lemma 4. Consider the Cauchy problem (1). Let x0, y0 ∈ R

n be two initial con-
ditions at time t0. Let M0,M1 ∈ R

n×n be positive-definite symmetric matrices,
and CT

0 C0 = M0, CT
1 C1 = M1 their decompositions respectively. For t1 ≥ t0, it

holds that

‖φt1
t0(x0) − φt1

t0(y0)‖M1

≤
√

λmax

(
(CT

0 )−1 · (
Dxφt1

t0(ξ)
)T · M1 · Dxφt1

t0(ξ) · C−1
0

)
‖x0 − y0‖M0 ,

where ξ = ωx0 + (1 − ω)y0 for some ω ∈ [0, 1].

Proof. Let ξ = ωx0+(1−ω)y0 for some ω ∈ [0, 1]. We use the equality φt1
t0(x0)−

φt1
t0(y0) = Dxφt1

t0(ξ)(x0 − y0) derived in the proof of Lemma 1. Let us denote
A := Dxφt1

t0(ξ), and w = (x0 − y0). It holds that

‖φt1
t0

(x0) − φt1
t0

(y0)‖M1 = ‖Aw‖M1 =
√

(Aw)TM1(Aw) =
√

wT (ATM1A)w =√
wTCT

0 ((CT
0 )−1ATM1AC−1

0 )C0w ≤
√

λmax

(
(CT

0 )−1ATM1AC−1
0

)√
wTCT

0 C0w

=
√

λmax

(
(CT

0 )−1ATM1AC−1
0

) ‖w‖M0 ��

References

1. Anderson, J., Papachristodoulou, A.: A decomposition technique for nonlinear
dynamical system analysis. IEEE Trans. Autom. Control 57(6), 1516–1521 (2012)

2. Angeli, D., Sontag, E.D., Wang, Y.: A characterization of integral input-to-state
stability. IEEE Trans. Autom. Control 45(6), 1082–1097 (2000)

3. Berz, M., Makino, K.: Verified integration of odes and flows using differential alge-
braic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

4. Capinski, M., Cyranka, J., Galias, Z., Kapela, T., Mrozek, M., Pilarczyk, P.,
Wilczak, D., Zgliczyski, P., zelawski, M.: CAPD - computer assisted proofs in
dynamics, a package for rigorous numerics. Technical report, Jagiellonian Univer-
sity, Kraków (2016). http://capd.ii.edu.pl

5. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: Proceedings of 2012 IEEE 33rd Real-Time Sys-
tems Symposium, RTSS 2012, pp. 183–192. IEEE Computer Society, Washington,
DC (2012)
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8. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17
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