
Chapter 5
Robotic Motion and Odometry

The robotics algorithms in the previous chapters react to data from their sensors by
changing the speed and direction of their motion, but the changes were not quanti-
tative. We didn’t require the robots to move twice as fast or to turn 90◦ to the right.
Robots in the real world have to move to specific locations and may have engineer-
ing constraints on how fast or slow they can move or turn. This chapter presents the
mathematics of robotic motion.

Sections5.1 and 5.2 review the concepts of distance, time, velocity and acceler-
ation that should be familiar from introductory physics. The physics of motion is
usually taught using calculus, but a computer cannot deal with continuous functions;
instead, discrete approximations must be used as described in Sect. 5.3.

Sections5.4–5.6 present odometry, the fundamental algorithm for computing
robotic motion. An approximation of the location of a robot can be obtained by
repeatedly computing the distance moved and the change direction from the velocity
of the wheels in a short period of time. Unfortunately, odometry is subject to serious
errors as shown in Sect. 5.7. It is important to understand that errors in direction are
much more significant than errors in distance.

In the simplest implementation, the speed of the wheels of a robot is assumed
to be proportional to the power applied by the motors. Section5.8 shows how the
accuracy of odometry can be improved by using wheel encoders, which measure the
actual number of revolutions of the wheels.

Section5.9 presents an overview of inertial navigation, which is a sophisticated
formof odometry baseduponmeasuring linear and angular acceleration and then inte-
grating to obtain velocity andposition.The sensors for inertial navigation (accelerom-
eters and gyroscopes) were once very expensive, limiting its application to aircraft
and rockets, but new technology called microelectromechanical systems has made it
possible to build robots with inertial navigation.
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64 5 Robotic Motion and Odometry

Cars cannot move up and down unlike helicopters and submarines which have
greater freedom of movement. This is expressed in the concept degrees of freedom
(DOF) which is the subject Sect. 5.10. Section5.11 discusses the relation between
the DOF and number of actuators (motors) in a robotics systems.

The number of DOF of a system does not mean that a system such as a vehicle
can move freely in all those directions. A car can move to any point in the plane and
orient itself in any direction, but it cannot move sideways, so a difficult maneuver
is needed during parallel parking. This is due to the difference between the DOF
and the degrees of mobility (DOM), a subject explored in Sect. 5.12, along with the
concept of holonomic motion that relates DOF and DOM.

5.1 Distance, Velocity and Time

Suppose that a robot moves with a constant velocity of 10cm/s for a period of time
of 5 s.1 The distance it moves is 50cm. In general, if a robot moves at a constant
velocity v for a period of time t , the distance it moves is s = vt . When power is
applied to the motors it causes the wheels to rotate, which in turn causes the robot
to move at some velocity. However, we cannot specify that a certain power causes a
certain velocity:

• No twoelectrical ormechanical components are ever precisely identical.Amotor is
composed of magnets and electrical wiring whose interaction causes a mechanical
shaft to rotate. Small differences in the properties of the magnet and wire, as well
as small differences in the size and weight of the shaft, can cause the shafts of two
motors to rotate at slightly different speeds for the same amount of power.

• The environment affects the velocity of a robot. Too little friction (ice) or toomuch
friction (mud) can cause a robot to move slower in comparison with its movement
on a dry paved surface.

• External forces can affect the velocity of a robot. It needs more power to sustain
a specific velocity when moving uphill and less power when moving downhill,
because the force of gravity decreases and increases the velocity. Riding a bicycle
at a constant velocity into the wind demands more effort than riding with the
wind, and a cross-wind makes the relation between power and velocity even more
complicated.

Since s = vt it is sufficient to measure any two of these quantities in order to
compute the third. If we measure distance and time, we can compute the velocity as
v = s/t . Relatively short distances (up to several meters) can bemeasured accurately
(to within 1cm) using a ruler or a tape measure. The stopwatch application on a
smartphone can measure time accurately (hundredths of a second).

1Velocity is speed in a direction. A robot can be moving 10cm/s forwards or backwards; in both
cases, the speed is the same but the velocity is different.
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Activity 5.1: Velocity over a fixed distance

• Write a program that sets your robot to a constant forward power setting.
• Mark two lines 1 m apart on the floor. Use a stopwatch to measure the time it
takes the robot to move between the lines. Compute the velocity of the robot.
Run the program ten times and record the velocities. Do the velocities vary?

• Place the robot on the floor and run it for 5 s. Measure the distance that
it moves. Compute the velocity. Run the program ten times and record the
velocities. Do the velocities vary?

• Which method gives more precise results?
• Repeat this experiment on different surfaces and discuss the results.

Activity 5.1 shows that for a constant power setting the velocity of a robot can
vary significantly. To accurately navigate within an environment, a robot needs to
sense objects in its environment, such as walls, marks on the floor and objects.

5.2 Acceleration as Change in Velocity

Activity 5.1 specified constant power settings and thus the velocity of the robot will
be (more or less) constant. What happens when the velocity is varied?

Activity 5.2: Change of velocity

• Run the first program from Activity 5.1 varying the distance between the
marks: 0.25, 0.5, 1, 1.5, 2m. For each distance, run the program several times
and take the average of the computed velocities. Are the velocities the same
for each distance?

• To improve the accuracy of themeasurement, placemarks on the floor at these
distances and use the robot’s timer to record the times at which the marks are
detected.

In Activity 5.2, you will find that for the longer distances the velocities will be
close to each other, but for the shorter distances the velocities will differ considerably.
The reason is that the formula v = s/t assumes that the velocity is constant over the
entire distance. In reality, a vehicle must accelerate—change its velocity—in order
to go from standing still to a constant velocity. Similarly, a vehicle must decelerate
in order to stop.
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Fig. 5.1 An accelerating robot: distance increase as the square of time

To get a true picture of the motion of a robot, we need to divide its motion into
small segments s1, s2, . . .:

s1 s2 s3 s4 s5
x0 x1 x2 x3 x4 x5

and measure the distance and time for each segment individually. Then, we can
compute the velocities for each segment. In symbols, if we denote the length of the
segment si by Δsi = xi+1 − xi and the time it takes the robot to cross segment si by
Δti = ti+1 − ti , then vi , the velocity in segment si is given by:

vi = Δsi
Δti

.

Figure5.1 is a graph of distance versus time for an accelerating robot. The time

axis has been divided into segments and the slopes
Δsi
Δti

show the average velocity

in each segment which increases with time.
Acceleration is defined as the change in velocity over a period of time:

ai = Δvi
Δti

.

When the power setting of the robot is set to a fixed value, the force applied to the
robot is constant and we expect that the acceleration remains constant, increasing
the velocity. However, at a certain point the acceleration is reduced to zero, meaning
that the velocity no longer increases, because the power applied to the wheels is just
sufficient to overcome the friction of the road and the wind resistance.

Let us see what happens if the power setting is increased with time.
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Activity 5.3: Acceleration

• Write a program that causes the robot to accelerate by increasing the power
setting periodically. For example, start the robot at power 20 and increase to
40 after 1 s, then to 60 after 2 s, to 80 after 3 s, and finally to 100 after 4 s.

• Place the robot on the track and run the program.
• Record the distances between each change of the power setting. Compute and
plot the velocities in each of these segments.

5.3 From Segments to Continuous Motion

As the size of the segments becomes smaller, we obtain the instantaneous velocity
of the robot at a single point in time, expressed as a derivative:

v(t) = ds(t)

dt
.

Similarly, the instantaneous acceleration of the robot is defined as:

a(t) = dv(t)

dt
.

For constant acceleration the velocity can be obtained by integrating the derivative:

v(t) =
∫

a dt = a
∫

dt = at ,

and then the distance can be obtained by integrating again:

s(t) =
∫

v(t)dt =
∫

a t dt = at2

2
.

Example An average car accelerates from 0 to 100 km/h in about 10 s. First, we
convert units from km/h to m/s:

vmax = 100 km/h = 100 · 1000
60 · 60 m/s = 27.8m/s .

Assuming constant acceleration, vmax = 27.8 = at = 10a, so the acceleration is 2.78
m/s2 (read, 2.78 meters per second per second, that is, every second the speed
increases by 2.78 meters per second). The distance the car moves in 10 s is:
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s(10) = at2

2
= 2.78 · 102

2
= 139m .

Activity 5.4: Computing distance when accelerating

• For various vehicles (racing cars, motorcycles) look up the time required to
accelerate from 0 to 100 km/h. Compute the distance moved.

• Assume that the acceleration of a vehicle increases linearly, that is, a = kt
for a constant k. What are v(t) and s(t)?

• For several values of k and t , compute the final velocities and distances.

Activity 5.5: Measuring motion at constant acceleration

• Write a program that applies the maximum power setting to a robot.
• Place the robot on a surface and run the program.
• When the robot seems to have reached full speed record the time from the
start of the run.

• Compare the measured distance to s = at2/2 (Fig. 5.2b).
• Run again and measure the distances at fixed intervals of time. Compute
the speeds from the distances divided by the time and compare to v = at
(Fig. 5.2a).

• In some robots you can set a target speed and read the actual speed. If your
robot can do this, compare the measured speeds with the computed speeds.
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Fig. 5.2 a Velocity for constant acceleration. b Distance for constant acceleration
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5.4 Navigation by Odometry

Suppose that you are in a car and your navigation system issues the following instruc-
tion: “In 700m turn right.” Now your task is very simple: Make observations of your
car’s odometerwhichmeasures how far you have traveled.When its value approaches
700m beyond its initial reading, look for a street on the right. An odometer in a car
measures speed and time, and multiplies the two values to compute the distance
traveled.

Odometry—the measurement of distance—is a fundamental method used by
robots for navigation. Measuring time is easy using the internal clock of the embed-
ded computer. Measuring speed is more difficult: in some educational robots wheel
encoders are used to count the rotations of the wheels (Sect. 5.8), while in others
speed is estimated from properties of the motors. From the distance moved s = vt ,
the new position of the robot can be computed. In one dimension, the computation
is trivial, but it becomes a bit more complex when the motion involves turns. This
section presents the computation of distance by odometry, first for a robot moving
linearly and then for a robot making a turn.

Section5.7 shows how errors in heading are more serious than errors in distance.
A disadvantage of odometry (with or without wheel encoders) is that the mea-

surements are indirect, relating the power of the motors or the motion of the wheels
to changes in the robot’s position. This can be error-prone since the relation between
motor speed and wheel rotation can be very nonlinear and vary with time. Further-
more, wheels can slip and skid so there may be errors in relating the motion of the
wheels to the motion of the robot. Improved estimates of position can be obtained
by using an inertial navigation system, which directly measures acceleration and
angular velocity that can be used to determine the robot’s position (Sect. 5.9).

Odometry is a form of localization: the robot must determine its position in the
environment. In odometry we determine position by measuring the change from the
robot’s known initial position, while localization (Chap.8) refers to the determination
of the position of a robot relative to the known positions of other objects such as
landmarks or beacons.

5.5 Linear Odometry

Before studying the mathematics of odometry you should try the following Activity:

Activity 5.6: Distance from speed and time

• Run the robot at a constant power setting for a specific period of time and
measure the distance moved.

http://dx.doi.org/10.1007/978-3-319-62533-1_8


70 5 Robotic Motion and Odometry

• Repeat the measurement several times. Is the distance constant? If not, how
much does it vary as a percentage of the distance?

• Repeat the measurement several times for different power settings. Is the dis-
tance measured linear in the power setting? Does the variation in the distance
measurement on multiple runs depend on the power setting?

• Repeat the measurement for a fixed power setting but for different periods of
time and analyze the results.

When a relation between motor power and velocity v has been determined, the
robot can compute the distance moved by s = vt . If it starts at position (0, 0) and
moves straight along the x-axis, then after t seconds its new position is (vt, 0).

This activity should demonstrate that it is possible to measure distance by odom-
etry with reasonable precision and accuracy. A self-driving car can use odometry to
determine its position so that it doesn’t have to analyze its sensor data continuously
to check if the required street has been reached. Given the uncertainties of motion
and of the road, the car should not depend only on odometry to decide when to turn,
but the error will not be large and the sensor data can be analyzed to detect the turn
when odometry indicates that the car is in the vicinity of the intersection.

Activity 5.6 asked you to measure the distance moved in one dimension. Three
items of information need to be computed if the motion is in two dimensions: the
robot’s position (x, y) relative to a fixed origin and its heading θ , the direction in
which the robot is pointing (Fig. 5.3). The triple (x, y, θ) is called the pose of the
robot. If the robot starts at the origin (0, 0) and moves in a straight line at angle θ

with velocity v for time t , the distance moved is s = vt . Its new position (x, y) is:

x = vt cos θ

y = vt sin θ .

(0, 0)

x

y
θ

Fig. 5.3 Position and heading
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5.6 Odometry with Turns

Suppose that the robot turns slightly left because the right wheel moves faster than
the left wheel (Fig. 5.4). In the figure, the robot is facing towards the top of the page;
the blue dot is the left wheel, the red dot is the right wheel, and the black dot is
the center of the robot which is halfway between the wheels. The baseline b is the
distance between the wheels, and dl , dr , dc represent the distances moved by the two
wheels and the center when the robot turns. We want to compute the new position
and heading of the robot.

We can measure dl and dr , the distances moved by the two wheels using the
method described in Activity 5.6: relating motor power to rotational speed and then
multiplying by time. Alternatively, we can use the number of rotations counted by
the wheel encoders. If the radius of a wheel is R and the rotational speeds of the left
and right wheels are ωl, ωr revolutions per second, respectively, then after t seconds
the wheel has moved:

di = 2πRωi t, i = l, r . (5.1)

The task is to determine the new pose of the robot after the wheels have moved these
distances.

Figure5.4 shows the robot initially at pose (x, y, φ), where the robot is facing
north (φ = π/2). After turning θ radians, what is the new pose (x ′, y′, φ′)? Clearly,
the heading of the robot is now φ′ = φ + θ , but we also have to compute x ′, y′.

The length of an arc of angle θ radians is given by its fraction of the circumfer-
ence of the circle: 2πr (θ/2π) = θr . For small angles, the distances dl , dc, dr are
approximately equal to the length of the corresponding arcs, so we have:

θ = dl/rl = dc/rc = dr/rr , (5.2)

where rl, rr , rc are the distances from P , the origin of the turn.

Fig. 5.4 Geometry of a left turn by a robot with two wheels
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θ

θ

dcdy

θ

dx

Fig. 5.5 Change in heading

The distances dl and dr are obtained from the rotations of the wheels (Eq. 5.1) and
the baseline b is a fixed physical measurement of the robot. From Eq.5.2, the angle
θ can be computed:

θrr = dr
θrl = dl

θrr − θrl = dr − dl
θ = (dr − dl)/(rr − rl)

θ = (dr − dl)/b .

The center is halfway between the wheels rc = (rl + rr )/2, so again by Eq.5.2:

dc = θrc

= θ

(
rl + rr

2

)

= θ

2

(
dl
θ

+ dr
θ

)

= dl + dr
2

.

If the distance moved is small, the line labeled dc is approximately perpendicular
to the radius through the final position of the robot. By similar triangles, we see that
θ is the change in the heading of the robot (Fig. 5.5). By trigonometry2:

dx = −dc sin θ

dy = dc cos θ ,

2You were probably expecting cos for dx and sin for dy. That would be the case if the robot were
facing along the x axis. However, the initial pose is φ = π/2 and we have sin(θ + π/2) = cos θ

and cos(θ + π/2) = − sin θ .
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so the pose of the robot after the turn is:

(x ′, y′, φ′) = (−dc sin θ, dc cos θ, φ + θ) .

The formulas showhow to compute the changes dx, dy and θ when the robotmoves
a short distance. To compute odometry over longer distances, this computation must
be done frequently. There are two reasonswhy the intervals between the computations
must be short: (a) the assumption of constant speed holds only for short distances, and
(b) the trigonometric calculation is simplified by assuming that the distance moved
is short.

Activity 5.7: Odometry in two dimensions

• Write a program that causes the robot to make a gentle left turn for a specific
period of time.

• Compute the pose (−dc sin θ, dc cos θ, θ) and compare the result with the
values measured using a ruler and a protractor. Run the program several times
and see if the measurements are consistent.

• Run the program for different periods of time. How does this affect the accu-
racy and precision of the odometry computation?

5.7 Errors in Odometry

We have already noted that odometry is not accurate because inconsistent measure-
ments and irregularities in the surface can cause errors. In this section we show that
even small changes in the direction of the robot’s movement can cause errors that
are much larger than those caused by changes in its linear motion.

To simplify the presentation, let us assume that a robot is to move 10m from the
origin of a coordinate system along the x-axis and then check its surroundings for
a specific object. What is the effect of an error of up to p%? If the error is in the
measurement of x , the distance moved, then Δx , the error in x is:

Δx ≤ ±10 · p

100
= ± p

10
m ,

where the value is negative or positive because the robot could move up to p%before
or after the intended distance.

Suppose now that there is an error p% in the heading of the robot, and, for
simplicity, assume that there is no error in the distance moved. The geometry is:
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The robot intended to move 10 m along the x-axis, but instead it moved slightly to
the left at an angle ofΔθ . Let us compute the left-right deviationΔy. By trigonometry,
Δy = 10 sinΔθ . An error of p% in heading is:

Δθ = 360 · p

100
= (3.6p)◦ ,

so the left-right deviation is:

Δy ≤ ±10 sin(3.6p) .

The following tables compare the difference between a linear error of p% (left)
and an error in heading of p% (right):

p% Δx (m)

1 0.1
2 0.2
5 0.5

10 1.00

p% Δθ (◦) sinΔθ Δy (m)

1 3.6 0.063 0.63
2 7.2 0.125 1.25
5 18.0 0.309 3.09

10 36.0 0.588 5.88

For a very small error like 2%, the distance error after moving 10 m is just 0.2 m,
which should put the robot in the vicinity of the object it is searching for, but a
heading error of the same percentage places the robot 1.25 m away from the object.
For a more significant error like 5% or 10%, the distance error (50 or 100cm) is still
possibly manageable, but the heading error places the robot 3.09 or 5.88m away,
which is not even in the vicinity of the object.

The accumulation of odometry errors as the distance moved gets longer is dis-
played in Fig. 5.6. The initial position of the robot is denoted by the dot at the origin.

Fig. 5.6 Odometry errors
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Assuming an error of at most ±4% in both the linear direction and the heading,
the possible positions of the robot after moving d = 1, 2, . . . , 10m are displayed as
ellipses. The minor radii of the error ellipses result from the linear errors:

0.04s = 0.04, 0.08, . . . , 0.4 m,

while the major radii of the error ellipses result from the angular errors:

d sin (0.04 · 360◦) = d sin 14.4◦ ≈ 0.25, 0.50, . . . 2.5 m.

Clearly, the angular errors are much more significant than the linear errors.
Since error is unavoidable, periodically the pose of the robot as computed by

odometry must be compared with an absolute position; this becomes the new initial
position for further computation. Methods for determining the absolute position of
the robot are presented in Chap.8.

Activity 5.8: Odometry errors

• Write a program to cause the robot to move in a straight line for 2m. Make
sure that the surface is smooth so that it doesn’t turn off course and calibrate
the motor settings so that the robot moves as straight as possible.

• Vary themotor power of both wheels together so that the robot runs somewhat
slower or somewhat faster than before. Plot its position at fixed intervals and
see if the error remains linear over the course.

• Vary the motor power of one wheel so that the robot turns slightly to one side.
Plot its position at fixed intervals and see if the errors are proportional to the
sine of the difference between the original heading and the new heading.

Activity 5.9: Combined effect of odometry errors

• Write a program that causes the robot to move in a straight line for 2m and
then turn 360◦. What is the error in the robot’s position?

• Write a program that causes the robot to turn 360◦ and then move in a straight
line for 2m. What is the error in the robot’s position? Is there a difference
between this error and the error of the previous experiment?

• Write a program that causes the robot to move in a straight line for 2m, turn
180◦ and then move in a straight line for 2m. How far is it from its starting
position?

http://dx.doi.org/10.1007/978-3-319-62533-1_8
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Activity 5.10: Correcting odometry errors

• Modify the program that youwrote for Activity 5.8 to introduce jitter, random
variation in the power supplied to the motor. Check that the distance that the
robot moves in a fixed time is not constant, but changes slightly from run to
run.

• Mark a goal line on the floor and compute the time it should take the robot to
reach the goal.

• When the robot has moved for that period of time, see if it can find the goal
by moving forwards and backwards in small steps until it detects the goal.

5.8 Wheel Encoders

Odometry in a wheeled vehicle like a car can be improved by measuring the rotation
of the wheels instead of mapping motor power into velocity. The circumference
of a wheel is 2πr , where r is the radius of the wheel in cm, so if n rotations are
counted, we know that the robot has moved 2πnr cm. Wheel encoders can be built
that measure fractions of a revolution. If a signal is generated 8 times per revolution,
the distance moved is 2πnr/8cm, which n is now the number of signals counted by
the computer.

There aremany different ways of implementingwheel encoders. A popular design
is to use a light source such as a light-emitting diode (LED), a light sensor and
an encoding disk that is attached to the axis of the wheel (Fig. 5.7a). The disk is
perforated with holes (Fig. 5.7b) so that whenever the hole is opposite the light
source, the sensor generates a signal.

The support for wheel encoders in educational robots varies:

• If a robot does not have wheel encoders it must be calibrated;
• The robot may have wheel encoders that are used internally;
• Some robots like the LEGO® Mindstorms enable the user to read the encoders.

to
motor

encoding disk

wheel
LED sensor

(a) (b)

Fig. 5.7 a Optical wheel encoder. b Encoding disk
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The following activity proposes an experiment to measure the distance moved by
counting revolutions of a wheel. It can be carried out even if your robot does not
have wheel encoders or they are not accessible.

Activity 5.11: Wheel encoding

• Make a mark at the top of a wheel of the robot using chalk or by attaching a
narrow piece of colored tape. Write a program that causes the robot to move
straight ahead for a fixed period of time. Run the program and take a video
of the side of the robot using the camera on your smartphone.

• View the video and determine the number of revolutions by counting the
number of times the mark is at the top of the wheel.

• Measure the radius of the wheel and compute the distance moved. How close
is the result to the actual distance measured on the floor?

• Repeat the measurement using n = 2 and then n = 4 equally spaced marks
on the wheel. Determine the number of revolutions by counting the number
of times that a mark is at the top of the wheel and divide by n. Compute the
distance.

5.9 Inertial Navigation Systems

An inertial navigation system (INS) directlymeasures linear acceleration and angular
velocity and uses them to calculate the pose of a vehicle. The term inertial measure-
ment unit (IMU) is also used, but we prefer the term INS which refers to the entire
system. Integrating acceleration from the initial pose to the current time τ gives the
current velocity:

v =
∫ τ

0
a(t) dt .

Similarly, integrating angular velocity gives the change in heading:

θ =
∫ τ

0
ω(t) dt .

In an INS,we are not given continuous functions to integrate; instead, the acceleration
and angular velocity are sampled and summation replaces integration:

vn =
n∑

i=0

anΔt, θn =
n∑

i=0

ωnΔt .
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front of vehicle front of vehicle(a) (b)

Fig. 5.8 a Forward acceleration. b Deceleration (braking)

INSs are subject to errors caused by inaccuracies in the measurement itself as well
as by variations caused by environmental factors such as temperature, and by wear
and tear of the unit. Inertial measurement is often combined with GPS (Sect. 8.3) to
update the position with an absolute location.

INSs for robots are constructed with microelectromechanical systems (MEMS),
which use integrated circuit manufacturing techniques that combine mechanical ele-
ments with electronics that interface with the robot’s computer.

5.9.1 Accelerometers

If you have ever flown on an airplane you have experienced a force pushing you back
into your seat as a result of the rapid acceleration of the airplane upon takeoff. Upon
landing you are pushed away from your seat. You can also experience this in a car
that accelerates rapidly or makes an emergency stop. Acceleration is related to force
by Newton’s second law F = ma, where m is the mass. By measuring the force on
an object, we measure the acceleration.

Figures5.8a, b show how an accelerometer can be built from an object (called a
mass) connected to a spring. The greater the acceleration, the greater the force exerted
by the mass upon the spring, which in turn causes the spring to be compressed.
The direction that the mass moves gives the sign of the acceleration: forwards or
backwards. The magnitude of the force is measured indirectly by measuring the
distance that the mass moves. You can see that the diagrams correspond to our
experience: when a car accelerates, you are pushed back into the seat, but when it
decelerates (brakes) you continue forward.

5.9.2 Gyroscopes

A gyroscope (“gyro”) uses the principle of Coriolis force tomeasure angular velocity.
This concept is explained in textbooks on physics and we will not go into it here.
There are many types of gyros:

http://dx.doi.org/10.1007/978-3-319-62533-1_8
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• Classical gyros have spinning mechanical disks which are mounted on gimbals so
that the axis of rotation remains fixed in space. These gyros are extremely accurate
but are very heavy and consume a lot of power. They are found on high-value
vehicles such as aircraft and rockets.

• Ring laser gyros (RLG) have (almost) no moving parts and are preferred over
mechanical gyros for most applications. They are based on sending two laser
beams in opposite directions around a circular or triangular path. If the gyro is
rotating, the path followed by one laser beamwill be longer than the path followed
by the other beam. The difference is proportional to the angular velocity and can
be measured and transferred to the navigation computer.

• Coriolis vibratory gyroscopes (CVG) manufactured using MEMS techniques are
found in smartphones and robots. They are inexpensive and extremely robust,
although their accuracy is not as good are the gyros previously discussed. We now
give an overview of how they work.

Figure5.9 shows a CVG called a tuning fork gyroscope. Two square masses are
attached by flexible beams to anchors that are mounted on the base of the component.
Drivers force themasses to vibrate left and right. If the component rotates, themasses
move upwards and downwards a distance proportional to the angular velocity. The
masses and the electrodes form the plates of capacitors whose capacitance increases
or decreases as the plates come together or move apart.

Fig. 5.9 Tuning fork gyroscope (Courtesy of Zhili Hao, Old Dominion University)
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Fig. 5.10 Physics of a tuning fork gyroscope: red dashed arrows and blue dotted arrows indicate
the direction of the vibration; solid black arrows indicate the direction of the Coriolis force

The theory of operation of the tuning fork gyroscope is shown in Fig. 5.10. The
masses (gray squares) are forced to vibrate at the same frequency like the two prongs
of a tuning fork. They vibrate in different directions, that is, they either approach each
other (blue dotted arrows) or they move away from each other (dashed red arrows).
The component rotates around an axis perpendicular to its center (the circle with a
cross denotes the rotational axis which is perpendicular to the plane of the paper).
The Coriolis force is a force whose direction is given by the vector cross product
of the axis of the rotation and the movement of the mass, and whose magnitude is
proportional to the linear velocity of the mass and the angular velocity of the gyro.
Since the masses are moving in different directions, the resulting forces will be equal
but in opposite directions (solid arrows). The masses approach or recede from the
electrodes (small rectangles) and the change in capacitance can be measured by a
circuit.

5.9.3 Applications

An inertial navigation system has three accelerometers and three gyroscopes so that
the pose of the vehicle can be computed in three dimensions. This is necessary for
robotic aircraft and other robotic vehicles. Airbags use an accelerometer that detects
the rapid deceleration in the front-back direction that occurs when a car crashes. This
causes an explosive expansion of the airbag. One can conceive of more applications
for these components in cars. An accelerometer in the up-down direction can detect if
the car has fallen into a pothole. A gyroscope measuring rotation around the vertical
axis can detect skidding, while the gyroscope measuring rotation around the front-
rear axis can detect if the car is rolling over.
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Fig. 5.11 A two-link robotic arm with two DOF

5.10 Degrees of Freedom and Numbers of Actuators

The number of degrees of freedom (DOF) of a system is the dimensionality of the
coordinates needed to describe a pose of a mobile robot or the pose of the end
effector of a robotic manipulator.3 For example, a helicopter has six DOF because
it can move in the three spatial dimensions and can rotate around the three axes.
Therefore, a six-dimensional coordinate (x, y, z, φ, ψ, θ) is needed to describe its
pose.

The terms used to describe rotations

A helicopter can rotate around all three of its axes. The rotations are called: (a) pitch: the
nose moves up and down; (b) roll: the body rotates around its lengthwise axis; (c) yaw: the
body rotates left and right around the axis of its rotor.

The two-link robotic arm in Fig. 5.11 has only two DOF because its end effec-
tor moves in a plane and does not rotate; therefore, it can be described by a two-
dimensional coordinate (x, y). By examining Fig. 5.3 again, you can see that amobile
robot moving on a flat surface has three DOF, because its pose is defined by a three-
dimensional coordinate (x, y, θ). A train has only one DOF since it is constrained
by the tracks to move forwards (or occasionally backwards) along the track. It only
takes one coordinate (x), the train’s distance from an arbitrary origin of the track, to
specify the pose of the train.

We needmore information than the degrees of freedom to describe roboticmotion.
Consider a vehicle like a car, a bicycle or an office chair. Although three coordinates
(x, y, θ) are needed to describe its pose, we cannot necessarily move the vehicle
directly from one pose to another. An office chair can be moved directly to any point
of the plane and oriented in any direction. A car or a bicycle at (2, 0, 0◦) (pointed
along the positive x-axis) cannot bemoveddirectly up the y-axis to position (2, 2, 0◦).
A more complex maneuver is needed.

3This section and the following ones are more advanced and can skipped during your first reading.
Furthermore, some of the examples are of robotic manipulators described in Chap.16.

http://dx.doi.org/10.1007/978-3-319-62533-1_16
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Fig. 5.12 A robot that can only rotate around an axis (gray dot)

We need to know the number of its actuators (usually motors) and their config-
uration. A differential drive robot has two actuators, one for each wheel, although
the robot itself has three DOF. The motors move the robot along one axis forwards
and backwards, but by applying unequal power we can change the heading of the
robot. The two-link arm in Fig. 5.11 has two motors, one at each rotating joint, so the
number of actuators equals the number of DOF. Finally, a train has only one actuator,
the motor that moves it forwards or backwards in its single DOF.

Activity 5.12: Robot that can only rotate

• Figure5.12 shows a differential drive robot with a fixed rod through its center
of rotation. The rod prevents the robot changing its position, allowing it only
to rotate around its vertical axis. Characterize this configuration: the number
of actuators and the number of DOF.

• What types of tasks could this robot perform? What are the advantages and
disadvantages of this configuration?

5.11 The Relative Number of Actuators and DOF

Let us analyze systems where:

• The number of actuators equals the number of DOF;
• The number of actuators is fewer than the number of DOF;
• The number of actuators is greater than the number of DOF.

The Number of Actuators Equals the Number of DOF

A train has one actuator (its engine) that moves the train along its single DOF. The
two-line robotic arm in Fig. 5.11 has two actuators and two DOF. A robotic gripper
can be built with three motors that rotate the gripper in each of the three orientations
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(roll, pitch, yaw). The advantage of having an equal number of actuators and DOF is
that the system is relatively easy to control: each actuator is individually commanded
to move the robot to the desired position in the DOF it controls.

The Number of Actuators is Fewer than the Number of DOF

Mobile robots will usually have fewer actuators than DOF. A robot with differential
drive and a car have only two actuators, but they can reach all possible three-
dimensional poses in the plane. Having fewer actuators makes the system less expen-
sive, but the problems of planning and controlling motion are much more difficult.
Parallel parking a car is notorious for its difficulty: two rotations and a translation
are needed to perform a simple lateral move (Fig. 5.21a, b).

An extreme example is a hot-air balloonwhich has only a single actuator (a heater)
that injectsmore or less hot air into the balloon and thus controls its altitude.However,
winds can cause the balloon to move in any of the three spatial directions and even to
rotate (at least partially) in three orientations, so the operator of the balloon can never
precisely control the balloon. A hot-air balloon therefore differs from an elevator:
both have a single actuator, but the elevator is constrained by its shaft to move in
only one DOF.

For another example of the complex relationship between the DOF and number
of actuators, the reader is invited to study flight control in helicopters. Helicopters
are highly maneuverable (even more so than airplanes which can’t fly backwards),
but a pilot controls the helicopter’s flight using only three actuators:

• The cyclic controls the pitch of the main rotor shaft which determines if the heli-
copter moves forwards, backwards or to either side.

• The collective controls the pitch of the blades of the main rotor which determines
if the helicopter moves up or down.

• The pedals control the speed of the tail rotor which determines the direction in
which the nose of the helicopter points.

The Number of Actuators is Greater than the Number of DOF

It doesn’t seem to be a good idea to havemore actuators thanDOF, but in practice such
configurations are often useful. The systems in Fig. 5.13a, b havemore actuators than
DOF. The robotic manipulator arm in Fig. 5.13a has four links rotating in the plane
with actuators (motors) a1, a2, a3, a4 at the joints. We assume that the end effector
is fixed to the link from a4 and cannot rotate, so its pose is defined by its position
(x, y) and a fixed orientation. Therefore, although the arm has four actuators, it has
only two DOF because it can move the end effector only horizontally and vertically.

The mobile robot with an arm (Fig. 5.13b) has three actuators: a motor that moves
the robot forwards and backwards, and motors for each of the two rotating joints.
However, the system has only two DOF since the pose of its end effector is defined
by a two-dimensional (x, y) coordinate. Systems with more actuators than DOF are
called redundant systems.
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a1

a2

a3 a4

end effector

a1

a2

end effector
(a) (b)

Fig. 5.13 a Robot arm: two DOF and four actuators. bMobile robot and arm: two DOF and three
actuators

(a) (b)

Fig. 5.14 a Arm with four actuators can reach a hidden position. b Arm with two actuators is
blocked by an obstacle

If possible, engineers avoid using more than one actuator acting on the same DOF
because it increases the complexity and cost of a system. The inverse kinematics
(Sect. 16.2) of a redundant system results in an infinite number of solutions which
complicate the operation of the system. For themobile robotwith the arm (Fig. 5.13b),
there are an infinite number of positions of the base and arm that bring the end effector
to a specific reachable position.

There are situations where a redundant system is required because the task could
not be performed with fewer actuators. Figure5.14a shows how the four-link robotic
arm of Fig. 5.13a can move the end effector to a position that is blocked by an
obstacle and thus unreachable by a two-link arm (Fig. 5.14b), even though in both
configurations the total length of the links is equal.

An important advantage of redundant systems arises from actuators with differ-
ent characteristics. The mobile robot in Fig. 5.13b can approach the target quickly,
although its final position might not be accurate because of errors like uneven terrain.
Once the mobile robot stops, the motors in the joints which do not have to deal with
the terrain can be precisely positioned. While the positioning is precise, these joints
do not have the broad range of the mobile base.

http://dx.doi.org/10.1007/978-3-319-62533-1_16
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An Example of a System with More Actuators than DOF

Figure5.15 (top and side views) shows a configuration with two actuators and one
DOF. The system models a robotic crane that moves a heavy weight to a specific

driven wheels

road wheel

winch

bearing and
weight

road wheel

driven wheel
winch

bearing

weight

Fig. 5.15 Robotic crane built from a mobile robot and a winch (top view above, side view below);
in the side view the left wheel is not shown
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Fig. 5.16 Robotic crane built from a Thymio robot and LEGO® components

vertical position. Figure5.16 shows a crane built from a Thymio robot and LEGO®

components.
The system is build from a mobile robot with differential drive, but the wheels

are not directly used to control the motion of the system. Instead, each wheel is an
independent actuator. (Recall that the power to each wheel of a differential drive
robot can be set independently to any value in a range such as −100 to 100.)

The robot faces left. The right driven wheel in Fig. 5.15 (the black rectangle at
the top of the top view and hidden behind the robot in the side view) controls a pair
of (gray) road wheels that move the robot rapidly forwards and backwards. In turn,
this causes the cable to move the weight rapidly up and down.

The road wheels are mounted on a structure (in blue) that is fixed to the robot
body. There are several options for transferring power from the right driven wheel
to the road wheels: friction, pulleys and belts, and gears. Each option has its own
advantages and disadvantages, and all three are used in cars: the clutch uses friction,
belts are used for timing and to run auxiliary components like water pumps, and
gears are used in the transmission to control the torque applied to each wheel.

The left driven wheel (the black rectangle at the bottom of the top view and at the
front of the side view) controls a winch (red) that rolls or unrolls a cable attached to
the weight that moves up or down over a fixed bearing. The winch has a diameter
much smaller than the diameter of the driven wheels, so it can move the weight in
small increments as the left driven wheel rotates. The design goal is to be able to
perform precise positioning of the weight even though the winch moves the cable at
a much slower speed than does the robot body.
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There are two activities for this section. This activity is for readers who have
good construction skills and an appropriate robotics kit. The second activity suggests
alternate ways of demonstrating the concept of two actuators in one DOF.

Activity 5.13: Robotic crane

• Construct the robotic crane shown in Fig. 5.15. Explain your choice of mech-
anism for connecting the driven wheel to the road wheels.

• Write a program that given the current position of the weight and a goal
position moves the weight to the goal position. Alternatively, send commands
to the motors using a remote control device or a computer connected to the
robot.

• Experiment with the relative rotational speeds of the left and right driven
wheels that control the road wheels and the winch, respectively. Should you
move the two actuators separately or simultaneously?

Activity 5.14: Robotic crane (alternatives)

• Write a program that causes a mobile robot to move forwards and backwards.
Place a piece of black tape relatively far from the initial position of the robot.
The goal is to cause the robot to stop as near as possible to the start of the
tape without continuously checking the sensor.

• The program has threemodes of operation. (1) The robotmoves fast, checking
its sensor occasionally, and stopping when it detects the tape. (2) As in (1)
but the robot moves slowly, checking its sensor relatively often. (3) As in (1)
but when the tape is detected, the robot moves backwards using the speed and
sampling period as in (2).

• Run the program and compare the results of the three modes: the time until
the robot stops and error between the robot’s final position and the start of the
tape.

• Alternatively, run the programwith the three modes on a computer and exper-
iment with the motion parameters and the sampling periods. You will need
to choose a model for the motion: constant velocity, constant acceleration, or
(more realistically) acceleration then constant velocity and finally decelera-
tion when the tape is detected.
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5.12 Holonomic and Non-holonomic Motion

Section5.10 presented the concept of degree of freedom (DOF) and the role of the
number of actuators. There is another concept that links the DOF and the actuators
in the case of mobile robot: the degree of mobility (DOM). The degree of mobility
δm corresponds to the number of degrees of freedom that can be directly accessed
by the actuators. A mobile robot in the plane has at most three DOF ((x, y) position
and heading), so the maximal degree of mobility of a mobile robot is δm = 3.

Let consider the DOM of various vehicles. A train has one DOF because it can
only move forwards along the tracks, and it has one actuator, its engine, that directly
affects this single degree of freedom. Therefore, a train has a degree of mobility of
δm = 1, meaning that the single DOF can be directly accessed by the actuator.

A robotwith differential drive has threeDOF. The two actuators are the twomotors
which act on the wheels. They can directly access two DOF: (a) if both wheels turn
at the same speed, the robot moves forwards or backwards; (b) if the wheels have
speeds in opposite directions, the robot rotates in place. Therefore, we can directly
access the DOF along the forward axis of translation and the DOF of the heading,
but we cannot directly access the DOF of the lateral axis of translation (Fig. 5.17a).
A differential drive mobile robot has a degree of mobility δm = 2 < 3 = #DOF.

A car, like a robotwith differential drive, has only two actuators for threeDOF: one
actuator, themotor, gives direct access to the degree of freedomalong the longitudinal
axis of the car, enabling it to move forwards and backwards. The other actuator, the
steeringwheel, doesnot give direct access to any additionalDOF, it canonly orient the
first DOF. The car cannot rotate around the vertical axis and it cannot move laterally
(Fig. 5.17b). Therefore, a car has only one degree ofmobility, δm = 1. Intuitively, you
can see the lower degree of mobility of a car compared with a robot with differential
drive by noting that the robot can rotate in place while the car cannot.

accessible
DOF

non-accessible
DOF

accessible
DOF

non-accessible
DOF

(a) (b)

Fig. 5.17 a Accessible and non-accessible DOF for a robot with differential drive. b Accessible
and non-accesible DOF for a robot with Ackermann steering
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Fig. 5.18 a Swedish wheel. b Omnidirectional robot (Courtesy LAMI-EPFL)

By itself, a standard wheel has δm = 2: it can roll forwards and backwards and it
can rotate around the vertical axis that goes through the point of contact of the wheel
with the ground. A wheel cannot move sideways, which is actually a good thing
because it prevents the vehicle from skidding off the road during a turn. In the car,
the degree of mobility is reduced even further to δm = 1, because there are two pairs
of wheels, one in the front and one in the rear of the car. This configuration makes
it impossible for the car to rotate around its vertical axis, even though the individual
wheels can do so (usually only the front wheels). The limitation to δm = 1 gives
stability to the car—it cannot skid laterally and it cannot rotate—making it easy and
safe to drive at high speeds. In fact, an accident can occur when rain or snow reduce
the friction so that the car can skid or rotate.

An autonomousmobile robot can profit if it has a greater DOM δm = 3. To directly
access the third DOF, the robot needs to be able to move laterally. One method is to
have the robot roll on a ball or a castor wheel like an office chair. Another method
is to use Swedish wheels (Fig. 5.18a). A Swedish wheel is a standard wheel that has
small free wheels along its rim so that it can move laterally, enabling direct access
to the third DOF.

Mobile robots that can directly access all three DOF (δm = 3) are called omnidi-
rectional robots. Figure5.18b shows an omnidirectional robot constructed with four
Swedish wheels. The two pairs of wheels on opposite sides of the robot can directly
move the robot left, right, forwards and backwards. This configuration is redundant
but very easy to control. To avoid redundancy, most omnidirectional robots have
three Swedish wheels mounted at an angle of 120◦ from each other (Fig. 5.19). This
configuration has δm = 3 but is not easy to control using the familiar x, y coordinates.

The relative values of the DOF and the DOM of a robot define the concept of
holonomic motion. A robot has holonomic motion if δm = #DOF and it has non-
holonomic motion δm < #DOF. A holonomic robot like the one in Fig. 5.18b can
directly control all its DOF without difficult maneuvers. Figure5.20 shows how easy
it is for the omnidirectional robot with Swedish wheels (Fig. 5.19) to perform parallel
parking.
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driven motion

free motion motor

Fig. 5.19 Omnidirectional robot with three Swedish wheels

Fig. 5.20 Parallel parking by an omnidirectional robot

A car and a robot with differential drive are non-holonomic because their DOM
(δm = 1 and 2, respectively) are lower than their DOF which is three. Because of
this limited degree of mobility, these vehicles need complex steering maneuvers, for
example, to perform parallel parking. There is a significant difference between the
two vehicles. The differential drive robot needs three separate movements, but they
are very simple (Fig. 5.21a): rotate left, move backwards, rotate right. The car also
needs three separate movements, but they are extremely difficult to perform correctly
(Fig. 5.21b). You have to estimate where to start the maneuver, how sharp to make
each turn and how far to move between turns. The higher DOM of the differential
drive robot is advantageous in this situation.
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(a) (b)

Fig. 5.21 a Parallel parking for a non-holonomic differential drive robot. b Parallel parking for a
non-holonomic car

anchors

winch winch

Fig. 5.22 Robot for cleaning a wall

Activity 5.15: Holonomic and non-holonomic motion

• Look again at the mobile robot which is constrained to rotational motion only
(Fig. 5.12). What is its degree of mobility δm? It is holonomic or not?

• Figure5.22 shows a robot for cleaning the walls of a building. There are two
anchors from which cables descend, passing through eyes fixed to the robot’s
body and then to winches powered by the robot’s wheels. By rolling and
unrolling the cables, the robot moves up and down the wall. However, if the
two motors do not cause the wheels move precisely at the same rotational
velocity, the robot will swing from side to side. How many DOF and how
many DOM does this robot have? Is it holonomic or not?
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5.13 Summary

A mobile robot like a self-driving car or a Mars explorer will not have landmarks
always available for navigation. Odometry is used to bring the robot to the vicinity
of its goal without reference to the environment. The robot estimates its speed and
rotational velocity from the power applied to its motors. Odometry can be improved
by using wheel encoders to measure the number of revolutions of the wheels, rather
than inferring the velocity from the motor power. The change in the position of an
inexpensive robot moving in a straight line can be computed by multiplying speed
by time. If the robot is turning, trigonometric calculations are needed to compute
the new position and orientation. Even with wheel encoders, odometry is subject to
errors that can be very large if the error is in the heading.

Inertial navigation uses accelerometers and gyroscopes to improve the accuracy
of odometry. Integrating acceleration gives velocity and integrating angular velocity
gives the heading. Microelectromechanical systems have made inertial navigation
inexpensive enough for use in robotics.

The DOF of a system is the number of dimensions in which it can move—up to
three dimensions on a surface and up to six dimensions in the air or underwater—but
a robot may be constrained to have fewer than the maximum number of DOF. An
additional consideration is the number and configuration of the actuators of a robot
which define its degree of mobility. If the DOM is equal to the number of DOF, the
robot is holonomic and it can move directly from one pose to another, although it
may be difficult to control. If the DOM is less than the number of DOF, the robot is
non-holonomic; it cannot move directly from one pose to another and will require
complex maneuvers to carry out some tasks.

5.14 Further Reading

A detailed mathematical treatment of odometry errors in two dimensions is given in
[5, Sect. 5.24]. For an overview of inertial navigation see [3, 4]. Advanced textbooks
on robotics present holonomy [1, 2, 5, 6].
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