
Chapter 13
Neural Networks

Chapter3 described reactive behaviors inspired by thework ofValentinoBraitenberg.
The control of simple Braitenberg vehicles is very similar to the control of a living
organism by its biological neural network. This term refers to the nervous system
of a living organism, including its brain and the nerves that transmit signals through
the body. Computerized models of neural networks are an active topic of research in
artificial intelligence. Artificial neural networks (ANNs) enable complex behavior to
be implemented using a large number of relatively simple abstract components that
are modeled on neurons, the components of biological neural networks. This chapter
presents the use of ANNs to control the behavior of robots.

Following a brief overview of the biological nervous system in Sect. 13.1,
Sect. 13.2 defines the ANN model and Sect. 13.3 shows how it can be used to imple-
ment the behavior of a Braitenberg vehicle. Section13.4 presents different network
topologies. The most important characteristic of ANNs is their capability for learn-
ing which enables them to adapt their behavior. Section13.5 presents an overview
of learning in ANNs using the Hebbian rule.

13.1 The Biological Neural System

The nervous system of living organisms consists of cells called neurons that process
and transmit information within the body. Each neuron performs a simple operation,
but the combination of these operations leads to complex behavior. Most neurons are
concentrated in the brain, but others form the nerves that transmit signals to and from
the brain. In vertebrates like ourselves, many neurons are concentrated in the spinal
cord which efficiently transmit signals throughout the body. There are an immense
number of neurons in a living being: the human brain has about 100 billion neurons
while even a mouse brain has about 71 million neurons [2].

© The Author(s) 2018
M. Ben-Ari and F. Mondada, Elements of Robotics,
https://doi.org/10.1007/978-3-319-62533-1_13

203

http://dx.doi.org/10.1007/978-3-319-62533-1_3


204 13 Neural Networks

Fig. 13.1 Structure of a neuron. Source https://commons.wikimedia.org/wiki/File:Neuron.svg
by Dhp1080 [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL https://en.
wikipedia.org/wiki/en:GNU_Free_Documentation_License)], via Wikimedia Commons

Figure13.1 shows the structure of a neuron. It has a main body with a nucleus
and a long fiber called an axon that allows one neuron to connect with another. The
body of a neuron has projections called dendrites. Axons from other neurons connect
to the dendrites through synapses. Neurons function through biochemical processes
that are well understood, but we can abstract these processes into pulses that travel
from one neuron to another. Input pulses are received through the synapses into the
dendrites and from them to the body of the neuron, which processes the pulses and
in turn transmits an output pulse through the axon. The processing in the body of a
neuron can be abstracted as a function from the input pulses to an output pulse, and
the synapses regulate the transmission of the signals. Synapses are adaptive and are
the primary element that makes memory and learning possible.

13.2 The Artificial Neural Network Model

An artificial neuron is a mathematical model of a biological neuron (Fig. 13.2a, b;
see Table13.1 for a list of the symbols appearing in ANN diagrams). The body of the
neuron is a node that performs two functions: it computes the sum of the weighted
input signals and it applies an output function to the sum. The input signals are
multiplied by weights before the sum and output functions are applied; this models
the synapse. The output function is usually nonlinear; examples are: (1) converting
the neuron’s output to a set of discrete values (turn a light on or off); (2) limiting
the range of the output values (the motor power can be between −100 and 100; (3)
normalizing the range of output values (the volume of a sound is between 0 (mute)
and 1 (maximum).

Artificial neurons are analog models, that is, the inputs, outputs, weights and
functions can be floating point numbers. Here we start with an unrealistic activity

https://commons.wikimedia.org/wiki/File:Neuron.svg
http://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/en:GNU_Free_Documentation_License
https://en.wikipedia.org/wiki/en:GNU_Free_Documentation_License


13.2 The Artificial Neural Network Model 205

f y1x1 w1 f y1

x1

w1

x2

w2

(a) (b)

Fig. 13.2 a ANN: one neuron with one input. b ANN: one neuron with two inputs

Table 13.1 Symbols used in
ANN diagrams

Symbol Meaning

f Neuron output function

+ Sum of the inputs

xi Inputs

yi Outputs

wi Weights for the inputs

1 Constant input of value 1

that demonstrates how artificial neurons work within the familiar context of digital
logic gates.

Figure13.3a shows an artificial neuron with two inputs, x1 and 1, and one output
y. The meaning of the input 1 is that the input is not connected to an external sensor,
but instead returns a constant value of 1. The input value of x1 is assumed to be 0 or
1. The function f is:

f (x) = 0 if x < 0
f (x) = 1 if x ≥ 0 .

Show that with the given weights the neuron implements the logic gate for not.

Activity 13.1: Artificial neurons for logic gates

• The artificial neuron in Fig. 13.3b has an additional input x2. Assign weights
w0, w1, w2 so that y is 1 only if the values of x1 or x2 (or both) are 1. This
implements the logic gate for or.

• Assign weights w0, w1, w2 so that y is 1 only if the values of x1 and x2 are
both 1. This implements the logic gate for and.

• Implement the artificial neurons for logic gates onyour robot.Use two sensors,
one for x1 and one for x2. Use the output y (mapped by f , if necessary) so
that an output of 0 gives one behavior and an output of 1 another behavior,
such as turning a light on or off, or starting and stopping the robot.

The following activity explores analog processing in an artificial neuron.



206 13 Neural Networks

f y

1

10

x1 20 f y

1

w0

x1 w1

x2

w2

(a) (b)

Fig. 13.3 a Artificial neuron for the not gate. b Artificial neuron for the and and or gates

Activity 13.2: Analog artificial neurons

• Implement the artificial neuron shown in Fig. 13.2a so that it demonstrates
the following behavior. The input to the neuron will be the reading of a
proximity sensor at the front of the robot. The output will be one or both
of the following: (1) the intensity of a light on the robot or the volume of
the sound from a speaker on the robot; (2) the motor power applied to both
the left and right motors so that the robot retreats from an object detected
by the sensor.

• The output value will be proportional to the input value: the closer the object,
the greater the intensity (or volume); the closer the object, the faster the robot
retreats from the object.

• Modify the implementation so that there are two inputs from two proximity
sensors (Fig. 13.2b). Give different values to the two weightsw1,w2 and show
that the sensor connected to the input with the larger weight has more effect
on the output.

13.3 Implementing a Braintenberg Vehicle with an ANN

Figure13.4 shows a robot inspired by a Braitenberg vehicle whose behavior is imple-
mented using a simple neural network. We describe the ANN in detail and then give
several activities that ask you to design and implement the algorithm.



13.3 Implementing a Braintenberg Vehicle with an ANN 207

f

f

y1

y2

x1

wpos
wneg

x2

wback

wback

x3

wneg
wpos

1

wfwd

wfwd

Fig. 13.4 Neural network for obstacle avoidance

Specification (obstacle avoidance):
The robot has three forward-facing sensors.

• The robot moves forwards unless it detects an obstacle.

• If the obstacle is detected by the center sensor, the robot moves slowly
backwards.

• If the obstacle is detected by the left sensor, the robot turns right.

• If the obstacle is detected by the right sensor, the robot turns left.

Figure13.4 shows the two neuronswhose outputs control the power sent to themotors
of the wheels of the robot. Table13.2 lists the symbols used in the figure.

Each neuron has four inputs. The function f must be nonlinear in order to limit
the maximum forward and backward speeds. The large dot at the back of the robot

Table 13.2 Symbols in Fig. 13.4 in addition to those in Table13.1

Symbol Meaning

wfwd Weight for forward movement

wback Weight for backward movement

wpos Weight for positive wheel rotation

wneg Weight for negative wheel rotation



208 13 Neural Networks

denotes a constant input of 1 that is weighted bywfwd. This ensures that in the absence
of signals from the sensors, the robot will move forwards. When implementing the
ANN you need to find a weight so that the output motor powers are reasonable in
the absence input from the sensors. The weight should also ensure that the constant
input is similar to inputs from the sensors.

The x1, x2, x3 values come from the sensors that return zerowhen there is no object
and an increasing positive value when approaching an object. The center sensor is
connected to both neurons with a negative weight −wback so that if an obstacle is
detected the robot will move backwards. This weight should be set to a value that
causes the robot to move backwards slowly.

The left and right sensors are connected to the neurons with a positive weight for
the neuron controlling the nearwheel and a negativeweight for the neuron controlling
the far wheel. This ensures that robot turns away from the obstacle.

The following activity asks you to think about the relative values of the weights.

Activity 13.3: ANN for obstacle avoidance: design

• What relation must hold between wfwd and wback?
• What relation must hold between wfwd and wpos and between wfwd and wneg?
• What relation must hold between wback and wpos and between wback and wneg?
• What relation must hold between wpos and wneg?
• What happens if the obstacle is detected by both the left and center sensors?

In the following activities, you will have to experiment with the weights and the
functions to achieve the desired behavior. Your program should use a data structure
like an array so that it is easy to change the values of the weights.

Activity 13.4: ANN for obstacle avoidance: implementation

• Write a program for obstacle avoidance using the ANN in Fig. 13.4.

Activity 13.5: ANN for obstacle attraction

• Write a program to implement obstacle attraction using an ANN:

– The robot moves forwards.
– If the center sensor detects that the robot is very close to the obstacle, it
stops.

– If an obstacle is detected by the left sensor, the robot turns left.
– If an obstacle is detected by the right sensor, the robot turns right.



13.4 Artificial Neural Networks: Topologies 209

13.4 Artificial Neural Networks: Topologies

The example in the previous section is based on an artificial neural network composed
of a single layer of two neurons, each with several inputs and a single output. This
is a very simple topology for an artificial neural network; many other topologies can
implement more complex algorithms (Fig. 13.5). Currently, ANNs with thousands
or even millions of neurons arranged in many layers are used to implement deep
learning. In this section we present an overview of some ANN topologies.

13.4.1 Multilayer Topology

Figure13.6a shows an ANNwith several layers of neurons. The additional layers can
implementmore complex computations than a single layer. For example,with a single
layer it is not possible to have the robot move forward when only one sensor detects
an obstacle andmove backwards when several sensors detect an obstacle. The reason

Fig. 13.5 Neural network for deep learning

(a) (b)

Fig. 13.6 a Multilayer ANN. b ANN with memory



210 13 Neural Networks

is that the function in a single layer linking the sensors and the motors is monotonic,
that is, it can cause the motor to go faster when the sensor input increases or slower
when the sensor input increases, but not both. The layer of neurons connected to the
output is called the output layer while the internal layers are called the hidden layers.

Activity 13.6: Multilayer ANNs

• The goal of this activity is to understand how multilayer ANNs can perform
computations that a single-layer ANN cannot. For the activity, assume that
the inputs xi are in the range−2.0 to 2.0, the weightswi are in the range−1.0
to 1.0, and the functions f limit the output values to the range −1.0 to 1.0.

• For the ANN consisting of a single neuron (Fig. 13.2a) with w1 =
−0.5, compute y1 for inputs in increments of 0.2: x1 = −2.0,
−1.8, . . . , 0.0, . . . , 1.8, 2.0. Plot the results in a graph.

• Repeat the computation for several values of w1. What can you say about the
relationship between the output and the input?

• Consider the two-layer ANN shown in Fig. 13.7 with weights:

w11 = 1, w12 = 0.5, w21 = 1, w22 = −1 .

Compute the values and draw graphs of the outputs of the neurons of the
hidden layer (the left neurons) and the output layer (the right neuron). Can
you obtain the same output from an ANN with only one layer?

Activity 13.7: Multilayer ANN for obstacle avoidance

• Design an ANN that implements the following behavior of a robot: There are
two front sensors. When an object is detected in front of one of the sensors,
the robot turns to avoid the object, but when an object is detected by both
sensors, the robot moves backwards.

f f

f

w11 w21

w12

w22

Fig. 13.7 Two-layer ANN



13.4 Artificial Neural Networks: Topologies 211

13.4.2 Memory

An artificial neural network can have recurrent connections from the output of a
neuron to the input of a neuron in the same layer (including itself). Recurrent con-
nections can be used to implement memory. Consider the Braitenberg vehicle for
obstacle avoidance (Fig. 13.4). It only turns when obstacles are detected by the sen-
sors. When they are no longer detected, the robot does not continue to turn. By
adding recurrent connections we can introduce a memory effect that causes the robot
to continue turning. Suppose that each of the sensors causes an input of 0.75 to the
neurons and that causes the output to be saturated to 1.0 by the non-linear output
function. If the sensors no longer detect the obstacle, the inputs become 0, but the
recurrent connection adds an input of 1.0 so the output remains 1.0.

Activity 13.8: ANN with memory

• Consider the network in Fig. 13.6b with an output function that saturates to 0
and 1. The inputs and most weights are also between 0 and 1. What happens
if the weight of the recurrent connections in the figure is higher than 1? What
happens if it is between 0 and 1?

• Modify the implementation of the network in Fig. 13.4 to add recurrent con-
nections on the two output neurons. What is their effect in the obstacle-
avoidance behavior of the robot?

13.4.3 Spatial Filter

A camera is a sensing device constructed from a large number of adjacent sensors
(one for each pixel). The values of the sensors can be the inputs to an ANN with a
large number of neurons in the first layer (Fig. 13.8). Nearby pixels will be input to
adjacent neurons. Thenetwork canbeused to extract local features such as differences
of intensity between adjacent pixels in an image, and this local property can be used
for tasks like identifying edges in the image. The number of layers may be one or
more. This topology of neurons is called a spatial filter because it can be used as a
filter before a layer that implements an algorithm for obstacle avoidance.

Example The ANN in Fig. 13.8 can be used to distinguish between narrow and wide
objects. For example, both a leg of a chair and a wall are detected as objects, but
the former is an obstacle that can be avoided by a sequence of turns whereas a wall
cannot be avoided so the robot must turn around or follow the wall.

Suppose that the leg of the chair is detected by the middle sensor with a value of
60, but since the leg is narrow the other sensors return the value 0. The output values
of the ANN (from top to bottom) are:



212 13 Neural Networks

4

4

4

4

4

2

4

2

2

2

2

2

4

Fig. 13.8 ANN for spatial filtering

(0 × 4) + (0 × −4) = 0

(0 × −2) + (0 × 4) + (60 × −2) = −120

(0 × −2) + (60 × 4) + (0 × −2) = +400

(60 × −2) + (0 × 4) + (0 × −2) = −120

(0 × 4) + (0 × −4) = 0 .

When the robot approaches a wall all the sensors will return more or less the same
values, say, 45, 50, 40, 55, 50. The output values of the ANN are:

(45 × 4) + (50 × −4) = −20

(45 × −2) + (50 × 4) + (40 × −2) = +30

(50 × −2) + (40 × 4) + (55 × −2) = −50

(40 × −2) + (55 × 4) + (50 × −2) = +40

(55 × −4) + (50 × 4) = −20 .

Even though 48, the average value returned by the sensors detecting the wall, is about
the same as the value 60 returned when detecting the leg of the chair, the outputs of
the ANNs are clearly distinguishable. The first set of values has a high peak value
surrounded by neighbors with large negative values, while second set is a relatively
flat set of values in the range−50 to 40. The layer of neurons can confidently identify
whether the object is narrow or wide.



13.4 Artificial Neural Networks: Topologies 213

Activity 13.9: ANN for spatial filtering

• Implement the ANN for spatial filtering in Fig. 13.8.
• The inputs to the ANN are the readings of five proximity sensors facing
forwards. If only one sensor detects an object, the robot turns to face the
object. If the center sensor is the one that detects the object, the robot moves
forwards.

• Implement three behaviors of the robot when it detects a wall defined as all
five sensors detecting an object:

– The robot stops.
– The robot moves forwards.
– The robot moves backwards.

Remember that there are no if-statements in an artificial neural network; you
can only add additional neurons or change the weights associated with the
inputs of the neurons. Look again at Activity13.7 which used two levels of
neurons to implement a similar behavior.

• The implementation will involve adding two additional neurons whose inputs
are the outputs of the first layer. The output of the first neuron will set the
power setting of the left motor and the output of the second neuron will set
the power setting of the right motor.

• What happens if an object is detected by two adjacent sensors?

13.5 Learning

Setting the weights manually is difficult even for very small networks such as those
presented in the previous sections. In biological organisms synapses have a plasticity
that enables learning. The power of artificial neural networks comes from their
ability to learn, unlike ordinary algorithms that have to be specified to the last detail.
There are many techniques for learning in ANNs; we describe one of the simpler
techniques in this section and show how it can be used in the neural network for
obstacle avoidance.

13.5.1 Categories of Learning Algorithms

There are three main categories of learning algorithms:



214 13 Neural Networks

• Supervised learning is applicable when we know what output is expected for
a set of inputs. The error between the desired and the actual outputs is used to
correct the weights in order to reduce the error. Why is it necessary to train a
network if we already know how it should behave? One reason is that the network
is required to provide outputs in situations for which it was not trained. If the
weights are adjusted so that the network behaves correctly on known inputs, it is
reasonable to assume that its behavior will be more or less correct on other inputs.
A second reason for training a network is to simplify the learning process: rather
than directly relate the outputs {yi } to specific values of the inputs {xi }, it is easier
to place the network in several different situations and to tell it which outputs are
expected in each situation.

• In reinforcement learning we do not specify the exact output value in each sit-
uation; instead, we simply tell the network if the output it computes is good or
not. Reinforcement is appropriate when we can easily distinguish correct behav-
ior from incorrect behavior, but we don’t really care what the exact output is for
each situation. In the next section, we present reinforcement learning for obstacle
avoidance by a robot; for this task it is sufficient that the robot avoid the obstacle
and we don’t care what motor settings are output by the network as long as the
behavior is correct.

• Unsupervised learning is learning without external feedback, where the network
adapts to a large number of inputs. Unsupervised learning is not appropriate for
achieving specified goals; instead, it is used in classification problems where the
network is presented with raw data and attempts to find trends within the data.
This approach to learning is the topic of Chap.14.

13.5.2 The Hebbian Rule for Learning in ANNs

The Hebbian rule is a simple learning technique for ANNs. It is a form of reinforce-
ment learning that modifies the weights of the connections between the neurons.
When the network is doing something good we reinforce this good answer: if the
output value of two connected neurons is similar, we increase the weight of the con-
nection linking them, while if they are different, we decrease the weight. If the robot
is doing something wrong, we can either decrease the weights of similar connected
neurons or do nothing.

The change in the weight of the connection between neuron k and neuron j is
described by the equation:

Δwkj = α yk x j ,

where wkj is the weight linking the neurons k and j , Δwkj is the change of wkj , yk is
the output of neuron k and x j the input of neuron j , and α is a constant that defines
the speed of learning.

http://dx.doi.org/10.1007/978-3-319-62533-1_14


13.5 Learning 215

The Hebbian rule is applicable under two conditions:

• The robot is exploring its environment, encountering various situations, each with
its own inputs for which the network computes a set of outputs.

• The robot receives information on which behaviors are good and which are not.

The evaluation of the quality of the robot’s behavior can come from a human observer
manually giving feedback; alternatively, an automatic system can be used to evaluate
the behavior. For example, in order to teach the robot to avoid obstacles, an external
camera can be used to observe the robot and to evaluate its behavior. The behavior
is classified as bad when the robot is approaching an obstacle and as good when the
robot is moving away from all the obstacles. It is important to understand that what is
evaluated is not the state of the robot (close to or far from an obstacle), but rather the
behavior of the robot (approaching or avoiding an obstacle). The reason is that the
connections of the neural network generate behavior based on the state as measured
by the sensors.

Learning to avoid an obstacle

Suppose that we want to teach a robot to avoid an obstacle. One way would be to
let the robot move randomly in the environment, and then touch one key when it
successfully avoids the obstacle and another when it crashes into the obstacle. The
problem with this approach is that it will probably take a very long time for the
robot to exhibit behavior that can be definitely characterized as positive (avoiding
the obstacle) or negative (crashing it into the obstacle).

Alternatively, we can present the robot with several known situations and the
required behavior: (1) detecting obstacle on the left and turning right is good; (2)
detecting an obstacle on the right and turning left is good; (3) detecting an obstacle in
front and moving backwards is good; (4) detecting an obstacle in front and moving
forwards is bad.

This looks like supervised learning but it is not, because the feedback to the robot
is used only to reinforce the weights linked to good behavior. Supervised learning
would consist in quantifying the error between the desired and actual outputs (to
the motors in this case), and using this error to adjust the weights to compute exact
outputs. Feedback in reinforcement learning is binary: the behavior is good or not.

The algorithm for obstacle avoidance

Let us now demonstrate the Hebbian rule for learning on the problem of obstacle
avoidance. Figure13.9 is similar to Fig. 13.4 except that proximity sensors have been
added to the rear of the robot. We have also changed the notation for the weights
to make them more appropriate for expressing the Hebbian rule; in particular, the
negative signs have been absorbed into the weights.

The obstacle-avoidance algorithm is implemented using several concurrent
processes and will be displayed as a set of three algorithms. Algorithm13.1 imple-
ments an ANN which reads the inputs from the sensors and computes the outputs
to the motors. The numbers of inputs and outputs are taken from Fig.13.9. Algo-
rithm13.2 receives evaluations of the robot’s behavior from a human. Algorithm13.3
performs the computations of the Hebbian rule for learning.



216 13 Neural Networks

y1

y2

x1

w1l w1r

x2

w2l

w2r

x3

w3lw3r

x4 w4l

w4r

x5

w5l

w5r

Fig. 13.9 Neural network for demonstrating Hebbian learning

In Algorithm13.1 a timer is set to a period such as 100ms. The timer is decre-
mented by the operating system (not shown) and when it expires, the outputs y1 and
y2 are computed by Eq.13.3 below. These outputs are then used to set the power of
the left and right motors, and, finally, the timer is reset.

Algorithm 13.1: ANN for obstacle avoidance

integer period ← · · · // Timer period (ms)
integer timer ← period
float array[5] x
float array[2] y
float array[2,5] W

1: when timer expires
2: x ← sensor values
3: y ← W x
4: left-motor-power ← y[1]
5: right-motor-power ← y[2]
6: timer ← period



13.5 Learning 217

There are five sensors that are read into the five input variables:

x1 ← front left sensor
x2 ← front center sensor
x3 ← front right sensor
x4 ← rear left sensor
x5 ← rear right sensor

We assume that the values of the sensors are between 0 (obstacle not detected) and
100 (obstacle very close), and that the values of the motor powers are between −100
(full backwards power) and 100 (full forwards power). If the computation results in
saturation, the values are truncated to the end points of the range, that is, a value less
than −100 becomes −100 and a value greater than 100 becomes 100.1 Recall that a
robot with differential drive turns right by setting y1 (the power of the left motor) to
100 and y2 (the power of the right motor) to −100, and similarly for a left turn.

To simplify the presentation of Algorithm13.1 we used vector notation where the
inputs are given as a single column vector:

x =

⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

.

Referring again to Fig. 13.9, the computation of the outputs is given by:

y1 ← w1l x1 + w2l x2 + w3l x3 + w4l x4 + w5l x5 (13.1)

y2 ← w1r x1 + w2r x2 + w3r x3 + w4r x4 + w5r x5 . (13.2)

Expressed in vector notation this is:

y =
[
y2
y2

]
=

[
w1l w2l w3l w4l w5l

w1r w2r w3r w4r w5r

]
⎡
⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎥⎦

= W x . (13.3)

To cause the algorithm to learn, feedback is used to modify the weightsW (Algo-
rithms13.2, 13.3). Let us assume that there are four buttons on the robot or on a
remote control, one for each direction forwards, backwards, left and right. When-
ever we note that the robot is in a situation that requires a certain behavior, we
touch the corresponding button. For example, if the left sensor detects an obstacle,

1Algorithm13.1 declared all the variables as float because the weights are floating point numbers.
If the sensor inputs and motor outputs are integers, type conversion will be necessary.



218 13 Neural Networks

the robot should turn right. To implement this, there is a process for each button.
These processes are shown together in Algorithm13.2, where the forwards slashes
/ separate corresponding events and actions.

Algorithm 13.2: Feedback on the robot’s behavior

1: when button {forward / backward / left / right} touched
2: y1 ← {100 / −100 / −100 / 100}
3: y2 ← {100 / −100 / 100 / −100}

The next phase of the algorithm is to update the connection weights according to
the Hebbian rule (Algorithm13.3).

Algorithm 13.3: Applying the Hebbian rule

1: x ← sensor values
2: for j in {1, 2, 3, 4, 5}
3: wjl ← wjl + α y1 x j

4: wjr ← wjr + α y2 x j

Example Assume that initially the weights are all zero. By Eqs. 13.1 and 13.2 the
outputs are zero and the robot will not move.

Suppose now that an obstacle is placed in front of the left sensor so that x1 = 100
while x2 = x3 = x4 = x5 = 0. Without feedback nothing will happen since the
weights are still zero. If we touch the right button (informing the robot that the correct
behavior is to turn right), the outputs are set to y1 = 100, y2 = −100 to turn right,
which in turn leads to the following changes in the weights (assuming a learning
factor α = 0.0001):

w1l ← 0 + (0.0001 × 100 × 100) = 10

w1r ← 0 + (0.0001 × −100 × 100) = −10 .

The next time that an obstacle is detected by the left sensor, the outputs will be
non-zero:

y1 ← (10 × 100) + 0 + 0 + 0 + 0 = 1000

y2 ← (−10 × 100) + 0 + 0 + 0 + 0 = −1000 .

After truncating to 100 and −100 these outputs will cause the robot to turn right.
The learning factor α determines the magnitude of the effect of yk x j on the values

of wkj . Higher values of the factor cause larger effects and hence faster learning.
Although one could think that a faster learning is always better, if the learning is
too fast it can cause unwanted changes such as forgetting previous good situations
or strongly emphasizing mistakes. The learning factor must be adjusted to achieve
optimal learning.



13.5 Learning 219

Activity 13.10: Hebbian learning for obstacle avoidance

• Implement Algorithms13.1–13.3 and teach your robot to avoid obstacles.
• Modify the program so that it learns to move forwards when it does not detect
an obstacle.

13.6 Summary

Autonomous robots must function in environments characterized by a high degree
of uncertainty. For that reason it is difficult to specify precise algorithms for robot
behavior. Artificial neural networks can implement the required behavior in an uncer-
tain environment by learning, that is, by modifying and improving the algorithm as
the robot encounters additional situations. The structure of ANNs makes learning
technically simple: An ANN is composed of a large number of small, simple com-
ponents called neurons and learning is achieved by modifying the weights assigned
to the connections between the neurons.

Learning can be supervised, reinforcement or unsupervised. Reinforcement learn-
ing is appropriate for learning robotic behavior because it requires the designer to
specify only if an observed behavior is good or bad without quantifying the behavior.
The Hebbian rule modifies the weights connecting neurons bymultiplying the output
of one neuron by the input of the neuron it is connected to. The result is multiplied
by a learning factor that determines the size of the change in the weight and thus the
rate of learning.

13.7 Further Reading

Haykin [1] and Rojas [4] are comprehensive textbooks on neural networks. David
Kriesel wrote an online tutorial [3] that can be freely downloaded.

References

1. Haykin, S.O.: Neural Networks and Learning Machines, 3rd edn. Pearson, Boston (2008)
2. Herculano-Houzel, S.: The human brain in numbers: a linearly scaled-up primate brain. Front.

Hum. Neurosci. 3, 31 (2009)
3. Kriesel, D.: A Brief Introduction to Neural Networks. http://www.dkriesel.com/en/science/

neural_networks (2007)
4. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996)

http://www.dkriesel.com/en/science/neural_networks
http://www.dkriesel.com/en/science/neural_networks


220 13 Neural Networks

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	13 Neural Networks
	13.1 The Biological Neural System
	13.2 The Artificial Neural Network Model
	13.3 Implementing a Braintenberg Vehicle with an ANN
	13.4 Artificial Neural Networks: Topologies
	13.4.1 Multilayer Topology
	13.4.2 Memory
	13.4.3 Spatial Filter

	13.5 Learning
	13.5.1 Categories of Learning Algorithms
	13.5.2 The Hebbian Rule for Learning in ANNs

	13.6 Summary
	13.7 Further Reading
	References




