
Runtime Monitoring with Recovery of the
SENT Communication Protocol

Konstantin Selyunin1(B), Stefan Jaksic1,3, Thang Nguyen2, Christian Reidl2,
Udo Hafner2, Ezio Bartocci1, Dejan Nickovic3, and Radu Grosu1

1 Vienna University of Technology, Vienna, Austria
{konstantin.selyunin,ezio.bartocci,radu.grosu}@tuwien.ac.at

2 Infineon Technologies Austria AG, Villach, Austria
{thang.nguyen,christian.reidl,udo.hafner}@infineon.com

3 AIT Austrian Institute of Technology, Vienna, Austria
{stefan.jaksic.fl,dejan.nickovic}@ait.ac.at

Abstract. We show how the requirements of the SENT communication
protocol between a magnetic sensor and an electronic control unit (ECU)
can be monitored in real time, with a monitor capable of processing 70
million samples per second. We elaborate on a complete flow from for-
malizing electrical and timing requirements using Signal Temporal Logic
(STL) and Timed Regular Expressions (TRE), to implementing run-
time monitors in FPGA hardware and evaluating the results in the lab.
For a class of asynchronous serial protocols, we define a procedure to
obtain monitors that are capable to recover after violations. We elabo-
rate on two different approaches to monitor the requirements of interest:
(i) temporal testers with SystemC, STL and High-Level Synthesis; (ii)
automata-based approach with TRE in HDL. We also present how the
results of the monitoring can be used for error logging to provide users
with extensive debugging information. Our approach allows to monitor
requirements-specification conformance in real time for long-term tests.

Keywords: Case study · Verification in industrial practice · Runtime
verification · Lightweight formal methods

1 Introduction

Strict safety standards (e.g. ISO 26262 [1]) force manufacturers in the automotive
industry to develop new system-verification methods. Formal verification [2] and
model-based design [3], although in principle capable of providing a formal proof
of a system correctness, have limitations when applied to real-world industrial
problems due to the complexity of the associated systems.

The verification and validation (V & V) phase in automotive electronic devel-
opment comprises extensive product testing under different scenarios, including
stress conditions. Runtime verification [4,5], a light-weight verification technique,
treats the system under investigation as a black-box, and reports system’s con-
formance to formal requirements in a current run. Since runtime verification can
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 336–355, 2017.
DOI: 10.1007/978-3-319-63387-9 17

Runtime Monitoring with Recovery of the SENT Communication Protocol 337

be applied non-intrusively to existing systems, it fits in the current V & V set-
ting very well, allowing a rigorous treatment and a traceability of requirements,
and enabling automated observation of specification compliance via monitoring.

In this case-study paper we report on the runtime verification of electrical
and timing requirements of the Single Edge Nibble Transmission (SENT [6])
protocol. The SENT is mainly used in automotive applications, for instance, in
an electronic power steering (EPS), or an electronic braking system (EBS). In
these applications sensors transfer data about rotation of a steering wheel or
position of a braking pedal, respectively; hence ensuring the correct information
transfer and runtime error detection is of utter importance.

The current industry practice relies on hard-crafted checkers, that lack diag-
nostics information and do not runtime-check the signals on the electrical level.
Existing tools for offline trace verification (e.g. the AMT [7]) are not directly
applicable in this context, due to the excessive size of the resulting traces: e.g.
if one records an analog signal, sampled at 70 MHz, for an hour of runtime in
an array of 16-bit integers, the trace will result in 504 Gb of data. Moreover, it
is also often the case that a long-term test takes several days of real-time exe-
cution. In order to be able to speed up the checking process and to produce the
monitoring results during the execution of the system, we translate high-level
specifications into monitors implemented in FPGA and run them in parallel with
the system under investigation. We propose an approach that allows to observe
the monitoring results in real time, track requirements to implementation, and
report violation and debugging information for the higher level analysis.

The contributions of this paper can be summarized as follows:

1. We propose a framework for generating monitors with recovery from a class
of high-level specifications;

2. We formalize the electrical and timing requirements of the SENT protocol in
STL and TRE specifications;

3. We evaluate our framework on the SENT case study, demonstrating the syn-
ergy between formal methods and industrial practice in a real-world setting.

The rest of the paper is organized as follows: Sect. 2 discusses the related
work, and Sect. 3 provides the preliminaries. Section 4 presents formalization of
requirements in two formalisms, the necessary initial step for creating monitors.
Section 5 elaborates on runtime monitoring with recovery of asynchronous serial
protocols. Section 6 presents in depth the case study and experimental results.
Section 7 offers our concluding remarks and directions for future work.

2 Related Work

Runtime verification of formally defined properties is an extremely diverse
research area in terms of requirements-specification languages [8–14], approaches
to construct the monitors [15–18], and target applications [19–24].

The FoC framework of IBM [8,25] allows to generate monitors for Property
Specification Language (PSL) assertions. Although PSL allows to specify the

338 K. Selyunin et al.

evolution of a system, the formal semantics is based on the sequence of states
and does not include a notion of time explicitly. STL [26] and TRE [27], on the
other hand, were designed to deal with real time, and allow to precisely identify
time intervals of interest and bound temporal modalities to these intervals.

As far as hardware implementation is concerned, Schumann et al. [16] pro-
pose an FPGA implementation of runtime monitors for the UAV applications.
The authors construct FPGA monitors for security requirements and specify
possible attacks that a UAV might undergo. A Bayesian network on top of Met-
ric Temporal Logic (MTL) monitoring allows to estimate system health. The
authors do not take into account neither the recovery of monitors after viola-
tions nor the electrical characteristics of signals, and define their properties on a
higher level of abstraction. On the contrary, in our work we focus on formalizing
the electrical and timing requirements of a sequential protocol, with a special
emphasis on monitor recovery after capturing specification violations.

In a similar context we refer to the work of Reinbacher et al. [28]. The authors
present a framework for monitoring past-time Metric Temporal Logic (MTL)
specifications. In order to achieve the reconfigurability of the system, they intro-
duce an over-complex hardware architecture. In our case, we specifically target
asynchronous serial protocols, for which we find the TRE formalization with
simpler, automaton-based architecture more appropriate.

UPPAAL [29,30] is a well established tool for the verification of real-time sys-
tems which can be modeled with timed automata. This tool provides a descrip-
tion language for modelling, a simulator, and a model checker. In contrast, our
goal is to create a standalone monitor in order to verify a discrete time system
during runtime. Our monitors are ignorant of the model of the system. In addi-
tion, since we are using a formally proven translation from TREs to automata,
our monitors are correct by construction.

We are aware of several case studies on monitoring temporal logic specifica-
tions - the automotive bus standard [31], the DDR2 memory interface [19], typ-
ical automotive functional requirements [32]. All of these works focus on offline
monitoring and continuous-time semantics, which covers STL and does not con-
sider specifications based on regular expressions, and omit monitor recovery
aspects after capturing a violation. Although the authors in [33] runtime-verify
a subset of requirements of the PSI5, the protocol uses different encoding scheme
then the SENT; their emphasis is on how to apply runtime verification, and they
by and large avoid technical details. In contrast, we compare two formalisms and
implementations, to increase integration readiness level for the monitor itself and
eliminate the “single source of truth” aspect from the monitoring system.

In [12] the authors also use TREs with events to evaluate the performance of
a controller and sensor implementation. Orthogonally to our work, they define
measurement specifications over timed patterns.

3 Preliminaries

This section presents the specification languages that we use in this work to
state the requirements in a formal way.

Runtime Monitoring with Recovery of the SENT Communication Protocol 339

3.1 Signal Temporal Logic

Signal Temporal Logic [10] allows specification of properties defined over analog-
mixed signals. As the goal of the case study is to produce runtime monitors
in digital hardware (FPGA), the monitors operate on a finite representation
of originally real-valued signals (ADC is used for quantization and sampling
of continuously evolving voltage). For this purpose we interpret STL over dis-
crete time and finite-valued domain. Let w be a multi-dimensional signal of a
finite length, w : [0, d] �→ Pn ∪ Xm, where d ∈ N is a duration of the signal;
Pn = {p1, · · · , pn} and Xm = {x1, · · · , xm} are boolean (digital) and finite-
domain (analog) variables respectively. Analog variables Xm are interpreted over
a domain D = [0, γ] ⊆ N, where γ = 2r − 1, r ∈ N is defined by a resolution of
an ADC. The projection of the signal w to a component e ∈ P ∪ X is denoted
by πe(w). The syntax of an STL formula ϕ with past and future operators is
defined by the following grammar [34]:

ϕ := p |x ∼ c | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1 U Iϕ2 |ϕ1 S Iϕ2,

where p ∈ P , x ∈ X, c ∈ D, ∼ ∈ {<,≤}, I is a time interval [a, b], where a, b ∈ N

and 0 ≤ a ≤ b. For intervals of the type [a, a] we use a notation {a}. We derive
logical and temporal operators from the definition in a standard way:
 = ϕ∨¬ϕ;
⊥ = ¬
; eventually ; once ; next ;
previous ; always ; historically .
We introduce two useful macros in our notation, which capture the change in
evaluation of a boolean component of w: for p ∈ P , and

.
The semantics of an STL formula is defined as follows:

(w, i) |= p ↔ πp(w)[i] =

(w, i) |= x ∼ c ↔ πx(w)[i] ∼ c
(w, i) |= ¬ϕ ↔ (w, i) |= ϕ
(w, i) |= ϕ1 ∨ ϕ2 ↔ (w, i) |= ϕ1 or (w, i) |= ϕ2

(w, i) |= ϕ1 U Iϕ2 ↔ ∃j ∈ (i + I) ∩ T : (w, j) |= ϕ2

and ∀k : i < k < j, (w, k) |= ϕ1

(w, i) |= ϕ1 S Iϕ2 ↔ ∃j ∈ (i − I) ∩ T : (w, j) |= ϕ2

and ∀k : j < k < i, (w, k) |= ϕ1

The standard semantics of the future operators, i.e. is
defined s.t., the satisfaction of the formulae at the time step i depends on events
that happen in the future, namely at (i + I) ∩ T, which makes monitoring of
these specifications acausal. To overcome such limitation, our hardware monitors
comprise only past-temporal operators, and we use a procedure from [35] to
convert a formula with future operators to an equi-satisfiable past one.

3.2 Timed Regular Expressions

Timed regular expressions (TRE) [27] allow to pattern-match a specification over
a signal. As the authors in [12] mentioned, the fundamental difference between

340 K. Selyunin et al.

STL and TREs comes from a fact that the satisfaction of an STL formula is
computed for a time point, while the match of a TRE results in a time interval.
In this work we adapt the definition of TREs from [12] with an assumption of
interpreting TREs over discrete time. We reuse definitions of a signal and its
projection from the Sect. 3.1. To adhere to the definition from [12] and to allow
negation in TREs, we make the following assumption: for every boolean variable
pj ∈ Pn we admit a definition of a complementary variable p¬

j with an opposite
value of pj (to which we refer as ¬pj). Every analog variable xj ∈ Xm is allowed
to be used in TREs only in the form of xj ∼ c, where ∼ ∈ {< . ≤} and c ∈ D.
With every xj ∼ c we associate the boolean satisfaction variable pxj∼c; we then
analogously define p¬

xj∼c and refer to it as ¬(xj ∼ c).
A timed regular expression ψ is defined according to the following syntax [12]:

ψ := ε | q | ψ1 · ψ2 | ψ1 ∪ ψ2 | ψ1 ∩ ψ2 | ψ∗ | 〈ψ〉I

where q is of the form p, ¬p, x ∼ c or ¬(x ∼ c); I is a time interval [a, b] ⊆ N.
For improved readability, we will refer to discrete time instance i · T , where

T is discrete time step, simply as i. The semantics of timed regular expression
ϕ with respect to discrete signal w and time instances i ≤ i′ is given in terms of
satisfaction relation (w, i, i′) |= ϕ:

(w, i, i′) |= ε ↔ i = i′

(w, i, i′) |= q ↔ i ≤ i′ and ∀i′′ s.t. i ≤ i′′ < i′, πp(w)[i′′] = 1
(w, i, i′) |= ϕ1 · ϕ2 ↔ ∃i′′ s.t. i ≤ i′′ < i′, (w, i, i′′) |= ϕ1 and (w, i′′, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∪ ϕ2 ↔ (w, i, i′) |= ϕ1 or (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ1 ∩ ϕ2 ↔ (w, i, i′) |= ϕ1 and (w, i, i′) |= ϕ2

(w, i, i′) |= ϕ∗ ↔ (w, i, i′) |= ε or (w, i, i′) |= ϕ · ϕ∗

(w, i, i′) |= 〈ϕ〉I ↔ i′ − i ∈ I and (w, i, i′) |= ϕ

We reuse the notation {a} for intervals of the form [a, a]. We intro-
duce the following macros for describing transitions of a boolean signal:
enter(p)= 〈¬p〉{1} · 〈p〉{1} and exit(p)= 〈p〉{1} · 〈¬p〉{1}. We also use a super-
script with a TRE to denote a number of concatenations of this TRE (e.g. if ψ
is a TRE, then ψ3 stands for ψ · ψ · ψ). Finally, we use ψ+ as syntactic sugar for
ψ · ψ∗.

4 Formalization of the SENT Protocol

In this section we introduce the communication protocol under study: the Single
Edge Nibble Transmission Protocol (SENT), and then formalize a subset of its
electrical and timing requirements.

4.1 Single Edge Nibble Transmission Protocol

The SENT protocol is an industry standard (SAE J2716 [6]) for transmitting
data between a sensor and a controller.

Runtime Monitoring with Recovery of the SENT Communication Protocol 341

PAUSE SYNC ST D1 D2 D3 RC1 RC2 ND1 CRC PAUSE SYNC

FramexFramex−1 Framex+1

Fig. 1. A SENT frame starts with a mandatory synchronisation pulse (SYNC), followed
by a status nibble (ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2), bit
inverse of D1 (ND1), cyclic redundancy check (CRC), and finishes with an optional
pause.

SENT communication is unidirectional from a sensor to a controller; the
information is partitioned into frames with the structure shown in Fig. 1. The
transmitted data is split in four-bit data chunks, so-called nibbles, which encode
the data in their length. Each nibble has the shape depicted in Fig. 2, where
the length of the ‘H’ region determines the transmitted value (from 0 to 15). In
the case study we build runtime monitors for magnetic sensors, which transfer
angular information encoded in the three data nibbles D1–D3.

The SAE J2716 standard admits several frame configurations (e.g. the num-
ber of data nibbles may vary). SENT devices are configured prior to operation,
and the configuration does not change on-the-fly; we take this into account and
also assume that the frame structure is static and cannot change at runtime.

To be able to correctly decode sensor data, a controller needs to receive a
signal that satisfies electrical and timing requirements of the SENT protocol. We
now state these requirements formally, both in STL and TRE and elaborate on
checking the frame correctness. Figure 2 shows a SENT nibble and graphically
depicts the requirements to be checked. Table 1 presents in natural language a
subset of electrical and timing requirements of the SENT protocol.

hi2

hi1

ml2

ml1

lo2

lo1
low

mid

high

0

1

2

3

4

5

6

Tfall
Trise

Tlow

Thigh

Nstart NendF L R H

Fig. 2. SENT nibble pulse: a pulse starts (Nstart) with a falling edge f, followed by a
low region l, followed by a rising edge r, followed by a high region h.

342 K. Selyunin et al.

Table 1. Requirements in natural language

Electrical interface requirements

1 The fall time from V1 to V2 must be no longer than Tfall μs F

2 The rise time from V2 to V1 must be no longer than Trise μs R

3 The signal stabilization time below low threshold V1 or
above high threshold V2 must be at least Tstable μs

STlow,L SThigh

Transmission properties of synchronization & nibble pulses

4 The synchronization pulse shall have a nominal period of
56 clock ticks

SYNC

5 Five clock ticks of the synchronization pulse shall be driven
low

L

6 All remaining clock ticks of the calibration/synchronization
pulse shall be driven high

SYNC, Hsync

7 Five clock ticks of the nibble pulse shall be driven low L

8 All remaining clock ticks of the nibble pulse shall be
driven high

NIBBLE, Hnibble

9 The minimum pulse period of Properties of
Synchronization shall be 12 clock ticks

NIBBLE, Hnibble

10 The maximum pulse period of the nibble pulse shall be 27
clock ticks

NIBBLE, Hnibble

4.2 Formalization in STL

Electrical Interface Requirements specify the duration of the slopes, as well as
the minimum stable time of the SENT signal. The STL formulae (Eqs. 1–4)
capture the temporal order in which the signal should cross voltage regions from
Fig. 2. F and R (Eqs. 1, 2) are the formal representations of falling and rising time
requirements (Table 1, Req. 1, 2). The signal stabilization requirement (Table 1,
Req. 3) is mapped to two STL formulae (Eqs. 3, 4) that deal separately with both
thresholds. The STL formulae are written using past temporal operators: in this
type of formulation a consequent should have happened before an antecedent (i.e.
the form “whenever at a time step i ϕ holds, ψ should have held at (i− I)∩T”).

F = enter(low) → mid S [0,Tfall] exit(high) (1)

R = enter(high) → mid S [0,Trise] exit(low) (2)

STlow = exit(low) → �- [0,Tstable] low (3)

SThigh = exit(high) → �- [0,Tstable] high (4)

Transmission Properties of Synchronization and Nibble Pulses. The synchro-
nization and the nibble pulse requirements (Table 1, 4–6 and 7–10 respectively)

Runtime Monitoring with Recovery of the SENT Communication Protocol 343

describe the timing properties these pulses should adhere to. A synchronization
pulse has a pre-defined length and is considered as the start of a frame. The
shape of synchronization and nibble pulses is to be checked as well (see Fig. 2).

To verify the form of the synchronization, nibble, and pause pulses, we split
each pulse in regions f, l, r, h (see Fig. 2) and check temporal precedence of
the regions. The total length of the pulses and the length of the low region l are
given in “clock ticks” (Table 1, 4–5, 7, 9–10), which are generated by a sensor’s
internal clock. Let us denote δ = (Trise +Tfall), then the allowed durations of the
h region for the nibble pulse and synchronization pulse are [7tick − δ, 22tick − δ]
and (51tick − δ), respectively. Similarly, the length of the h region of the pause
pulse is within the following bounds: [7tick − δ, 122tick − δ].

Requirements for L and H regions can be written directly in past-STL:

L = exit(low) → �- [0,5ticks] low (5)

Hsync = exit(high) → high S {51tick−δ} enter(high) (6)

Hnibble = exit(high) → high S [7tick−δ, 22tick−δ] enter(high) (7)

Hpause = exit(high) → high S [7tick−δ, 122tick−δ] enter(high) (8)

The general way of capturing precedence relation in STL is by using the
bounded until operator U I . As the authors in [36] show, the hardware implemen-
tation of U I is not scalable w.r.t. operator time bounds. In order to overcome
this issue, we avoid using nested U I operators in the formulation, and refor-
mulate the properties. Each SYNC, NIBBLE, and PAUSE patterns of the SENT
protocol are the requirements F, L, R, and the corresponding H{sync|nibble|pause}
requirement put in a sequence. In order to attain efficient hardware implementa-
tion, we (i) re-state assertions from ϕ → ψ to ψ ∧ ϕ, to capture the events when
the corresponding requirement has been satisfied; (ii) we then define precedence
relation with following macro: .
This allows to use hardware-cheap bounded historically and bounded once

operators and significantly reduce hardware resources.
The requirement for NIBBLE is then defined as follows (STL formulae for SYNC

and PAUSE are constructed analogously):
NIBBLE = (F∧enter (low)) be f o r e [t1,t2] (L∧exit (low))

be f o r e [t3,t4] (R∧enter (high)) be f o r e [t5,t6] (Hnibble∧exit (high))

The top-level FRAME requirement captures precedence relation between SYNC,
NIBBLEs, and the PAUSE. The monitor construction is compositional: a frame
correctness is reported only when all the lower-level requirements for all the
frame components (SYNC, NIBBLEs, PAUSE) are met.

4.3 Formalization in TRE

Although it is possible to formulate TREs in an STL-like style and express
the same intent: e.g. the requirements F† and R† match falling and rising time

344 K. Selyunin et al.

intervals of the signal; using the syntax features of the TRE and composing the
requirements hierarchically allows to obtain a concise and clear formalization for
the requirements of interest. F and R regions (Eqs. 9, 10) are defined as follows:
F = 〈mid〉[0,Tfall]; F† = exit(high)· 〈mid〉[0,Tfall] · enter(low) (9)

R = 〈mid〉[0,Trise]; R† = exit(low)· 〈mid〉[0,Trise] · enter(high) (10)

The L TRE (Eq. 11) combines the requirements 3 and 5 from Table 1. The
H TRE (Eq. 12) will match when the requirement 3 is fulfilled. The two are the
necessary building blocks for checking the shape of pulses:

L = 〈low〉[Tstable,5tick] (11)

H = 〈high〉[Tstable,127]
(12)

We are now able to define the TRE for synchronization, nibble, and pause
pulses as a concatenation of regions, restricting the length of the pulses with
appropriate time bounds. The SYNC TRE (Eq. 13) will match only when the
requirements 1–6 (Table 1) are met. The sensor signal will match the NIBBLE
TRE (Eq. 14) if the requirements 1–3, 7–10 are fulfilled.

SYNC = 〈F · L · R · H〉{56tick} (13)

NIBBLE = 〈F · L · R · H〉[12tick,27tick] (14)

PAUSE = 〈F · L · R · H〉[12tick,127tick] (15)

The frame and protocol requirements in TRE are formulated as follows:

SENT FRAME = SYNC · NIBBLE8 · PAUSE (16)

SENT PROTOCOL = (SENT FRAME)+ (17)

5 Runtime Monitoring with Recovery

A runtime monitor typically partitions the execution traces in those that either
satisfy or violate system’s specification, possibly providing a quantitative metric
of satisfaction (violation). However, for data-driven applications, such as serial
protocols, test executions may last for hours and it is required to continue mon-
itoring even after detecting errors. Similarly to compilers, a monitor in such a
case must be able to recover after observing a violation, collect the encountered
errors, and report them to the user.

For a class of serial protocols, the asynchronous serial protocols (e.g.
SENT [6], RS-232 [37], DMX512 [38], etc.), we propose a procedure to construct
monitors with error recovery. To apply monitoring with recovery, the protocol
must fulfil the following requirement: the devices communicate over a single
line, where synchronization symbol, control and payload data, respectively, are
multiplexed in time. As control signals are absent, the devices rely on the syn-
chronization symbol to successfully capture the beginning of a useful portion of
a frame.

Runtime Monitoring with Recovery of the SENT Communication Protocol 345

By creating runtime monitors with recovery, we are able to: (i) Continue
monitoring after detecting violations; (ii) Collect the errors and report them
together with their violation type.

5.1 TRE Monitors with Recovery

In the case of asynchronous serial protocols, the devices communicate with
sequences that form certain patterns over time; the communication is cyclic,
where the data is split in subsequently following frames. These protocols admit
a natural formalization in TREs: A frame begins with a unique synchronization
pattern (START), followed by n PAYLOAD patterns, and ends with a STOP pattern.
The asynchronous serial protocol is then defined as a sequence of frames:

ASYNC_SERIAL_PROTOCOL = FRAME+, (18)

FRAME = START · PAYLOADn · STOP. (19)

The above expression exactly generalizes the TRE formalization of the SENT
protocol from Sect. 4.3. It is important to mention that the Kleene star (*)
operator should not be used in the specification of START, PAYLOAD and STOP in
TREs, as these patterns are finite sequences of symbols; we use the Kleene star
operator only at the top TRE (i.e. Eq. 18).

The sketch of construction procedure for a monitor with recovery is shown
in Fig. 3. For each of the START, PAYLOAD, and STOP patterns, we construct the
corresponding automata with discrete-time clocks Astart, Apayload, and Astop,
respectively. We also create an additional copy of Astart, called Arec, which
enables the runtime monitor to recover from an error. In this work we take
an optimistic approach, and use a weak interpretation of regular expression over
finite traces. In case when a trace ends and only a prefix of the regular expression
is matched, we decide to accept the input sequence. Therefore all the states in
Astart, Apayload, and Astop are accepting. The automaton-construction procedure
from a given TRE, is adopted from [27] to the discrete interpretation of time.
The state transitions are protected by a set C of symbolic transition guards C,
where C = {cstart1 , . . . , cstartm , c

payload
1 , . . . , c

payload
p , c

stop
1 , . . . , c

stop
q }.

For each ci ∈ C we associate a complementary transition ¬ci to the global
error state. The error state silently transitions to the starting state of the recovery
automaton Arec which consumes garbage symbols until a correct synchronization
symbol is observed. The correct START pattern is a necessary pre-requisite for
a monitor to analyze subsequent frames, and for the decoder to analyze the
transferred data: as long as the synchronization symbol of the next frame is not
received, the recovery automaton Arec goes back to the error state.

We introduce a diagnostic variable out, defined over a finite set of symbolic
values: {ok, ok start, ok payload1,...,N, ok frame, rec, err1,...,m}. The values
have the following meaning: ok: the trace has been correct so far; ok start: the
starting synchronization symbol has been matched; ok payloadi: the ith payload
symbol has been matched; ok frame: the frame has met all the requirements;

346 K. Selyunin et al.

START

PAYLOAD1

PAYLOAD{2..n}

STOP

START REC

ERR REC

ok cstart1

ok cstarti

ok start cstartm

ERR

¬cstart1

errstart1

¬cstarti

errstarti

¬cstartm

errstartm

ε

ok c
payload
1

ok c
payload
j

ok payload1 c
payload
p

ε

ERR

¬cpayload1
err

p
1

¬cpayloadj
err

p
j

¬cpayloadp

errpp

ε

ok c
stop
1

ok c
stop

k

ok frame c
stop
q

ERR

¬cstop1

err
stop
1

¬cstopk

err
stop

k

¬cstopq

err
stop
q

rec cstart1

rec cstarti

ok start
cstartm

¬cstart1

rec

¬cstarti

rec

¬cstartm

rec

ε

ε

ε

Fig. 3. Monitoring an asynchronous serial protocol with recovery (For clarity of the
presentation, we keep ε-transitions in the Fig. 3; these transitions are removed in imple-
mentation though keeping the monitor deterministic.)

rec: the monitor is in the recovery state; erri: the specification is violated by
an error of type i.

We then transform Astart, Apayload, Astop and Arec to transducers A′
start,

A′
payload, A′

stop and A′
rec as follows: (i) For each transition in Ai, we output

ok value; (ii) For each transition leading to a sink state, we output appropriate
ok {start|payload|frame} value; (iii) For each transition guarded by ¬ci we
output erri; (iv) For each recovery automaton transition, except the synchro-
nization symbol matching transition, we associate rec value. The transition in
A′

rec which matches synchronization symbol outputs ok start (see Fig. 3). For
the top-level expression FRAME, we create the automaton Aframe by concatenating
the Astart, Apayload, and Astop with ε transitions. This way the user is capable to
receive the information about the number of frames that meet the specification,
as well as errors and their type.

Runtime Monitoring with Recovery of the SENT Communication Protocol 347

5.2 STL Monitors with Recovery

The STL monitors are transducers (temporal testers [18]) by construction and
are composed hierarchically to output the satisfaction signal of the top-level
requirement. The sketch of construction procedure for monitoring with recovery
is as follows: (i) we first formalize the START, PAYLOAD, and STOP patterns in STL;
(ii) we then change the semantic meaning of STL assertions from (1) ϕ → ψ to (2)
ϕ∧ψ: in the first formulation the transducer outputs ‘1’ even if the requirement
has never been checked, and ‘0’ when the requirement has been violated (e.g.
the f requirement from Sect. 4.2 is fulfilled even the line stays always at ‘1’);
the second case the transducer manifests with the signal the precise time stamp
when the requirement has been satisfied (i.e. outputting ‘1’ when the correct
falling edge occurred); (iii) for each requirement we identify a set of possible
violations and assign an error code erri to each violation type. Each violation
is guarded by an STL assertion ϕ ∧ ¬ψ ∧ vi, where vi identifies a violation type
(e.g. mid S [Tfall+1,∞) exit(high) is a vi clause to capture the violation of the
type “too slow falling time” for the STL assertion f from Sect. 4.2).

Finally we check the temporal precedence of the START, n PAYLOAD sequences
and the STOP pattern with the before[t1,t2] macro defined in Sect. 4.2. Using
temporal testers allows to monitor all the requirements in parallel, and extending
with violation clauses vi provides the necessary debugging information.

6 Runtime Monitoring of the SENT Protocol

This section describes building runtime monitors in FPGA and evaluating the
results in industrial environment. A general overview of the framework is followed
by implementation and evaluation details.

6.1 From Requirements to Hardware Monitors

Figure 4 summarizes the process of creating runtime monitors; the proposed
framework is not limited to the SENT, and can be applied for other protocols
as well.

Requirements Formalization. The initial step for creating runtime monitors is
to obtain formal representation of the system requirements. Formal semantics
allows to eliminate ambiguities in interpretations and precisely define what is
to be monitored. In order to evaluate the power of different formalisms, and
to eliminate “single source of truth” from the system we use STL and TRE as
specification languages. This phase results in a set of formulae (STL & TRE)
which describe natural-language requirements.

For STL requirements we admit an automated pre-processing step (see Fig. 4)
to obtain formulae that allow efficient hardware realization: on the parse tree
of the formula we (i) eliminate duplicate sub-trees (Simplification); (ii) apply a
recursive procedure from [35] to convert bounded future STL temporal opera-
tors to an equi-satisfiable past operators, resulting in a causal formula with the

348 K. Selyunin et al.

Requirements Formalization Offline Evaluation FPGA Realization

System
Requirements

STL
Formulae

TRE
Formulae

Simplification

Pastification

Recovery Automa-
ton Contruction

Offline Monitor-
ing Framework

STL Monitor
Construction

Behavioral STL
Lib SystemC

Synthesizable
STL Lib SystemC

Runtime Lab
Evaluation

Realizatioin on Spe-
cific HW platform

HLS Runtime

Monitors

Generation

TRE Runtime

Monitor

TopLevel

STL Runtime

Monitor

TopLevel

Fig. 4. Monitor generation

past temporal operators only (Pastification). The second step is achieved by (i)
calculating the temporal depth D of the formula; (ii) re-writing a formula with
past operators which results in postponing a monitoring verdict by D.

Offline Evaluation. In this phase we evaluate monitors offline on short trace
fragments, previously recorded from an oscilloscope or an ADC via the Chipscope
[39] in order to speed-up debugging and identify implementation bottlenecks.

The monitors for STL formulae are built compositionally from the formula
parse tree [18]. With each node of the STL parse tree, which represents either
a temporal or a logical operator, we associate a transducer T which takes as
inputs satisfaction signals of its child nodes and outputs the satisfaction signal
for the corresponding operator. The satisfaction signal of the root node produces
output of the monitor. Behavioral STL Lib SystemC (see Fig. 4) is a SystemC
implementation of STL transducers, which are used to obtain a monitor. We use
SystemC simulation kernel to run the monitor on the pre-recorded traces.

The runtime monitors for the TRE requirements are also implemented in
hierarchical fashion: the A′

sync, A′
nibble, and A′

stop transducers are combined in
the top-level recovery automaton described in Sect. 5.1. We use Vivado Behav-
ioural Simulation to evaluate VHDL code of the top-level A′

frame transducer.

Runtime Monitoring in FPGA is the final phase; the monitors are synthesized
in a digital reconfigurable hardware and evaluated in the lab environment. After
the off-line phase we obtain the validated monitors for STL and TRE, which
follow different paths of hardware implementation.

Runtime Monitoring with Recovery of the SENT Communication Protocol 349

In case of STL monitoring, we use High-Level Synthesis [40] to generate HDL
code for monitors written in SystemC. During the HLS step, the SystemC mon-
itors are transformed to an equivalent synthesizable VHDL or Verilog. We use
an alternative implementation of transducers (Synthesizable STL Lib SystemC,
Fig. 4), which is suitable for HDL code generation. Behavioral and Synthesizable
implementations are functionally equivalent, but HLS imposes constraints on the
SystemC code to be hardware-synthesizeable. Keeping behavioral and synthesiz-
able versions allows quick prototyping using all C++ features and then produce
a hardware-optimized synthesized version.

Since transducers A′
sync, A′

nibble, A′
stop, and A′

frame in the TRE approach are
implemented in VHDL, we directly use Vivado Synthesis, Logic & Power Opti-
mization, Place & Route tools to obtain a bitstream for FPGA programming.

6.2 FPGA Implementation

We implemented runtime monitors for the SENT protocol in Xilinx Virtex 7
FPGA. The monitors are embedded in the Line Emulizer hardware (see Fig. 5),
which combines an analog front-end (AFE) capable to interface various sensors
with a high-performance Virtex 7 FPGA. This hardware also models a trans-
mission line with adjustable parameters between a sensor and an ECU.

Signal Generator Amplifier

Transmission
Line Model

STL &
TRE

Runtime
Mon.

Line Emulizer R©

SENT

A
F
E

Sensor Line Emulizer R©OscilloscopeChipscope

Fig. 5. Runtime monitoring of the SENT: hardware setup

The signal from the SENT sensor (see Fig. 5) comes to the Line Emulizer,
where it is passed through the AFE and sampled with a high-speed ADC, which
results in its finite value representation. During operation in a car, a sensor and

350 K. Selyunin et al.

Sensor input

Voltage regions

Payload
i
 matched

Sync TRE (Eq.13) matched
Nibble TRE (Eq.14) matched

Fig. 6. Runtime TRE monitoring: Vivado functional simulation

an ECU are placed in different locations, hence the sensor signal is affected by
a transmission line. To take into account the effects of physical wires, the sensor
signal is passed through a digital model of a transmission line. We attach the
STL and TRE runtime monitors at the end of the transmission line model (see
Fig. 5), to be able to report specification conformance at the receiver side, which
is important for proper signal decoding.

The STL and TRE monitors observe at 70 MHz the sensor signal affected
by the physical line, calculate verdicts at every clock cycle (i.e. 70 million times
per second), and output the result to the user via the Chipscope (Fig. 5). We
performed experiments with different models of the line, and conclude that the
appropriate line parameters are critical for ensuring the specification compliance.
The sensor signal passed through a line with a higher capacitance violates the
specification, since the falling and rising times are not met, which can be directly
observed from the monitor.

Table 2 reports the estimated FPGA hardware resources (flip-flops, FF &
look-up tables, LUT), and the estimated maximum clock period of the runtime
monitors. For each HLS-generated monitor we also present its generation time
and peak memory usage during HDL-code generation. The monitors in HLS
are constructed in a hierarchic fashion, hence the FRAME monitor (see Table 2)
subsumes monitors for other requirements and results the highest hardware foot-
print. The last row of the Table 2 reports the total hardware resources consumed
by the top-level TRE monitor: the direct hardware implementation results in an
order of magnitude lower footprint.

Figure 6 shows a result of offline evaluation for TRE requirements. The origi-
nal SENT signal is observed by the monitor, which outputs OK NIBBLE, OK SYNC
and the corresponding ERR signals. The figure depicts a nominal case, where all
the requirements are met.

Runtime Monitoring with Recovery of the SENT Communication Protocol 351

Table 2. STL monitors generation: FPGA & HLS resources

Requirement FF LUT Clock HLS: time HLS: memory

F HLS 61 118 5.81 ns 114.203 s 225 MB

L 53 85 4.24 ns 96.490 s 159 MB

R 61 113 5.81 ns 109.784 s 224ṀB

Hnibble 125 249 5.81 ns 175.716 s 225 MB

Hsync 28 407 5.81 ns 253.507 s 224 MB

Hpause 73 98 4.24 ns 162.637 s 212 MB

NIBBLE 435 1123 7.7 ns 394.671 s 611 MB

SYNC 207 1062 7.7 ns 723.690 s 605 MB

PAUSE 217 710 7.7 ns 206.767 s 317 MB

FRAME 1198 4322 7.7 ns 1675.52 s 1.39 GB

FRAME TRE 68 350 4.5 ns - -

Fig. 7. Runtime monitoring of the STL requirements

Runtime monitoring of the SENT signal against STL requirements is shown
in the Fig. 7. For this test case the optional pause pulse was deactivated, hence
the correct frame is manifested after observing eight correct nibbles (signals
OK NIBBLE, OK SYNC, OK FRAME). The OK NIBBLE signal is asserted when the

352 K. Selyunin et al.

corresponding precedence between the requirements F, L, R, and H is met. The
output of the monitors F, L, R, and H, and the corresponding sub-formulae are
presented in the lower part of the Fig. 7.

7 Conclusion and Outlooks

The case study focuses on assessing STL and TRE for formalizing requirements
of the SENT protocol and obtaining hardware monitors for these requirements.
We evaluate the two approaches in terms of applicability for formalizing typical
protocol requirements, consumption of hardware resources, and monitor reuse.

The hardware resource consumption in Table 2 shows that (i) both
approaches can be easily mapped to state-of-the-art FPGAs, (ii) STL-based
monitors consume an order of magnitude more resources than the TRE moni-
tors. Obtaining hardware monitors based on STL Synthesizable-SystemC library
requires an intermediate transformation using HLS, which comes at price of
increased hardware footprint. As described in the paper, TREs can be directly
translated to automata with recovery which admit efficient hardware realization.

Besides low-level hardware monitoring, which both of the approaches facil-
itate, SystemC STL monitors can be re-used to check SystemC models. Trace
verification in this setting happens during the runtime of the simulation kernel
and the monitoring results are obtained at the end of the run. The re-usability
of HLS-based monitors though comes at price of FPGA resource consumption.

We found both formalisms applicable for the SENT requirements formaliza-
tion. TREs allow natural formulation of requirements that are concerned with
repetitive sequences of groups of symbols, while formalizing precedence con-
straints with STL requires in general additional effort to be hardware-efficient.

As it is often the case, specifications comprise both textual and graphical
information; we would like to investigate how to combine the information from
both representations in a systematic way.

Acknowledgment. This research is supported by the project HARMONIA
(845631), funded by a national Austrian grant from FFG (Österreichische
Forschungsförderungsgesellschaft) under the program IKT der Zukunft, the EU ICT
COST Action IC1402 on Runtime Verification beyond Monitoring (ARVI), the Aus-
trian National Research Network RiSE/SHiNE (S11405-N23 and S11412-N23) project
funded by the Austrian Science Fund (FWF) and the Fclose (Federated Cloud Secu-
rity) project funded by UnivPM. This manuscript benefited from comments of Alena
Rodionova, who we kindly acknowledge.

References

1. ISO 26262: “Road vehicles – Functional safety”. International Organization for
Standardization (ISO) (2011)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

Runtime Monitoring with Recovery of the SENT Communication Protocol 353

3. Broy, M., Krcmar, H., Kirstan, S., Schätz, B.: What is the benefit of a model-
based design of embedded software systems in the car industry? In: Emerging
Technologies for the Evolution and Maintenance of Software Models, pp. 310–337
(2012)

4. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29860-8 4

5. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools
Technol. Transf., 1–40 (2017)

6. SAE International. SENT - Single Edge Nibble Transmission for Automotive
Applications, J2716, Standard (2016). http://standards.sae.org/j2716 201001/.
Accessed 21 Jan 2017

7. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763,
pp. 304–319. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75454-1 22

8. Eisner, C.: PSL for runtime verification: theory and practice. In: Sokolsky, O.,
Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 1–8. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-77395-5 1

9. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-
tions. Springer Publishing Company Incorporated, Heidelberg (2014)

10. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tempo-
ral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, pp. 92–106. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33386-6 9

11. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013)

12. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015 Part II. LNCS, vol. 9207, pp.
322–337. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 19

13. Aydin-Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern
synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: The 53rd
IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)

14. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
HSCC 2015: The 18th International Conference on Hybrid Systems: Computation
and Control, pp. 189–198. IEEE (2015)

15. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for systemc.
Form. Methods Syst. Des. 41(3), 236–268 (2012)

16. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis
of security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Cham (2015). doi:10.1007/
978-3-319-23820-3 15

17. Boule, M., Zilic, Z.: Efficient automata-based assertion-checker synthesis of PSL
properties. In: 2006 IEEE International High Level Design Validation and Test
Workshop, pp. 69–76 (2006)

18. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: Grumberg, O., Veith,
H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69850-0 11

http://dx.doi.org/10.1007/978-3-642-29860-8_4
http://dx.doi.org/10.1007/978-3-642-29860-8_4
http://standards.sae.org/j2716_201001/
http://dx.doi.org/10.1007/978-3-540-75454-1_22
http://dx.doi.org/10.1007/978-3-540-77395-5_1
http://dx.doi.org/10.1007/978-3-642-33386-6_9
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-319-23820-3_15
http://dx.doi.org/10.1007/978-3-540-69850-0_11

354 K. Selyunin et al.

19. Jones, K.D., Konrad, V., Nickovic, D.: Analog property checkers: a DDR2 case
study. Form. Methods Syst. Des. 36(2), 114–130 (2010)

20. Nguyen, T., Nickovic, D.: Assertion-based monitoring in practice - checking cor-
rectness of an automotive sensor interface. Sci. Comput. Program. 118, 40–59
(2016)

21. Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for sys-
tems biology. PLoS Comput. Biol. 12(1), e1004591 (2016)

22. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular
design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB
2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40708-6 13

23. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45231-8 30

24. Reinbacher, T., Rozier, K.Y., Schumann. J.: Temporallogic based runtime observer
pairs for system health management of real-time systems. In: Proceedings of Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference (TACAS), Grenoble, France, pp. 357–372 (2014)

25. Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G., Wolfsthal, Y.,
Benalycherif, L., Kamdem, R., Lahbib, Y.: Combining system level modeling with
assertion based verification. In: 6th International Symposium on Quality of Elec-
tronic Design (ISQED) 21–23 March 2005, San Jose, CA, USA, pp. 310–315 (2005)

26. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.)
Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78127-1 26

27. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

28. Reinbacher, T., Függer, M., Brauer, J.: Real-time runtime verification on chip. In:
Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 110–125. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-35632-2 13

29. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). doi:10.1007/BFb0020949

30. Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–152 (1997)
31. Nguyen, T., Ničković, D.: Assertion-based monitoring in practice – checking cor-

rectness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.)
FMICS 2014. LNCS, vol. 8718, pp. 16–32. Springer, Cham (2014). doi:10.1007/
978-3-319-10702-8 2

32. Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of auto-
motive control applications using S-TaLiRo. In: American Control Conference,
ACC 2012, Montreal, QC, Canada, pp. 3567–3572 (2012)

33. Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitor-
ing for automotive electronic development. In: Falcone, Y., Sánchez, C. (eds.)
RV 2016. LNCS, vol. 10012, pp. 462–469. Springer, Cham (2016). doi:10.1007/
978-3-319-46982-9 30

34. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006). doi:10.1007/11867340 20

http://dx.doi.org/10.1007/978-3-642-40708-6_13
http://dx.doi.org/10.1007/978-3-642-40708-6_13
http://dx.doi.org/10.1007/978-3-662-45231-8_30
http://dx.doi.org/10.1007/978-3-540-78127-1_26
http://dx.doi.org/10.1007/978-3-642-35632-2_13
http://dx.doi.org/10.1007/BFb0020949
http://dx.doi.org/10.1007/978-3-319-10702-8_2
http://dx.doi.org/10.1007/978-3-319-10702-8_2
http://dx.doi.org/10.1007/978-3-319-46982-9_30
http://dx.doi.org/10.1007/978-3-319-46982-9_30
http://dx.doi.org/10.1007/11867340_20

Runtime Monitoring with Recovery of the SENT Communication Protocol 355

35. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from bounded-
response properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 95–107. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 12

36. Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Nickovic, D.: From
signal temporal logic to FPGA monitors. In: Proceedings of 13th ACM/IEEE
International Conference on Formal Methods and Models for Codesign, pp. 218–
227 (2015)

37. Axelson, J.: Serial Port Complete: COM Ports, USB Virtual COM Ports, and Ports
for Embedded Systems, 2nd edn. Lakeview Research, Madison (2007)

38. ANSI E1.11-2008 (R2013). Entertainment Technology – USITT DMX512-A –
Asynchronous Serial Digital Data Transmission Standard for Controlling Lighting
Equipment and Accessories (2008). http://webstore.ansi.org/RecordDetail.aspx?
sku=ANSI+E1.11-2008+(R2013). Accessed 20 Jan 2017

39. Xilinx Inc. Vivado Design Suite Tutorial, Programming and Debugging
(2016). http://www.xilinx.com/support/documentation/sw manuals/xilinx2016
2/ug936-vivado-tutorial-programming-debugging.pdf. Accessed 12 Jan 2017

40. Xilinx Inc. Vivado High-Level Synthesis. http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html. Accessed 18 Jan 2017

http://dx.doi.org/10.1007/978-3-540-73368-3_12
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013)
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013)
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug936-vivado-tutorial-programming-debugging.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug936-vivado-tutorial-programming-debugging.pdf
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	Runtime Monitoring with Recovery of the SENT Communication Protocol
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Signal Temporal Logic
	3.2 Timed Regular Expressions

	4 Formalization of the SENT Protocol
	4.1 Single Edge Nibble Transmission Protocol
	4.2 Formalization in STL
	4.3 Formalization in TRE

	5 Runtime Monitoring with Recovery
	5.1 TRE Monitors with Recovery
	5.2 STL Monitors with Recovery

	6 Runtime Monitoring of the SENT Protocol
	6.1 From Requirements to Hardware Monitors
	6.2 FPGA Implementation

	7 Conclusion and Outlooks
	References

