
Chapter 14
Machine Learning

Consider a robot that recognizes and grasps yellow objects (Fig. 14.1). It can use a
color camera to identify yellow objects, but the objects will appear different in differ-
ent environments, such as in sunlight, in a dark room, or in a showroom. Furthermore,
it is hard to precisely define what “yellow” means: what is the boundary between
yellow and lemon-yellow or between yellow and orange? Rather than write detailed
instructions for the robot, we would prefer that the robot learn color recognition as it
is performing the task, so that it could adapt to the environment where the task takes
place. Specifically, we want to design a classification algorithm that can be trained
to perform the task without supplying all the details in advance.

Classifications algorithms are a central topic in machine learning, a field of com-
puter science and statistics that develops computations to recognize patterns and
to predict outcomes without explicit programming. These algorithms extract rules
from the raw data acquired by the system during a training period. The rules are
subsequently used to classify a new object and then to take the appropriate action
according to the class of the object. For the color-recognition task, we train the robot
by presenting it with objects of different colors and telling the robot which objects are
yellow and which are not. The machine learning algorithm generates a rule for color
classification. When presented with new objects, it uses the rule to decide which
objects are yellow and which are not.

The previous chapter presented artificial neural networks which perform a form
of machine learning based upon reinforcement. In this chapter, we discuss statistical
techniques based upon supervised learning: during the training period we tell the
robot the precise answers, such as whether an object is yellow or not. Section14.1
introduces the statistical techniques by developing an algorithm for distinguishing
between objects of two colors. We present a technique for machine learning called
linear discriminant analysis (LDA). Sections14.2 and 14.3 present LDA in the same
context of distinguishing between two colors. LDA is based on the assumption that
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Fig. 14.1 Robotic arm sorting colored balls

the data has specific statistical properties; if these do not hold, perceptrons can be
used for classification as described in Sect. 14.4.

This chapter assumes that you are familiar with the concepts of mean, variance
and covariance. Tutorials on these concepts appear in Appendices B.3 and B.4.

14.1 Distinguishing Between Two Colors

We start with the problem of distinguishing yellow balls from non-yellow balls. To
simplify the task, we modify the problem to one of distinguishing dark gray areas
from light gray areas that are printed on paper taped to the floor (Fig. 14.2). The robot
uses two ground sensors that sample the reflected light as the robot moves over the
two areas.

Figure14.3 shows a plot of the values returned by sampling the two sensors.1

The robot takes about 70 s to move from left to right, sampling the reflected light
once per second. It is easy to see that the data shows significant variation, which is
probably due to noise in the sensors and uneven printing. Even more problematic is
the variability in the results returned by the two sensors. How can the robot learn
to distinguish between the shades of gray given the variability in the samples and
the sensors? We want to automatically create a rule to distinguish between the two
shades of gray.

1The data used in this chapter are real data taken from an experiment with the Thymio robot.
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Fig. 14.2 Distinguishing two shades of gray
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Fig. 14.3 Plots of reflected light versus time for the left sensor (top) and the right sensor (bottom)

14.1.1 A Discriminant Based on the Means

By examining the plots in Fig. 14.3, it is easy to see which samples are from the dark
gray area and which are from the light gray area. For the left sensor, the values of the
light gray area are in the range 500–550, while the values of the dark gray area are in
the range 410–460. For the right sensor, the ranges are 460–480 and 380–400. For
the left sensor, a threshold of 480 would clearly distinguish between light and dark
gray, while for the right sensor a threshold of 440 would clearly distinguish between
light and dark gray. But how can these optimal values be chosen automatically and
how can we reconcile the thresholds of the two sensors?

Let us first focus on the left sensor. We are looking for a discriminant, a value
that distinguishes samples from the two colors. Consider the values maxdark , the
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maximum value returned by sampling dark gray, and minlight , the minimum value
returned by sampling light gray. Under the reasonable assumption that maxdark <

minlight , any value x such that maxdark < x < minlight can distinguish between the
two shades of gray. The midpoint between the two values would seem to offer the
most robust discriminant.

From Fig. 14.3 we see thatmaxdark ≈ 460 occurs at about 10 s andminlight ≈ 500
occurs at about 60 s, so we choose their average 480 as the discriminant.While this is
correct for this particular data set, in general it is not a good idea to use the maximum
and minimum values because they could be outliers: extreme values resulting from
unusual circumstances, such as a hole in the paper which would incorrectly return a
very high value in the dark gray area.

A better solution is to use all the data and the simplest function of all the data
is the mean of the values. Let μdark denote the mean of the dark gray samples and
μlight the mean of the light gray samples. A good discriminant Δ is the midpoint
between the two means:

Δ = μdark + μlight

2
.

For the data in Fig. 14.3 the means for the left sensor and the discriminant are2:

μ
le f t
dark = 431, μ

le f t
light = 519, Δle f t = 431 + 519

2
= 475 .

A similar computation gives the discriminant for the right sensor:

Δright = 425 .

In order to obtain optimal recognition, we want an algorithm that is able to auto-
matically decide which of the two discriminants is better. This is a preliminary step-
ping stone to the method described in Sect. 14.2, where a discriminant is computed
by combining data from both sensors.

Intuitively, the greater the difference between the means of the light and dark
areas:

∣
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light
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∣
∣μ

right
dark − μ

right
light

∣
∣
∣ ,

the easier it will be to place a discriminant between the two classes. The difference
between the means of the left sensor (88) is a bit greater than the difference between
the means of the right sensor (84). This leads us to choose the discriminant (475)
computed from the means of the left sensor. However, from the plot in Fig. 14.4 it
appears that this might not be the best choice because of the large variation in the
samples of the left sensor.

2In this chapter, values will be rounded to the nearest integer.
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Fig. 14.4 Figure14.3 with means (short dashes), variances (brackets), discriminants (long dashes)

14.1.2 A Discriminant Based on the Means and Variances

A better discriminant can be obtained if we consider not only the difference of the
means but also the spread of the sample values around the mean. This is called the
variance of the samples. The variance s2 of a set of values {x1, x2, . . . , xn−1, xn} is3:

s2 = 1

n − 1

n
∑

i=1

(xi − μ)2 ,

where μ is the mean of the values in the set.
The variance computes the average of the distances of each sample from the mean

of the samples. The distances are squared because a sample can be greater than or
less than the mean, but we want a positive distance that shows how far the sample is
from the mean.

The brackets in Fig. 14.4 show the four variances for the sets of samples of the
light and dark areas for the left and right sensors. The difference between the left

3Appendix B.3 explains why n − 1 is used instead of n.
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means is somewhat greater than the difference between the right means:
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but the variances of the right sensor are much smaller than the corresponding vari-
ances of the left sensor:

(

srightdark

)2 �
(

sle f tdark

)2
,

(

srightlight

)2 �
(

sle f tlight

)2
.

The use of the variances enables better classification of the two sets, since a sensor
with less variance is more stable and this facilitates classification.

A good discriminant can be obtained by combining information from the means
and the variances. The quality of a discriminant Jk , for k = left, right, is given by:

Jk =
(

μk
dark − μk

light

)2

(

skdark
)2 +

(

sklight

)2 . (14.1)

To maximize J , the numerator—the distance between the means—should be large,
and the denominator—the variances of the samples—should be small.

Table14.1 displays the computations for the data set from Fig. 14.4. The quality
criterion J for the right sensor is much larger than the one for the left sensor. It
follows that the midpoint between the means of the right sensor:

Δright = 383 + 467

2
= 425

is a better discriminant than the midpoint of the means of the left sensor that would
be chosen by considering only the differences of the means |μdark − μlight |, which
is slightly larger for the left sensor than for the right sensor.

Table 14.1 The difference of the means and the quality criteria J

Left Right

Dark Light Dark Light

μ 431 519 383 467

s2 11 15 4 7

|μdark − μlight | 88 84

J 22 104
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14.1.3 Algorithm for Learning to Distinguish Colors

These computations are done by the robot itself, so the choice of the better discrim-
inant and the better sensor is automatic. The details of the computation are given
Algorithms 14.1 and 14.2.4

There are two classesC1,C2 and two sensors. During the learning phase, the robot
samples areas of the two gray levels independently and then computes the criterion
of quality J . The sampling and computation are done for each sensor, either one after
another or simultaneously. After the learning phase, the robot uses midpoint of the
means with the best J value for recognition of gray levels.

Algorithm 14.1: Distinguishing classes (learning phase)

float X1,X2 // Sets of samples
float μ1, μ2 // Means of C1,C2

float s1, s2 // Variances of C1,C2

float μ[2] // Means of μ1, μ2

float J [2] // Criteria of quality
integer k // Index of max(J [1], J [2])

1: for sensor i=1, 2
2: Collect a set of samples X1 from C1

3: Collect a set of samples X2 from C2

4: Compute means μ1 of X1 and μ2 of X2

5: Compute variances s1 of X1 and s2 of X2

6: Compute the mean μ[i] = μ1 + μ2

2
7: Compute the criterion J [i] from Eq. 14.1
8: k ← index of max(J [1], J [2])
9: Output μ[k]

Algorithm 14.2: Distinguishing classes (recognition phase)

float μ ← input μ[k] from the learning phase
float x

1: loop
2: x ← get new sample
3: if x < μ

4: assign x to class C1

5: else
6: assign x to class C2

4Boldface variables represent vectors or matrices.
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Activity 14.1: Robotic chameleon

• Construct an environment as shown in Fig. 14.2. Print two pieces of paper
with different uniform gray levels and tape them to the floor.

• Write a program that causes the robot to move at a constant speed over the
area of one color and sample the reflected light periodically. Repeat for the
other color.

• Plot the data, compute the means and the discriminant.
• Implement a program that classifies the measurements of the sensor. When
the robot classifies a measurement it displays which color is recognized like
a chameleon (or gives other feedback if changing color cannot be done).

• Apply the same method with a second sensor and compare the separability
of the classes using the criterion J .

• Repeat the exercise with two very close levels of gray. What do you observe?

14.2 Linear Discriminant Analysis

In the previous section we classified samples of two levels of gray based on the
measurements of one sensor out of two; the sensor was chosen automatically based
on a quality criterion. This approach is simple but not optimal. Instead of choosing
a discriminant based on one sensor, we can achieve better recognition by combining
samples from both sensors. One method is called linear discriminant analysis (LDA)
and is based upon pioneering work in 1936 by the statistician Ronald A. Fisher.

14.2.1 Motivation

To understand the advantages of combining samples from two sensors, suppose that
we need to classify objects of two colors: electric violet (ev) and cadmium red (cr).
Electric violet is composed largely of blue with a bit of red, while cadmium red is
composed largely of red with a bit of blue. Two sensors are used: one measures the
level of red and the other measures the level of blue. For a set of samples, we can
compute their means μk

j and variances (skj )
2, for j = ev, cr, k = blue, red.

The left plot in Fig. 14.5 shows samples of the electric violet objects contained
within a dashed ellipse at the upper left and samples of the cadmium red objects
contained within a dashed ellipse at the lower right. The centers of the ellipses are
the means because the samples are symmetrically distributed with respect to the
ellipses. The y-coordinate of μev is the mean of the samples of the electric violet
objects by the blue sensor and its x-coordinate is the mean of the samples of these
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Fig. 14.5 An optimal linear discriminant for distinguishing two colors

objects by the red sensor. The means of the sensors when sampling the cadmium red
objects are similarly displayed. It is easy to see that the electric violet objects have
more blue (they are higher up the y-axis), while the cadmium red objects have more
red (they are further out on the x-axis).

From the diagram we see that there is a larger difference between the means for
the blue sensor than between the means for the red sensor. At first glance, it appears
that using the blue sensor only would give a better discriminant. However, this is not
true: the dashed lines show that the red-only discriminant completely distinguishes
between electric violet and cadmium red, while the blue-only discriminant falsely
classifies some electric violet samples as cadmium red (some samples are below
the line) and falsely classifies some cadmium red samples as electric violet (some
samples are above the line).

The reason for this unintuitive result is that the blue sensor returns values that
are widely spread out (have a large variance), while the red sensor returns values
that are narrowly spread out (have a small variance), and we saw in Sect. 14.1 that
classification is better if the variance is small. The right plot in Fig. 14.5 shows that
by constructing a discriminant from both sensors it is possible to better separate
the electric violet objects from the cadmium red objects. The discriminant is still
linear (a straight line) but its slope is no longer parallel to one of the axes. This line
is computed using the variances as well as the means. The method is called linear
discriminant analysis because the discriminant is linear.
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Fig. 14.6 x–y plot of gray levels with single-sensor discriminants and an optimal discriminant

14.2.2 The Linear Discriminant

Figure14.5 is an x–y plot of data sampled from two sensors. Each value is plotted
at the point whose x-coordinate is the value returned by the red sensor and whose
y-coordinate is the value returned by the blue sensor. Similarly, Fig. 14.6 is an x–y
plot of the data from Figs. 14.3 and 14.4 that were collected as the robot moved over
two gray areas. In those graphs, the sensor values were plotted as function of time,
but time has no role in classification except to the link samples that were measured
at the same time by the two sensors.

In Fig. 14.6, classification based only on the left sensor corresponds to the vertical
dashed line, while classification based only on the right sensor corresponds to the
horizontal dashed line. Both the horizontal and vertical separation lines are not opti-
mal. Suppose that classification based on the left sensor (the vertical line) is used and
consider a sample for which the left sensor returns 470 and the right sensor returns
460. The sample will be classified as dark gray even though the classification as light
gray is better. Intuitively, it is clear that the solid diagonal line in the graph is a far
more accurate discriminant than either of the two discriminants based on a single
sensor.

How can such a linear discriminant be defined mathematically so that it can be
discovered automatically?5 The general equation for a line in the plane is y = mx+a,
where m is the slope and a is the intersect of the line and the y-axis when x = 0.
Another equation for a line is:

w1x1 + w2x2 = c , (14.2)

5The following presentation is abstract and will be easier to understand if read together with the
numerical example in Sect. 14.2.5.
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where x1 is the horizontal axis for the left sensor values, x2 is the vertical axis for
the right sensor values. c is a constant and w1,w2 are coefficients of the variables.

It is convenient to represent the coefficients as a column vector:

w =
[

w1

w2

]

.

In this representation the vector w is normal to the discriminant line and therefore
defines its slope, while the constant c enables the discriminant to be any line of that
slope, that is, any one of the infinite number of parallel lines with a given slope.
Once the slope of w is determined, c is obtained by entering a given point (x1,x2)
into Eq.14.2.

Linear discriminant analysis automatically defines the vector w and constant c
that generates an optimal discriminant line between the data sets of the two classes.
The first step is to choose a point on the discriminant line. Through that point there
are an infinite number of lines and we have to choose the line whose slope gives the
optimal discriminant. Finally, the value c can be computed from the slope and the
chosen point. The following subsections describe each of these steps in detail.

14.2.3 Choosing a Point for the Linear Discriminant

How can we choose a point? LDA is based upon the assumption that the values of
both classes have the same distribution. Informally, when looking at an x–y plot,
both sets of points should have similar size and shape. Although the distributions
will almost certainly not be exactly the same (say a Gaussian distribution) because
they result from measurements in the real world, since both sensors are subject to
the same types of variability (sensor noise, uneven floor surface) it is likely that they
will be similar.

If the two distributions are similar, the means of the samples of each sensor will
be more-or-less in the same place with respect to the distributions. The average of
the means for each sensor will be equidistant from corresponding points in the data
sets. The discriminant is chosen to be some line that passes through the point M
(Fig. 14.6) whose coordinates are:

(

μ
le f t
light + μ

le f t
dark

2
,

μ
right
light + μ

right
dark

2

)

.

14.2.4 Choosing a Slope for the Linear Discriminant

Once we have chosen the point M on the discriminant line, the next step is to choose
the slope of the line. From Fig. 14.6, we see that there are infinitely many lines
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through the point M that would distinguish between the two sets of samples. Which
is the best line based on the statistical properties of our data?

In Sect. 14.1 we looked for a way to decide between two discriminants, where
each discriminant was a line parallel to the y-axis at the midpoint between the means
of the values returned by a sensor (Fig. 14.4). The decision was based on the quality
criterion Jk (Eq. 14.1, repeated here for convenience):

Jk =
(

μk
dark − μk

light

)2

(

skdark
)2 +

(

sklight

)2 , (14.3)

where k = left, right. The discriminant with the larger value of Jk was chosen. To
maximize Jk , the numerator—the distance between the means—should be large, and
the denominator—the variances of the samples—should be small.

Now,we no longerwant to compute a quality criterion based on the values returned
by each sensor separately, but instead to compute a criterion from all the values
returned by both sensors. Figure14.7 shows an x–y plot of the values of two sensors,
where the values of the two classes are represented by red squares and blue circles.
Clearly, there is significant overlap along the x or y axes separately and it is impossible
to find lines parallel to the axes that can distinguish between the groups. However,
if we project the groups of measurements onto the line defined by a vector:

w =
[

w1

w2

]

,

w

rig
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r 
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e

left sensor value

Fig. 14.7 Projection of the samples of two classes onto a line defined by w
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the two groups can be distinguished by the separator line defined by Eq.14.2:

w1x1 + w2x2 = c ,

where c is defined by a point on the projection line situated between the red and blue
points. In analogy with Eq.14.3, we need to define a quality criterion J (w), such that
larger values of J (w) give better discriminant lines. Then, we need to find the value
of w that maximizes J (w) by differentiating this function, setting the derivative to
zero and solving for w.

The definition of J (w) is based on the means and variances of the two classes
but is too complex for this book. We give without proof that the value of w that
maximizes J (w) is:

w = S−1 (µlight − µdark) , (14.4)

where:

µlight =
⎡

⎢
⎣

μ
le f t
light

μ
right
light

⎤

⎥
⎦ , µdark =

⎡

⎢
⎣

μ
le f t
dark

μ
right
dark

⎤

⎥
⎦

are the mean vectors of the two classes and S−1 is the inverse of the average of the
covariance matrices of the two classes6:

S = 1

2

⎛

⎜
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⎜
⎜
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⎟
⎟
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.

Compared with the single-sensor Jk , the means are two-dimensional vectors because
we have one mean for each of the sensors. The sum of variances becomes the covari-
ancematrix, which takes into account both the individual variances of the two sensors
and the covariances that express how the two sensors are related.

When the values of M and w have been computed, all that remains is to compute
the constant c to fully define the discriminant line. This completes the learning phase
of the LDA algorithm. In the recognition phase, the robot uses the line defined by w
and c for classifying new samples.

The computation is formalized in Algorithms 14.3 and 14.4, where we want to
distinguish between two classes C1,C2 using two sensors. Compare this algorithm
with Algorithm 14.1: the two sets of samples X1,X2 and the means µ1,µ2 and
variances s1, s2 are vectors with two elements, one element for each of the sensors.

6See Appendix B.4 for the definition of covariance and Sect. 14.2.5 for a numerical example that
will clarify the computations.
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Algorithm 14.3: Linear discriminant analysis (learning phase)
float array[n1,2] X1 // Sets of samples of first area
float array[n2,2] X2 // Sets of samples of second area
float array[2] µ1,µ2 // Means of C1,C2

float array[2] µ // Mean of the means
float array[2] s1, s2 // Variances of C1,C2

float cov1, cov2 // Covariances of C1,C2

float array[2] Sinv // Inverse of average
float c // Constant of the line

1: Collect a set of samples X1 from C1

2: Collect a set of samples X2 from C2

3: Compute means µ1 of X1 and µ2 of X2

4: µ ← (µ1 + µ2)/2

5: Compute variances s1 of X1 and s2 of X2

6: Compute covariances cov1, cov2 of X1 and X2

7: Compute Sinv of covariance matrix
8: Compute w from Eq. 14.4
9: Compute point M from µ

10: Compute c from M and w
11: Output w and c

Algorithm 14.4: Linear discriminant analysis (recognition
phase)

float w ← input from the learning phase
float c ← input from the learning phase
float x

1: loop
2: x ← new sample
3: if x · w < c

4: assign x to class C1

5: else
6: assign x to class C2

14.2.5 Computation of a Linear Discriminant: Numerical
Example

Figure14.8 is a plot of the samples from two ground sensors measured as a robot
moves over two very similar gray areas, one that is 83.6% black and the other 85%
black. The levels are so close that the human eye cannot distinguish between them.
Can the linear discriminant computed by Algorithm 14.3 do better?
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Fig. 14.8 Similar gray areas (black dots from the darker area, red x’es from the lighter area)

Class C1 is the light gray area and class C2 is the dark gray area. The elements of
the sets of vectors X1[n1],X2[n2] are vectors:

x =
[

xle f t

xright

]

of samples measured by the left and right sensors, where n1 = 192 and n2 = 205.
First we compute the means of the data of Fig. 14.8:

µ1 = 1

192

([

389
324

]

+
[

390
323

]

+ ... +
[

389
373

])

≈
[

400
339

]

µ2 = 1

205

([

358
297

]

+
[

358
296

]

+ ... +
[

352
327

])

≈
[

357
312

]

.

More samples were taken from the second area (205) than from the first area (192),
but that is not important for computing the means. As expected, the means µ1 of
the samples from the light gray area are slightly higher (more reflected light) than
the means µ2 of the samples from the dark gray areas. However, the left sensor
consistently measures higher values than the right sensor. Figure14.9 shows the data
from Fig. 14.8 with thin dashed lines indicating the means. There are two lines for
each area: the horizontal line for the right sensor and the vertical line for the left
sensor.

The covariance matrix is composed from the variances of the two individual
sensors and their covariance. For i = 1, 2:
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Fig. 14.9 Means for each class (thin dashed lines), LDA discriminant line (solid line), discriminant
line that fully distinguishes the classes (thick dashed line)
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For the data from Fig. 14.8, the variances of the samples of the light gray area are:

s2(Xle f t
1 ) = 1

191

(

(389 − 400)2 + (390 − 400)2 + · · · + (389 − 400)2
) ≈ 187

s2(Xright
1 ) = 1

191

(

(324 − 339)2 + (323 − 339)2 + ... + (373 − 339)2
) ≈ 286 .

Equation B.4 fromAppendix B.4 is used to compute the covariance. Since covari-
ance is symmetric, the value need be computed only once.

cov(Xle f t
1 , Xright

1 ) = 1

191
((389 − 400)(324 − 339) + ... + (389 − 400)(373 − 339))

≈ −118 .

Putting the results together and performing a similar computation for X2 gives the
covariance matrices:

S1 =
[

187
−118

−118
286

]

S2 =
[

161
44

44
147

]

.
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The next step is to compute the mean of the covariance matrices:

μS = 1

2

([

187
−118

−118
286

]

+
[

161
44

44
147

])

=
[

174
−37

−38
216

]

,

and to find its inverse7:

S−1 =
[

0.006
0.001

0.001
0.005

]

.

We can now use Eq.14.4 to compute w:

w =
[

0.006
0.001

0.001
0.005

]

·
([

400
339

]

−
[

357
313

])

=
[

0.28
0.17

]

.

The vector w gives the direction of the projection line which is perpendicular to
discriminant line. We now use Eq.14.2, repeated here:

w1x1 + w2x2 = c

to compute the constant c, assuming we know the coordinate (x1, x2) of some point.
But we specified that the midpoint between the means must be on the discriminant
line. Its coordinates are:

µ = 1

2
(µ1 + µ2) = 1

2

([

400
339

]

+
[

357
313

])

≈
[

379
326

]

.

Therefore:

c = 0.28 · 379 + 0.17 · 326 ≈ 162 ,

and the equation of the discriminant line is:

0.28x1 + 0.17x2 = 162 .

The discriminant line is shown as a solid line in Fig. 14.9. Given a new sample (a, b),
compare the value of 0.28a + 0.17b to 162: If it is larger, the sample is classified
as belonging to class C1 and if it is is smaller, the sample is classified as belong to
class C2.

7See Appendix B.5.
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14.2.6 Comparing the Quality of the Discriminants

If we compare the linear discriminant found above with the two simple discriminants
based upon the means of a single sensor, we see a clear improvement. Because of the
overlap between the classes in a single direction, the simple discriminant for the right
sensor correctly classifies only 84.1% of the samples, while the simple discriminant
for the left sensor is somewhat better, classifying 93.7% of samples correctly. The
linear discriminant found using LDA is better, correctly classifying 97.5% of the
samples.

Itmight be surprising that there are discriminant lines that can correctly classify all
of the samples! One such discriminant is shown by the thick dashed line in Fig. 14.9.
Why didn’t LDA find this discriminant? LDA assumes both classes have a similar
distribution (spread of values) around the mean and the LDA discriminant is optimal
under this assumption. For our data, some points in the second class are far from the
mean and thus the distributions of the two classes are slightly different. It is hard to
say if these samples are outliers, perhaps caused by problem when printing the gray
areas on paper. In that case, it is certainly possible that subsequent sampling of the
two areas would result in distributions that are similar to each other, leading to the
correct classification by the LDA discriminant.

14.2.7 Activities for LDA

Activities for LDA are collected in this section.

Activity 14.2: Robotic chameleon with LDA

• Construct an environment as shown in Fig. 14.2 but with two gray levels very
similar to each other.

• Write a program that causes the robot to move at a constant speed over the
area of one color and sample the reflected light periodically. Repeat for the
other color.

• Plot the data.
• Compute the averages, the covariance matrices and the discriminant.
• Implement a program that classifies measurements of the sensor. When the
robot classifies a measurement it displays which color is recognized (or gives
other feedback if changing color cannot be done).
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Turn
left

Turn
right

Fig. 14.10 Training for obstacle avoidance

Activity 14.3: Obstacle avoidance with two sensors

• Figure14.10 shows a robot approaching a wall. The upper part of the diagram
shows various situationswhere the robot detects thewall with its right sensors;
therefore, it should turn left to move around the wall. Similarly, in the lower
part of the diagram the robot should turn right.

• Write a program that stores the sensor values from both the right and left
sensors when a button is pressed. The program also stores the identity of
which button was pressed; this represents the class we are looking for when
doing obstacle avoidance.

• Train the robot: Place the robot next to a wall and run the program. Touch the
left button if the robot should turn left or the right button if the robot should
turn right. Repeat many times.

• Plot the samples from the two sensors on an x–y graph and group them by
class: turn right or left to avoid of the wall. You should obtain a graph similar
to the one in Fig. 14.11.

• Draw a discriminant line separating the two classes.
• How successful is your discriminant line? What percentage of the samples
can it successfully classify?

• Compute the optimal discriminant using LDA. How successful is it? Do the
assumptions of LDA hold?

Activity 14.4: Following an object

• Write a program that causes the robot to follow an object. The robot moves
forward if it detects the object in front; it moves backwards if it is too close
to the object. The robot turns right if the object is to its right and the robot
turns left if the object is to its left.
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Fig. 14.11 Obstacle avoidance data from the class “go left” (red x’es) and the class “go right”
(black triangles)
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Fig. 14.12 Data acquired in a learning phase for following an object

• Use two sensors so we can visualize the data on an x–y plot.
• Acquire and plot the data as in Activity 14.3. The plot should be similar to
the one shown in Fig. 14.12.

• Explain the classifications in Fig. 14.12. What is the problem with classifying
a sample as going forwards or going backwards? Why do the samples for
going forwards and backwards have different values for the left and right
sensors?

• Suggest an algorithm for classifying the four situations. Could you use a
combination of linear separators?
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14.3 Generalization of the Linear Discriminant

In this section we point out some ways in which LDA can be extended and improved.
First,we canhavemore sensors. Themathematics becomesmore complexbecause

with n sensors, the vectors will have n elements and the covariance matrix will have
n × n elements, requiring more computing power and more memory. Instead of a
discriminant line, the discriminant will be an n − 1 dimension hyperplane. Classi-
fication with multiple sensors is used with electroencephalography (EEG) signals
from the brain in order to control a robot by thought alone.

Activity 14.4 demonstrated another generalization: classification into more than
two classes. Discriminants are used to classify between each pair of classes. Suppose
you have three classes C1, C2, and C3, and discriminants Δ12,Δ13,Δ23. If a new
sample is classified in class C2 by Δ12, in class C1 by Δ12, and in class C2 by Δ23,
the final classification will be into class C2 because more discriminants assign the
sample to that class.

A third generalization is to use a higher order curve instead of a straight line,
for example, a quadratic function. A higher order discriminant can separate classes
whose data sets are not simple clusters of samples.

14.4 Perceptrons

LDA can distinguish between classes only under the assumption that the samples
have similar distributions in the classes. In this section, we present another approach
to classification using perceptrons which are related to neural networks (Chap.13).
Therewe showed how learning rules can generate specified behaviors linking sensors
and motors; here we show how they can be used to classify data into classes.

14.4.1 Detecting a Slope

Consider a robot exploring difficult terrain. It is important that the robot identify
steep slopes so it won’t fall over, but it is difficult to specify in advance all dangerous
situations since these depend on characteristics such as the geometry of the ground
and its properties (wet/dry, sand/mud). Instead, we wish to train the robot to adapt
its behavior in different environments.

To simplify the problem, assume that the robot can move just forwards and back-
wards, and that it has accelerometers on two axes relative to the body of the robot:
one measures acceleration forwards and backwards, and the other measures accel-
eration upwards and downwards. A robot that is stationary on a level surface will
measure zero acceleration forwards and backwards, and an downwards acceleration
of 9.8m/sec2 due to gravity. Gravitational acceleration is relatively strong compared

http://dx.doi.org/10.1007/978-3-319-62533-1_13
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acc1
acc2

Fig. 14.13 A robot with accelerometers moving in difficult terrain

with the acceleration of a slow-moving robot, so the relative values of the accelerom-
eter along the two axes will give a good indication of its attitude.

Figure14.13 shows a robot moving forwards on a slope. The values returned by
both accelerometers are similar, acc1 ≈ acc2, so we can infer that the robot is on
a slope. If acc2 � acc1, we would infer that the robot is on level ground because
the up/down accelerometer measures the full force of gravity while the front/back
accelerometer measures only the very small acceleration of the moving robot. The
task is to distinguish between a safe position of the robot and one in which the slope
starts to become too steep so that the robot is in danger of falling.

Figure14.14 shows data acquired during a training session as the robot moves
down a slope. When the operator of the training session determines that the robot is
stable (class C1), she initiates a measurement indicated by a red ×; when she deter-
mines that the robot is in a dangerous situation (classC2), she initiates ameasurement
indicated by a black triangle. The challenge is to find away of distinguishing samples
of the two classes.

The dashed lines in the figure show the means for the two data sets. It is clear that
they do not help us classify the data because of the large overlap between the two sets
of samples. Furthermore, LDA is not appropriate because there is no similarity in
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Fig. 14.14 Detecting a dangerous slope using data from the accelerometers
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Fig. 14.15 A perceptron

the distributions: samples when the robot is stable appear in many parts of the plot,
while samples from dangerous situations are concentrated in a small area around
their mean.

14.4.2 Classification with Perceptrons

A perceptron is an artificial neuron with a specific structure (Fig. 14.15). It has a
summation unit with inputs {x1, . . . , xn} and each input xi is multiplied by a factor
wi before summation. An additional input x0 has the constant value 1 for setting a
bias independent of the inputs. The output of the perceptron is obtained by applying
a function f to the result of the addition.

When used as a classifier, the inputs to the perceptron are the values returned by
the sensors for a sample to be classified and the output will be one of two values that
indicate the class to which the sample is assigned. Usually, the output function f is
just the sign of the weighted sum:

y = sign

(
n

∑

i=0

wi xi

)

= ±1 , (14.5)

where one class corresponds to +1 and the other to −1.
The data are normalized so that all inputs are in the same range, usually −1 ≤

xi ≤ +1. The data in Fig. 14.14 can be normalized by dividing each value by 30.
Given a set of input values {x0 = 1, x1, . . . , xn} of a sample, the object of a

training session is to find a set of weights {w0,w1, . . . ,wn} so that the output will be
the value ±1 that assigns the sample to the correct class.

If the sample is close to the border between two classes, the weighted sum will
be close to zero. Therefore, a perceptron is also a linear classifier: to distinguish
between outputs of ±1, the discriminant dividing the two classes is defined by the
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set of weights giving an output of zero:

n
∑

i=0

wi xi = 0 ,

or

w0 + w1x1 + · · · + wnxn = 0 . (14.6)

The presentation of LDA for a two-dimensional problem (n = 2) led to Eq.14.2,
which is the same as Eq.14.6 when c = −w0. The difference between the two
approaches is in the way the weights are obtained: in LDA statistics are used while
for perceptrons they result from an iterative learning process.

14.4.3 Learning by a Perceptron

The iterative search for values of the weights {w0,w1, . . . ,wn} starts by setting
them to a small value such as 0.1. During the learning phase, a set of samples is
presented to the perceptron, together with the expected output (the class) for each
element of the set. The set of samples must be constructed randomly and include
elements from all the classes; furthermore, the elements from a single class must
also be chosen randomly. This is to prevent the learning algorithm from generating
a discriminant that is optimal in one specific situation, and to ensure that the process
converges rapidly to an overall optimal discriminant, rather than spending too much
time optimizing for specific cases.

The adjustment of the weights is computed as follows:

wi (t + 1) = wi (t) + η xi y , 0 ≤ i ≤ n . (14.7)

This is essentially the Hebbian rule for ANNs (Sect. 13.5.2). wi (t) and wi (t + 1) are
the i’th weights before and after the correction, η defines the learning rate, xi is the
normalized input, and y is the desired output. Since the sign function is applied to
the sum of the weighted inputs, y is 1 or −1, except on the rare occasions where the
sum is exactly zero.

Equation14.7 corrects the weights by adding or subtracting a value that is pro-
portional to the input, where the coefficient of proportionality is the learning rate.
A small value for the learning rate means that the corrections to the weights will
be in small increments, while a high learning rate will cause the corrections to the
weights to be in larger increments. Once learning is completed, the weights are used
to classify subsequent samples.

http://dx.doi.org/10.1007/978-3-319-62533-1_13
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Algorithms 14.5 and 14.6 are a formal description of classification by perceptrons.
The constant N is the size of the set of samples for the learning phase, while n is the
number of sensor values returned for each sample.

Algorithm 14.5: Classification by a perceptron (learning phase)

float array[N ,n] X // Set of samples
float array[n + 1] w ← [0.1, 0.1, . . .] // Weights
float array[n] x // Random sample
integer c // Class of the random sample
integer y // Output of the perceptron

1: loop until learning terminated
2: x ← random element of X
3: c ← class to which x belongs
4: y ← output according to Eq. 14.5
5: if y does not correspond to class c

6: adjust wi according to Eq. 14.7
7: Output w

Algorithm 14.6: Classification by a perceptron (recognition
phase)

float w ← weights from the learning phase
float x
integer y

1: loop
2: x ← new sample
3: y ← output of perceptron for x,w
4: if y = 1

5: assign x to class C1

6: else if y = −1

7: assign x to class C2

When should the learning phase be terminated? One could specify an arbitrary
value, for example: terminate the learning phase when 98% of the samples are classi-
fied correctly. However, it may not be possible to achieve this level. A better method
is to terminate the learning phase when the magnitudes of the corrections to the
weights become small.
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14.4.4 Numerical Example

Wereturn to the robot that is learning to avoid dangerous slopes and apply the learning
algorithm to the data in Fig. 14.14. The perceptron has three inputs: x0 which always
set to 1, x1 for the data from the front/back accelerometer, and x2 for the data from
the up/down accelerometer. The data is normalized by dividing each sample by 30
so that values will be between 0 and 1. We specify that an output of 1 corresponds
to class C1 (stable) and an output of −1 corresponds to class C2 (dangerous).

Select a random sample from the input data, for example, a sample in class C1

whose sensor values are x1 = 14 and x2 = 18. The normalized input is x1 = 14/30 =
0.47 and x2 = 18/30 = 0.6. The output of the perceptron with initial weights 0.1
is:

y = sign(w0 × 1 + w1x1 + w2x2)

= sign(0.1 × 1 + 0.1 × 0.47 + 0.1 × 0.6)

= sign(0.207)

= 1 .

This output is correct so the weights need not be corrected. Now choose a random
sample in class C2 whose sensor values are x1 = 17 and x2 = 15. The normalized
input is x1 = 17/30 = 0.57 and x2 = 15/30 = 0.5. The output of the perceptron is:

y = sign(w0 × 1 + w1x1 + w2x2)

= sign(0.1 × 1 + 0.1 × 0.57 + 0.1 × 0.5)

= sign(0.207)

= 1 .

This output is not correct: the sample is from class C2 which corresponds to−1. The
weights are now adjusted using Eq.14.7 with a learning rate η = 0.1:

w0(t + 1) = w0(t) + η x0y = 0.1 + 0.1 × 1 × −1 = 0

w1(t + 1) = w1(t) + η x1y = 0.1 + 0.1 × 0.57 × −1 = 0.043

w2(t + 1) = w2(t) + η x2y = 0.1 + 0.1 × 0.5 × −1 = 0.05 .

Thesewill be the newweights for the next iteration. Ifwe continue for 2000 iterations,
the weights evolve as shown in Fig. 14.16. At the end of the learning process, the
weights are:

w0 = −0.1, w1 = −0.39, w2 = 0.53 .

These weights can now be used by the recognition phase of the classification
Algorithm 14.6. The discriminant line built by the perceptron (Eq.14.6) is:
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Fig. 14.16 Evolution of the weights for learning by a perceptron
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Fig. 14.17 Discriminant line computed from the perceptron weights

−0.1 − 0.39x1 + 0.53x2 = 0 .

The coordinates of this line are the normalized values, but they can be transformed
back into the raw values obtained from the accelerometers. The line is shown in
Fig. 14.17 and considering the large overlap of the classes, it does a reasonably good
job of distinguishing between them.

14.4.5 Tuning the Parameters of the Perceptron

The performance of a perceptron is determined by the number of iterations and the
learning rate. Figure14.16 shows that there is a strong variation in the weights at the
beginning, but the weights stabilize as the number of iterations increases. Thus it
is relatively simple to monitor the weights and terminate the computation when the
weights stabilize.
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This evolution of the weights depends strongly on the learning rate. Increasing
the learning rate speeds the variation at the beginning, but strong corrections are not
beneficial when the weights begin to stabilize. From Fig. 14.16, it is clear that even
at the end of the run, there are significant variations in the weights which oscillate
around the optimal value. This suggests that we reduce the learning rate to reduce
the oscillations, but doing so will slow down the convergence to the optimal weights
at the beginning of the learning phase.

The solution is to use a variable learning rate that is not constant. It should start
out large to encourage rapid convergence to the optimal values, and then become
smaller to reduce oscillations. For example, we can start with the learning rate of 0.1
and then decrease it continually using the equation:

η (t + 1) = η (t) × 0.997 .

Figure14.18 shows the evolution of the weights when this variable learning rate is
used. The exponential decrease of η is also plotted in the figure. A comparison of
Figs. 14.16 and 14.18 clearly shows the superiority of the variable learning rate and
this improvement is obtained with very little additional computation.

Activity 14.5: Learning by a perceptron

• Take a set of measurements of the accelerometers on your robot on various
slopes and plot the data. For each sample you will have to decide if the robot
is in danger of falling off the slope.

• Classify the data using a perceptron. What discriminant line do you find?
• Useaperceptron to classify the gray areas using the data ofActivity 14.2.What
discriminant do you find? Compare the discriminant found by the perceptron
to the discriminant found by LDA.
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Fig. 14.18 Evolution of the weights for learning by a perceptron with a variable learning rate
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14.5 Summary

Samples of two classes can be distinguished using their means alone or using both the
means and the variances. Linear discriminant analysis is a method for classification
that is based on computing the covariances between the samples of the classes. LDA
performs well only when the distributions of the samples of the classes are similar.
When this assumption does not hold, perceptrons can be used. For optimum perfor-
mance, the learning rate of a perceptron must be adjusted, if possible dynamically
during the learning phase.

14.6 Further Reading

A detailed mathematical presentation of linear discriminant analysis can be found in
Izenman [2, Chap. 8]. Textbooks on machine learning techniques are [1, 3].
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