
Chapter 16
Kinematics of a Robotic Manipulator

Our presentation has focused on mobile robots. Most educational robots are mobile
robots and you may have encountered commercial mobile robots such as robotic
vacuum cleaners. You probably have not encountered robotic manipulators, but you
have seen pictures of factories that assemble electronic circuits or weld frames of
cars (Fig. 1.3). The most important difference between mobile and fixed robots is the
environment in which they work. A mobile robot moves within an environment that
has obstacles and uneven ground, so the environment is not fully known in advance.
A robotic vacuum cleaner does not ask you to give it a map of your apartment with
the location of each piece of furniture, nor do you have to reprogram it whenever
you move a sofa. Instead, the robot autonomously senses the layout of the apartment:
the rooms and the position of the furniture. While maps and odometry are helpful in
moving a robot to an approximate position, sensors must be used to precisely locate
the robot within its environment.

A robotic manipulator in a factory is fixed to a stable concrete floor and its con-
struction is robust: repeatedly issuing the same commands will move themanipulator
to precisely the same position. In this chapter we present algorithms for the kinemat-
ics of manipulators: how the commands to a manipulator and the robot’s motion are
related. The presentation will be in terms of an arm with two links in a plane whose
joints can rotate.

There are two complementary tasks in kinematics:

• Forward kinematics (Sect. 16.1): Given a sequence of commands, what is the final
position of the robotic arm?

• Inverse kinematics (Sect. 16.2): Given a desired position of the robotic arm, what
sequence of commands will bring it to that position?

Forward kinematics is relatively easy to compute because the calculation of the
change in position that results from moving each joint involves simple trigonometry.
If there is more than one link, the final position is calculated by performing the
calculations for one joint after another. Inverse kinematics is very difficult, because
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268 16 Kinematics of a Robotic Manipulator

you start with one desired position and have to look for a sequence of commands to
reach that position. A problem in inverse kinematics may have one solution, multiple
solutions or even no solution at all.

Kinematic computations are performed in terms of coordinate frames. A frame is
attached to each joint of the manipulator and motion is described as transformations
from one frame to another by rotations and translations. Transformation of coor-
dinate frames in two-dimensions is presented in Sects. 16.3 and 16.4. Most robots
manipulators are three-dimensional. The mathematical treatment of 3D motion is
beyond the scope of this book, but we hope to entice you to study this subject by
presenting a taste of 3D rotations in Sects. 16.5 and 16.6.

16.1 Forward Kinematics

We develop the kinematics of a two-dimensional robotic arm with two links, two
joints and an end effector such as a gripper, a welder or a paint sprayer (Fig. 16.1).
The first joint can rotate but it is mounted on a base that is fixed to a table or the floor.
Link l1 connects this joint to a second joint that can move and rotate; a second link
l2 connects this joint to the fixed end effector.

A two-dimensional coordinate system is assigned with the first joint at (0, 0). The
lengths of the two links are l1 and l2. Rotate the first joint by α to move the end of
the first link with the second joint to (x ′, y′). Now rotate the second joint by β. What

Fig. 16.1 Forward kinematics of a two-link arm
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are the coordinates (x, y) of the end of the arm, in terms of the two constants l1, l2
and the two parameters α, β?

Project (x ′, y′) on the x- and y-axes; by trigonometry its coordinates are:

x ′ = l1 cosα

y′ = l1 sin α .

Now take (x ′, y′) as the origin of a new coordinate system and project (x, y) on its
axes to obtain (x ′′, y′′). The position of the end effector relative to the new coordinate
system is:

x ′′ = l2 cos(α + β)

y′′ = l2 sin(α + β) .

In Fig. 16.1, β is negative (a clockwise rotation) so α + β is the angle between the
second link and the line parallel to the x-axis.

Combining the results gives:

x = l1 cosα + l2 cos(α + β)

y = l1 sin α + l2 sin(α + β) .

Example Let l1 = l2 = 1, α = 60◦, β = −30◦. Then:

x = 1 · cos 60 + 1 · cos(60 − 30) = 1

2
+

√
3

2
= 1 + √

3

2

y = 1 · sin 60 + 1 · sin(60 − 30) =
√
3

2
+ 1

2
= 1 + √

3

2
.

Let us check if this result makes sense. Figure16.2 shows a triangle formed by
adding a line between (0, 0) and (x, y). The complement of the angle β is 180−30 =
150 and the triangle is isosceles since both sides are 1, so the other angles of the
triangle are equal and their values are (180 − 150)/2 = 15. The angle that the new
line forms with the x-axis is 60 − 15 = 45, which is consistent with x = y.

Activity 16.1: Forward kinematics

• Program your robot so that it traces the path of the arm in Fig. 16.1: turn left
60◦, move forward one unit (1m or some other convenient distance), turn right
30◦, move forward one unit.

• Measure the x- and y-distances of the robot from the origin and compare them
to the values computed by the equations for forward kinematics.
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Fig. 16.2 Computing the angles

16.2 Inverse Kinematics

Thegray ring inFig. 16.3 shows theworkspaceof the two-link arm, the set of positions
that the end effector can reach. (We assume that l2 < l1.) The workspace is circularly
symmetric since we assume that there are no limitations of the rotation of the joints
in a full circle between−180◦ and 180◦. Any point like a on the circumference of the
outer circle is a furthest position of the arm from the origin; it is obtained when the
two links are lined up so the arm length is l1 + l2. The closest positions to the origin
in the workspace are points like b on the circumference of the inner circle; they are
obtained when the second link is bend back on the first link giving a length of l1 − l2.
Another reachable position c is shown; there are two configurations (rotations of the
joints) that cause the arm to be positioned at c.

Under the assumption that l2 < l1, no sequence of rotations can position the end
of the arm closer to the origin that l1 − l2 and no position at a distance greater than
l1 + l2 from the origin is accessible. From the figure we learn that a problem in
inverse kinematics—finding commands to reach a specified point—can have zero,
one or many solutions.

The computation of the inverse kinematics uses the lassw of cosines (Fig. 16.4):

a2 + b2 − 2ab cos θ = c2 .

In a right triangle cos 90◦ = 0 and the law reduces to the Pythagorean theorem.
Suppose now that we are given a point (x, y) and we want values for α, β (if any

exist) which will bring the arm to that point. Figure16.5 similar to Fig. 16.2 except
that the specific values are replaced by arbitrary angles and lengths.
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Fig. 16.3 Workspace of a two-lever arm
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Fig. 16.4 Law of cosines

By the Pythagorean theorem, r = √
x2 + y2.

The law of cosines gives:

l21 + l22 − 2l1l2 cos(180
◦ − β) = r2 ,

which can be solved for β:

cos(180◦ − β) = l21 + l22 − r2

2l1l2

β = 180◦ − cos−1

(
l21 + l22 − r2

2l1l2

)
.

To obtain γ and then α, use the law of cosines with γ as the central angle:
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Fig. 16.5 Inverse kinematics of a two-link arm

cos γ = l21 + r2 − l22
2l1r

.

From the right triangle formed by (x, y) we have:

tan(α − γ ) = y

x

α = tan−1 y

x
+ γ ,

so:

α = tan−1 y

x
+ cos−1

(
l21 + r2 − l22

2l1r

)
.

Example Assume again that l1 = l2 = 1 and that the end effector is at the point
computed from the forward kinematics:

(x, y) =
(
1 + √

3

2
,
1 + √

3

2

)

.

First, compute r2:

r2 = x2 + y2 =
(
1 + √

3

2

)2

+
(
1 + √

3

2

)2

= 2 + √
3 ,
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and use it in the computation of β:

β = 180◦ − cos−1

(
12 + 12 − (2 + √

3)

2 · 1 · 1

)

= 180◦ − cos−1

(

−
√
3

2

)

= 180◦ ± 150◦

= ±30◦ ,

since 330◦ = −30◦ (mod 360◦). There are two solutions because there are twoways
of moving the arm to (x, y).

Next compute γ :

γ = cos−1

(
12 + r2 − 12

2 · 1 · r
)

= cos−1
( r
2

)
= cos−1

(√
2 + √

3

2

)

= ±15◦ .

(16.1)
The inverse cosine can be obtained numerically on a calculator or algebraically as
shown in Appendix B.7.

Since x = y, the computation of α is easy:

α = tan−1 y

x
+ γ = tan−1 1 + γ = 45◦ ± 15◦ = 60◦ or 30◦ .

The solutionα = 60◦, β = −30◦ corresponds to the rotation of the joints in Fig. 16.1,
while the solution α = 30◦, β = 30◦ corresponds to rotating both of the joints 30◦
counterclockwise.

In this simple case, it is possible to solve the forward kinematics equation to obtain
formulas for the inverse kinematics. In general this is not possible so approximate
numerical solutions are used.

Activity 16.2: Inverse kinematics

• Use the formulas for the inverse kinematics to program your robot to move
to a specified coordinate.

• Measure the x- and y-distances of the robot from the origin and compare them
to the specified coordinates.

• If your robot’s computer does not have the capability to compute the formulas,
compute them offline and then input the commands to the robot.
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16.3 Rotations

The motion of a robotic manipulator is described in terms of coordinate frames.
Three frames are associated with the arm in Fig. 16.1: one frame is associated with
the joint at the origin (whichwe assume is fixed to a table or the floor), a second frame
is associated with the joint between the two links, and a third frame is associated
with the end effector at the end of the second link.

In this section we describe how the rotational motion of a robotic arm can be
mathematically modeled using rotation matrices. The links in robotic arms introduce
translations: the second joint is offset by a linear distance of l1 from the first joint,
and the end effector is offset by a linear distance of l2 from the second joint. The
mathematical treatment of translations uses an extension of rotation matrices called
homogeneous transforms.

Rotations can be confusing because a rotationmatrix can have three interpretations
that are described in the following subsections: rotating a vector, rotating a coordinate
frame and transforming a vector from one coordinate frame to another.

16.3.1 Rotating a Vector

Consider a vector with cartesian coordinates (x, y) and polar coordinates (r, φ)

(Fig. 16.6a). Now rotate the vector by an angle θ (Fig. 16.6b). Its polar coordinates
are (r, φ + θ). What are its cartesian coordinates?

Using the trigonometric identities for the sum of two angles and the conversion
of (r, φ) to (x, y) we have:

(a) (b)

Fig. 16.6 a A vector. b The vector rotated by θ
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x ′ = r cos(φ + θ)

= r cosφ cos θ − r sin φ sin θ

= (r cosφ) cos θ − (r sin φ) sin θ

= x cos θ − y sin θ ,

y′ = r sin(φ + θ)

= r sin φ cos θ + r cosφ sin θ

= (r sin φ) cos θ + (r cosφ) sin θ

= y cos θ + x sin θ

= x sin θ + y cos θ .

These equations can be expressed as the multiplication of a matrix called the rotation
matrix and a vector:

⎡

⎣
x ′

y′

⎤

⎦ =
⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦

⎡

⎣
x

y

⎤

⎦ .

Example Let p be the point at the tip of a vector of length r = 1 that forms an angle

of φ = 30◦ with the positive x-axis. The cartesian coordinates of p are
(√

3
2 , 1

2

)
.

Suppose that the vector is rotated by θ = 30◦.What are the new cartesian coordinates
of p? Using matrix multiplication:

⎡

⎣
x ′

y′

⎤

⎦ =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2

1
2

⎤

⎦ =
⎡

⎣
1
2√
3
2

⎤

⎦ .

The result makes sense because rotating a vector whose angle with the x-axis is 30◦
by 30◦ should give a vector whose angle with the x-axis is 60◦.

Suppose that the vector is rotated by an additional 30◦; its new coordinates are:
⎡

⎣

√
3
2 − 1

2
1
2

√
3
2

⎤

⎦

⎛

⎝

⎡

⎣

√
3
2 − 1

2
1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2
1
2

⎤

⎦

⎞

⎠ =
⎡

⎣

√
3
2 − 1

2
1
2

√
3
2

⎤

⎦

⎡

⎣
1
2√
3
2

⎤

⎦ =
⎡

⎣
0

1

⎤

⎦ .

(16.2)

This result also makes sense. Rotating a vector whose angle is 30◦ twice by 30◦ (for
a total of 60◦) should give 90◦. The cosine of 90◦ is 0 and the sine of 90◦ is 1.

Since matrix multiplication is associative, the multiplication could also be per-
formed as follows:
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⎛

⎝

⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎞

⎠

⎡

⎣

√
3
2

1
2

⎤

⎦ . (16.3)

Activity 16.3: Rotation matrices

• Demonstrate the associativity of matrix multiplication by showing that the
multiplication in Eq.16.3 gives the same result as the multiplication in
Eq.16.2.

• Compute the matrix for a rotation of −30◦ and show that multiplying this
matrix by the matrix for a rotation of 30◦ gives the matrix for a rotation of 0◦.

• Is this multiplication commutative?
• Is multiplication of two-dimensional rotational matrices commutative?

16.3.2 Rotating a Coordinate Frame

Let us reinterpret Fig. 16.6a, b. Figure16.7a shows a coordinate frame (blue) defined
by two orthogonal unit vectors:

x =
[
1
0

]
, y =

[
0
1

]
.

Figure16.7b shows the coordinate frame rotated by θ degrees (red). The new unit
vectors x′ and y′ can be obtained by multiplication by the rotation matrix derived
above:

x′ =
⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦

⎡

⎣
1

0

⎤

⎦ =
⎡

⎣
cos θ

sin θ

⎤

⎦

y′ =
⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦

⎡

⎣
0

1

⎤

⎦ =
⎡

⎣
− sin θ

cos θ

⎤

⎦ .
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x

y

x
y

x

y

sinθ

cosθ
cosθ

sinθ

θ

(a) (b)

Fig. 16.7 a Original coordinate frame (blue). b New coordinate frame (red) obtained by rotating
the original coordinate frame (blue) by θ

Example For the unit vectors in Fig. 16.7a and a rotation of 30◦:

x′ =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣
1

0

⎤

⎦ =
⎡

⎣

√
3
2

1
2

⎤

⎦

y′ =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣
0

1

⎤

⎦ =
⎡

⎣
− 1

2√
3
2

⎤

⎦ .

16.3.3 Transforming a Vector from One Coordinate
Frame to Another

Let the origin of a coordinate frame b (blue) represent the joint of an end effector
such as a welder and let point p be the tip of the welder (Fig. 16.8a). By convention in
robotics, the coordinate frame of an entity is denoted by a “pre” superscript.1 In the
frame b, the point bp has polar coordinates (r, φ) and cartesian coordinates (bx, by)
related by the usual trigonometric formulas:

bp = (bx, by) = (r cosφ, r sin φ) .

Suppose that the joint (with its coordinate frame) is rotated by the angle θ . The
coordinates of the point relative to b remain the same, but the coordinate frame has
moved sowe ask:What are the coordinates ap = (ax, ay) of the point in the coordinate
frame before it was moved? In Fig. 16.8b the original frame b is shown rotated to
a new position (and still shown in blue), while the coordinate frame a is in the old

1The convention is to use uppercase letters for both the frame and the coordinates, but we use
lowercase for clarity.
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(a) (b)

Fig. 16.8 a Point p at the tip of an end effector in coordinate frame b (blue). b Point p in coordinate
frames a (red) and b (blue)

position of b and is shown as red dashed lines. In the previous section we asked how
to transform one coordinate frame into another; here, we are asking how to transform
the coordinates of a point in a frame to its coordinates in another frame.

In terms of the robotic arm: we know (bx, by), the coordinates of the tip of the end
effector relative to the frame of the end effector, and we now ask for its coordinates
ap = (ax, ay) relative to the fixed base. This is important because if we know ap, we
can compute the distance and angle from the tip of the welder to the parts of the car
it must now weld.

We can repeat the computation used for rotating a vector:

ax = r cos(φ + θ)

= r cosφ cos θ − r sin φ sin θ

= bx cos θ − by sin θ ,

ay = r sin(φ + θ)

= r sin φ cos θ + r cosφ sin θ

= bx sin θ + by cos θ ,

to obtain the rotation matrix:

⎡

⎣
ax

ay

⎤

⎦ =
⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦

⎡

⎣
bx

by

⎤

⎦ . (16.4)
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The matrix is called the rotation matrix from frame b to frame a and denoted a
b R.

Pre-multiplying the point bp in frame b by the rotation matrix gives ap its coordinates
in frame a:

ap = a
b R

bp .

ExampleLet bp be the point in frame b at the tip of a vector of length r = 1 that forms

an angle of φ = 30◦ with the positive x-axis. The coordinates of bp are
(√

3
2 , 1

2

)
.

Suppose that the coordinate frame b (together with the point p) is rotated by θ = 30◦
to obtain the coordinate frame a. What are the coordinates of ap? Using Eq.16.4:

ap =
⎡

⎣
ax

ay

⎤

⎦ =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2

1
2

⎤

⎦ =
⎡

⎣
1
2√
3
2

⎤

⎦ .

If frame a is now rotated 30◦, we obtain the coordinates of the point in a third frame
a1. Pre-multiply ap by the rotation matrix for 30◦ to obtain a1p:

a1p =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎛

⎝

⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2

1
2

⎤

⎦

⎞

⎠ =
⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣
1
2√
3
2

⎤

⎦ =
⎡

⎣
0

1

⎤

⎦ .

The product of the two rotation matrices:

⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦

⎡

⎣

√
3
2 − 1

2

1
2

√
3
2

⎤

⎦ =
⎡

⎣
1
2 −

√
3
2√

3
2

1
2

⎤

⎦

results in the rotation matrix for rotating the original coordinate frame b by 60◦:

⎡

⎣
1
2 −

√
3
2√

3
2

1
2

⎤

⎦

⎡

⎣

√
3
2

1
2

⎤

⎦ =
⎡

⎣
0

1

⎤

⎦ .

Given a sequence of rotations, pre-multiplying their rotation matrices gives the
rotation matrix for the rotation equivalent to the sum of the individual rotations.

16.4 Rotating and Translating a Coordinate Frame

The joints on robotics manipulators are connected by links so the coordinate systems
are related not just by rotations but also by translations. The point p in Fig. 16.9
represents a point in the (red) coordinate frame b, but relative to the (blue dashed)
coordinate frame a, frame b is both rotated by the angle θ and its origin is translated
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Fig. 16.9 Frame b is rotated and translated to frame a

by Δx and Δy. If bp = (bx, by), the coordinates of the point in frame b, are known,
what are its coordinates ap = (ax, ay) in frame a?

To perform this computation, we define an intermediate (green) coordinate frame
a1 that has the same origin as b and the same orientation as a (Fig. 16.10). What are
the coordinates a1p = (a1x, a1y) of the point in frame a1? This is simply the rotation
by θ that we have done before:

a1p =
⎡

⎣
a1x

a1y

⎤

⎦ =
⎡

⎣
cos θ − sin θ

sin θ cos θ

⎤

⎦

⎡

⎣
bx

by

⎤

⎦ .

Now thatwe have the coordinates of the point in a1, it is easy to obtain the coordinates
in frame a by adding the offsets of the translation. In matrix form:

ap =
⎡

⎣
ax

ay

⎤

⎦ =
⎡

⎣
a1x

a1y

⎤

⎦ +
⎡

⎣
Δx

Δy

⎤

⎦ .

Homogeneous transforms are used to combine a rotation and a translation in one
operator. The two-dimensional vector giving the coordinates of a point is extended
with a third element that has a fixed value of 1:
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Fig. 16.10 Frame b is rotated to frame a1 and then translated to frame a

⎡

⎢
⎢
⎢
⎣

x

y

1

⎤

⎥
⎥
⎥
⎦

.

The rotation matrix is extended to a 3 × 3 matrix with a 1 in the lower right corner
and zeros elsewhere. It is easy to check that multiplication of a vector in frame b by
the rotation matrix results in the same vector as before except for the extra 1 element:

⎡

⎢
⎢
⎢
⎣

a1x

a1y

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

bx

by

1

⎤

⎥
⎥
⎥
⎦

.

The result is the coordinates of the point in the intermediate frame a1. To obtain the
coordinates in frame a, we multiply by a matrix that performs the translation:

⎡

⎢
⎢
⎢
⎣

ax

ay

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 Δx

0 1 Δy

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a1x

a1y

1

⎤

⎥
⎥
⎥
⎦

.
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By multiplying the two transforms, we obtain a single homogeneous transform that
can perform both the rotation and that translation:

⎡

⎢
⎢
⎢
⎣

1 0 Δx

0 1 Δy

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

cos θ − sin θ Δx

sin θ cos θ Δy

0 0 1

⎤

⎥
⎥
⎥
⎦

.

Example Let us extend the previous example by adding a translation of (3, 1) to
the rotation of 30◦. The homogeneous transform of the rotation followed by the
translation is:

⎡

⎢
⎢
⎢
⎣

1 0 3

0 1 1

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

√
3
2 − 1

2 0

1
2

√
3
2 0

0 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

√
3
2 − 1

2 3

1
2

√
3
2 1

0 0 1

⎤

⎥
⎥
⎥
⎦

.

The coordinates of the point in frame a are:

⎡

⎢
⎢
⎢
⎣

ax

ay

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

√
3
2 − 1

2 3

1
2

√
3
2 1

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

√
3
2

1
2

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1
2 + 3

√
3
2 + 1

1

⎤

⎥
⎥
⎥
⎦

.

Activity 16.4: Homogeneous transforms

• Draw the diagram for a rotation of −30◦ followed by a translation of (3,−1).
• Compute the homogeneous transform.

16.5 A Taste of Three-Dimensional Rotations

The concepts of coordinate transformations and kinematics in three-dimensions are
the same as in two dimensions, however, the mathematics is more complicated.
Furthermore, many of us find it difficult to visualize three-dimensional motion when
all we are shown are two-dimensional representations of three-dimensional objects.
In this section we give a taste of three-dimensional robotics by looking at rotations
in three dimensions.
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Fig. 16.11 Three-dimensional coordinate frame
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Fig. 16.12 a x-y-z coordinate frame. b x-y-z coordinate frame after rotating 90◦ around the z-axis

16.5.1 Rotations Around the Three Axes

A two-dimensional x-y coordinate frame can be considered to be embedded in a
three-dimensional coordinate frame by adding a z-axis perpendicular to the x- and y-
axes. Figure16.11 shows a two-dimensional representation of the three-dimensional
frame. The x-axis is drawn left and right on the paper and the y-axis is drawn up and
down. The diagonal line represents the z-axis which is perpendicular to the other two
axes. The “standard” x-y-z coordinate frame has the positive directions of its axes
defined by the right-hand rule (see below). The positive directions are right for the
x-axis, up for the y-axis and out (of the paper towards the observer) for the z-axis.

Rotate the coordinate frame counterclockwise around the z-axis, so that the
z-axis remains unchanged (Fig. 16.12a, b). The new orientation of the frame is (up,
left, out). Consider now a rotation of 90◦ around the x-axis (Fig. 16.13a, b). This
causes the y-axis to “jump out” of the paper and the z-axis to “fall down” onto the
paper, resulting in the orientation (right, out, down). Finally, consider a rotation of
90◦ around the y-axis (Fig. 16.14a, b). The x-axis “drops into” the paper and the
z-axis “falls right” onto the paper. The new position of the frame is (in, up, right).
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Fig. 16.13 a x-y-z coordinate frame. b x-y-z coordinate frame after rotating 90◦ around the x-axis
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Fig. 16.14 a x-y-z coordinate frame. b x-y-z coordinate frame after rotating 90◦ around the y-axis

16.5.2 The Right-Hand Rule

There are two orientations for each axis, 23 = 8 orientations overall. What matters
is the relative orientation of one axis with respect to the other two; for example, once
the x- and y-axes have been chosen to lie in the plane of the paper, the z-axis can
have its positive direction pointing out of the paper or into the paper. The choice must
be consistent. The convention in physics and mechanics is the right-hand rule. Curl
the fingers of your right hand so that they go from the one axis to another axis. Your
thumb now points in the positive direction of the third axis. For the familiar x- and
y-axes on paper, curl your fingers on the path from the x-axis to the y-axis. When
you do so your thumb points out of the paper and this is taken as the positive direction
of the z-axis. Figure16.15 shows the right-hand coordinate system displayed with
each of the three axes pointing out of the paper. According to the right-hand rule the
three rotations are:

Rotate from x to y around z,
Rotate from y to z around x,
Rotate from z to x around y.
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Fig. 16.15 The right-hand rule

16.5.3 Matrices for Three-Dimensional Rotations

A three-dimensional rotation matrix is a 3 × 3 matrix because each point p in a
frame has three coordinates px , py, pz that must be moved. Start with a rotation ofψ
around the z-axis, followed by a rotation of θ around the y axis and finally a rotation
ofφ around the x-axis. For the first rotation around the z-axis, the x and y coordinates
are rotated as in two dimensions and the z coordinate remains unchanged. Therefore,
the matrix is:

Rz(ψ) =

⎡

⎢
⎢
⎢
⎣

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

⎤

⎥
⎥
⎥
⎦

.

For the rotation by θ around the y-axis, the y coordinate is unchanged and the z and
x coordinates are transformed “as if” they were the x and y coordinates of a rotation
around the z-axis:

Ry(θ) =

⎡

⎢
⎢
⎢
⎣

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤

⎥
⎥
⎥
⎦

.

For the rotation by φ around the x-axis, the x coordinate is unchanged and the y and
z coordinates are transformed “as if” they were the x and y coordinates of a rotation
around the z-axis:

Rx(φ) =

⎡

⎢
⎢
⎢
⎣

1 0 0

0 cosφ − sin φ

0 sin φ cosφ

⎤

⎥
⎥
⎥
⎦

.

It may seem strange that in the matrix for the rotation around the y-axis the signs
of the sine function have changed. To convince yourself that matrix for this rotation
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Fig. 16.16 Rotation around the z-axis followed by rotation around the x-axis
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Fig. 16.17 Rotation around the x-axis followed by rotation around the z-axis

is correct, redraw the diagram in Fig. 16.8b, substituting z for x and x for y and
perform the trigonometric computation.

16.5.4 Multiple Rotations

There is a caveat to composing rotations: like matrix multiplication, three-dimen-
sional rotations do not commute. Let us demonstrate this by a simple sequence of
two rotations. Consider a rotation of 90◦ around the z-axis, followed by a rotation of
90◦ around the (new position of the) x-axis (Fig. 16.16). The result can be expressed
as (up, out, right).

Now consider the commuted operation: a rotation of 90◦ around the x-axis, fol-
lowed by a rotation of 90◦ around the z-axis (Fig. 16.17). The result can be expressed
as (out, left, down), which is not the same as the previous orientation.

16.5.5 Euler Angles

An arbitrary rotation can be obtained by three individual rotations around the three
axes, so the matrix for an arbitrary rotation can be obtained by multiplying the
matrices for each single rotation. The angles of the rotations are called Euler angles.
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Fig. 16.18 Euler angles zyx of (90◦, 90◦, 90◦)
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Fig. 16.19 a Vector after final rotation. b Vector before rotating around the x-axis

The formulas are somewhat complex and can be found in the references listed at the
end of the chapter. Here we demonstrate Euler angles with an example.

Example Figure16.18 shows a coordinate frame rotated sequentially 90◦ around the
z-axis, then the y-axis and finally the x-axis. This is called a zyx Euler angle rotation.
The final orientation is (in, up, right).

Let us consider a robotic manipulator that consists of a single joint that can rotate
around all three axes. A sequence of rotations is performed as shown in Fig. 16.18.
Consider the point at coordinates (1, 1, 1) relative to the joint (Fig. 16.19a). After the
rotations, what are the coordinates of this point in the original fixed frame?

This can be computed by leaving the vector fixed and considering the rotations of
the coordinate frames. To reach the final position shown in Fig. 16.19a the frame was
rotated around the x-axis from the orientation shown in Fig. 16.19b. By examining the
figure we see that the coordinates in this frame are (1,−1, 1). Proceeding through the
previous two frames (Fig. 16.20a, b), the coordinates are (1,−1,−1) and (1, 1,−1).

These coordinates can be computed from the rotation matrices for the rotations
around the three axes. The coordinates of the final coordinate frame are (1, 1, 1), so
in the frame before the rotation around the x-axis the coordinates were:

⎡

⎢
⎢
⎢
⎣

1 0 0

0 0 −1

0 1 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1

1

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1

−1

1

⎤

⎥
⎥
⎥
⎦

.

The coordinates in the frame before the rotation around the y-axis were:
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Fig. 16.20 a Vector before rotating around the y-axis. b Vector in the fixed frame before rotating
around the z-axis

⎡

⎢
⎢
⎢
⎣

0 0 1

0 1 0

−1 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1

−1

1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1

−1

−1

⎤

⎥
⎥
⎥
⎦

.

Finally, the coordinates in the fixed frame before the rotation around the z-axis were:

⎡

⎢
⎢
⎢
⎣

0 −1 0

1 0 0

0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1

−1

−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1

1

−1

⎤

⎥
⎥
⎥
⎦

.

For three arbitrary zyx Euler angle rotations: ψ around the z-axis, then θ around
the y-axis and finally φ around the x-axis the rotation matrix is:

R = Rz(ψ)Ry(θ)Rx(φ) .

It may seem strange that the order of the matrix multiplication (which is always from
right to left) is opposite the order of the rotations. This is because we are taking a
vector in the final coordinate frame and transforming it back into the fixed frame to
determine its coordinates in the fixed frame.

Activity 16.5: Multiple Euler angles

• Multiply the three matrices to obtain a single matrix that directly transforms
the coordinates from (1, 1, 1) to (1, 1,−1).

• Perform the same computation for other rotations, changing the sequence of
the axes and the angles of rotation.
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16.5.6 The Number of Distinct Euler Angle Rotations

There are three axes so there should be 33 = 27 sequences of Euler angles. However,
there is no point in rotating around the same axis twice in succession because the
same result can be obtained by rotating once by the sum of the angles, so there are
only 3 · 2 · 2 = 12 different Euler angles sequences. The following activity asks you
to explore different Euler angle sequences.

Activity 16.6: Distinct Euler angles

• To experiment with three-dimensional rotations, it is helpful to construct a
coordinate frame from three mutually perpendicular pencils or straws.

• Draw the coordinate frames for a zyz Euler angle rotation, where each rotation
is by 90◦.

• What zyz rotationgives the same result at the zyx rotation shown inFig. 16.18?
• Experiment with other rotation sequences and with angles other than 90◦.

16.6 Advanced Topics in Three-Dimensional Transforms

Now that you have tasted three-dimensional rotations, we survey the next steps in
learning this topic which you can study in the textbooks listed in the references.

There are 12 Euler angles and the choice of which to use depends on the intended
application. Furthermore, there is a different way of defining rotations. Euler angles
are moving axes transforms, that is, each rotation is around the new position of the
axis after the previous rotation. In Fig. 16.18, the second rotation is around the y-axis
that now points left, not around the original y-axis that points up. It is also possible
to define fixed axes rotations in which subsequent rotations are around the original
axes of the coordinate system. In three dimensions, homogeneous transforms that
include translations in addition to rotations can be efficiently represented as 4 × 4
matrices.

Euler angles are relatively inefficient to compute and suffer from computational
instabilities. These can be overcome by using quaternions, which are a generalization
of complex numbers. Quaternions use three “imaginary” numbers i, j, k, where:

i2 = j2 = k2 = i j k = −1 .

Recall that a vector in the two-dimensional plane can be expressed as a complex
number x + i y. Rotating the vector by an angle θ can be performed by multiplying
by the value cos θ + i sin θ . Similarly, in three dimensions, a vector can be expressed
as a pure quaternion with a zero real component: p = 0 + x i + y j + z k. Given
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an axis and an angle, there exists a quaternion q that rotates the vector around the
axis by this angle using the formula qpq−1. This computation is more efficient and
robust than the equivalent computation with Euler angles and is used in a variety of
contexts such as aircraft control and computer graphics.

16.7 Summary

Kinematics is the description of the motion of a robot. In forward kinematics, we
are given a set of commands for the robot and we need to compute its final position
relative to its initial position. In inverse kinematics, we are given a desired final
position and need to compute the commands that will bring the robot to that position.
This chapter has demonstrated kinematic computations for a simple two-dimensional
robotic manipulator arm. In practice, manipulators move in three-dimensions and the
computations are more difficult. Exact solutions for computing inverse kinematics
usually cannot be found and approximate numerical solutions are used.

There are many ways of defining and computing arbitrary rotations. We men-
tioned the Euler angles where an arbitrary rotation is obtained by a sequence of
three rotations around the coordinate axes. Quaternions, a generalization of complex
numbers, are often used in practice because they are computationally more efficient
and robust.

16.8 Further Reading

Advanced textbooks on robotic kinematics and related topics are those by Craig [2]
and Spong et al. [3]. See also Chap.3 of Correll [1]. Appendix B of [2] contains the
rotation matrices for all the Euler angle sequences. The video lectures by Angela
Sodemann are very helpful:
https://www.youtube.com/user/asodemann3,
http://www.robogrok.com/Flowchart.html.

Although not a book on robotics, Vince’s monograph on quaternions [4] gives an
excellent presentation of the mathematics of rotations.
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