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Abstract. This paper presents the role of the intensity of an earthquake on the
estimation of dynamic impedance functions. For various seismic shaking we
will have different nonlinear behavior of the soil, which may have significant
effects on the amplitude and shape of the dynamic stiffness and damping
coefficient. However, under the assumption of linear elastic behavior of the soil,
loss of soil stiffness under strong shaking is not taken into account in the
dynamic impedance functions. The dynamic impedance functions are estimated
using an equivalent linear process and compared relative to the linear elastic
case. The vibrations originate from the rigid foundation embedded in the soil
layer, which are subjected to harmonic loads of translation, rocking, and torsion.
The dynamic responses of the rigid surface foundation are solved from the wave
equations by taking into account their interaction. The solution is formulated
using the frequency domain boundary element method (BEM), in conjunction
with Kausel-Peek Green’s function for a layered stratum and the thin layer
method (TLM) to account for the interaction between the soil-foundation.
A parametric analysis is performed for surface foundation in a semi-infinite soil
limited by bedrock and subjected to three earthquake records.

1 Introduction

The analysis of the behavior of foundations under dynamic loads has grown consid-
erably over the past four decades. The stringent security requirements imposed on
design of certain types of structures have played a particularly important role in the
development of analytical and numerical methods. The key step in studying the
dynamic response of foundations is the determination of the relationship between
forces and displacements. This relationship is expressed using impedance functions
(dynamic stiffness) or the compliance functions (dynamic flexibility). The considera-
tion of the soil-structure interaction in the analysis of the dynamic behavior of foun-
dations allows taking realistically into account the influence of soil on its vibration.
Several methods have been proposed in the literature to solve the soil-structure inter-
action problem. To simplify the problem, linear-analysis techniques have been
developed. One of the most commonly used approaches is the substructures method
that allows the problem to be analyzed in two parts Kausel et al., Aubrey et al. and
Pecker. In this approach, the dynamic responses of superstructure and of the
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substructure are examined separately. The analysis of foundations systems can be
reduced to the study of the dynamic stiffness at the soil-foundations interface (known as
impedance function). Although a solution of a soil-structure interaction problem in
most cases involves a straightforward application of any of the well-established
soil-structure interaction methods, a relatively small number of 3-D investigations have
appeared in the related literature. This is probably due to the substantial computational
effort required by the Finite Element Method (FEM) and the Boundary Element
Method (BEM). Furthermore, there is a noticeable absence of simplified discrete
models, which is due, perhaps, to lack of rigorous results that could be used for the
verification and calibration of such models. The complexities of the shapes of foun-
dations, of the loadings, and of the soil conditions have discouraged, in general, the
development of analytical solutions.

In the nonlinear case, the behavior of dynamically loaded foundations and the soil
layers were investigated to a lesser degree (Borja and Wu 1994). For this, we simulate
numerically the dynamic response of a massless square foundation resting on a
semi-infinite soil considering equivalent-linear soil behavior described through
strain-compatible shear modulus and damping coefficients for a suite of earthquake
records. The method is based on subdivision of the soil mass under the foundation into
a number of horizontal layers of different shear modulus and damping ratio like thin
layer method (TLM) but compatible with the level of strain imposed by an earthquake
motion or a dynamic load. Indeed, the semi-infinite soil is replaced by a layered profile
with strain-compatible properties within each layer.

In this study, the dynamic responses of the rigid surface foundation are solved from
the wave equations by taking into account their interaction. The solution is formulated
using the frequency domain boundary element method (BEM), in conjunction with
Kausel-Peek Green’s function for a layered stratum and the thin layer method (TLM) to
account for the interaction between the soil-foundation (Sbartai and Boumekik 2008),
Sbartai (2016) and Messioud et al. (2016). For a given set of applied loads, charac-
teristic strains are determined in each soil layer and the analysis is repeated in an
iterative manner until convergence in material properties is achieved. For limited space,
a parametric analysis is performed only for square foundation resting on a semi-infinite
soil excited by a suite of three recorded earthquakes motions. The dimensionless results
are provided for the variation of foundation stiffness and damping with frequency and
excitation level in vertical, horizontal, rocking, and torsional modes.

1.1 Calculation Model

There are two main methods dealing the soil-structure interaction analysis: direct
method, and of the sub-structure method. In the direct method, the response of the soil
and structure is determined simultaneously by analysing the idealized soil–structure
system in a single step. In substructure method, the soil-structure interaction problem is
divided into two sets of simpler problems, which are solved independently, and the
results are then superposed to obtain the response of the structure. The basic step in the
substructure approach is to determine the force–displacement characteristics of the soil.
This relationship may be in the form of an impedance (stiffness) function, or, inversely,
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a compliance (flexibility) function. By definition, the impedance K(6, 6) of the system
is the relation between the load P(6, 1) and the response U(6, 1). Generally, the load,
the impedance and the response are complex quantities. The relationship between
impedance, displacement and applied load is given by

P xð Þ ¼ KðxÞ � U xð Þ; ð1Þ

where K(x) is a symmetric matrix (6,6) given by

KðxÞ ¼

K11ðxÞ 0 0 0 K1;5ðxÞ 0
0 K22ðxÞ 0 K2;4ðxÞ 0 0
0 0 K33ðxÞ 0 0 0
0 K4;2ðxÞ 0 K44ðxÞ 0 0

K5;1ðxÞ 0 0 0 K55ðxÞ 0
0 0 0 0 0 K66ðxÞ

2
6666664

3
7777775

ð2Þ

In the particular case of a symmetric surface foundation (i.e., rectangular, square), it
is possible to uncouple the impedance matrix along the two principal axes (x and y) to
reduce its dimension (i.e., K51 ¼ K15 ¼ K42 ¼ K24 ¼ 0).

The model of calculation is represented in Fig. 1. The considered foundation is rigid,
square shape, and placed on the surface or partially embedded in homogeneous (hetero-
geneous) soil that is limited by a semi-infinite soil. The soil is viscoelastic linear, as
characterizedby itsmass densityq, shearmodulusG,dampingcoefficientb, andPoisson’s
ratiom. The foundations are subjected to three harmonic external forces—Px; Py, andPz—
at three harmonic moments—Mx; My, andMz. It is assumed that the time dependence of
the excitation is of type eixt, inwhichx denotes the frequency. For brevity, this time factor
will be omitted. The goal is to obtain the impedance functions.

Displacements in an unspecified point “a” of the soil may be obtained from the
wave equation solution

ððC2
p � C2

s Þuj; ij þ C2
s ui; jj þ C2

px
2uiÞq ¼ 0; ð3Þ

where ui is the x-component of harmonic displacement amplitude vector; uj is the
y-component of the harmonic displacement amplitude vector; uj;ij is the partial
derivative of uj with respect to the x- and y-axes; ui;jj is the second partial derivative of
ui with respect to the y-axis; Cs and Cp are the shear (S)- and compression (P)-wave
velocities; q is the mass density; and x is the angular frequency of excitation.

The solution of Eq. (3) can be obtained in the form of the following boundary
integral equation in the frequency domain

ujðx;xÞ ¼
Z

s

Gijðx; n;xÞ � tiðn;xÞ � dSðnÞ: ð4Þ
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Where Gij, represents Green’s functions tensor and ti is the unknown surface traction.
Equation (4) remains to be solved as long as the domain is a continuum. However,

if the domain is discretized in an appropriate form, Eq. (4) can be algebraically eval-
uated for each element. In this approach, the discretization principle of the soil mass,
shown in Fig. 2, is based on two types of discretization, one horizontal and one
vertical. The horizontal discretization consists of subdividing any horizontal section of
the soil mass into square elements. The average displacement of the element is replaced
by its center displacements, in which the distribution of constraints is supposed to be
uniform. The vertical discretization consists of subdividing the solid mass of the soil in
the under layers (infinite elements in the horizontal direction), which have rather low
thicknesses compared with the Rayleigh wavelength (k/10), to linearized the

(a)
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Fig. 1. (a) Geometric model (b) discretized model.
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displacement of one under layer to the other. In the discretized model, Eq. (4) is
expressed in algebraic form as follows

uj ¼
XNRT
i¼1

Z

s

Gij � ti � dS; ð5Þ

where NRT represents the total number of elements that discretized the free surface and
the interface between the soil and the foundation.

The Green’s functions thus obtained are complex and constitute the starting point
for the determination of the flexibility matrix of a volume of the arbitrary soil. For more
details about the computation of the above Green’s functions, one can consult the work
of (Kausel and Peek 1982) and Boumekik doctoral dissertation Boumekik (1985).
Viscoelastic soil behavior can be easily introduced in the present formulation by simply
replacing the elastic constants k and G with their complex values

k� ¼ k 1þ 2ibð Þ ð6aÞ

G� ¼ G 1þ 2ibð Þ; ð6bÞ

where, b is the hysteretic damping coefficient.
The equivalent linear analysis has been used to described the non-linear behavior of

the soil through strain-compatible shear modulus and damping coefficients for a suite of
earthquake records. Assuming that the substratum and the interfaces between the dif-
ferent layers of soil are essentially horizontal, we can consider each layer as linear
elastic and develop a model with lumped mass in order to analyze the nonlinear
dynamic response of the soil deposit during an earthquake. Thus, Kryloff and
Bogoliuboff (1943) and Bogoliuboff and Mitropolsky (1961) proposed the use of both
an equivalent linear spring constant, and an equivalent damping ratio for a
single-degree-of-freedom system having nonlinear characteristics. Indeed, (Seed and
Idriss, 1969) have proposed the use of an equivalent linear scheme wherein the shear
modulus and damping are modeled using a linear spring and a dashpot, respectively.
The parameters of the spring and the dashpot are calculated based on the secant shear

Fig. 2. Shear modulus reduction and damping increase curves
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modulus and damping ratio for a given level of shear strain. Shear modulus and
damping ratio values are iteratively calculated based on the computed strain. For
earthquake input motion, (Seed and Idriss 2012) suggested that the properties must be
calculated for a strain equal to 2/3 of maximum strain level in a given layer.

The knowledge of Green’s functions allows obtaining harmonic displacements
resulting from the discretized domain by successive application of unit forces on all the
interface elements, and thus flexibility matrix is constructed. In the particular case of a
symmetric foundation (i.e., rectangular), it is possible to uncouple the flexibility matrix
along the two principal axes (x and y) to reduce its dimension. This matrix is essential
to calculate the displacements of the soil

uf g ¼ FS½ �: tf g; ð7Þ

where,
Fs½ � ¼ fGmngij represents the flexibility matrix of the discretized domain, which

includes the terms of Green’s functions; {u} represents the harmonic displacements;
and {t} represents the surface tractions.

In fact, this relation constitutes the formulated solution, in terms of the displace-
ments of Eq. (4) that essentially requires a discretized domain. When the foundation is
in place, all elements must move as a rigid body. This condition is expressed by

uf g ¼ R½ �: Df g; ð8Þ

where,
{D} denotes the displacements of the foundation; and [R] represents the transforma-
tion matrix of size (N �1).

The dynamic equilibrium between the traction forces on each element and the
exterior force is expressed by

Pf g ¼ R½ �T : tf g; ð9Þ

where, {P} is the exterior force.
From Eqs. (7) and (9), the compatible forces to apply on the elements are

tf g ¼ FS½ ��1: R½ �: tf g: ð10Þ

Combining Eqs. (8), (9), (10), the displacements of the foundation is obtained as

Df g ¼ KðxÞ½ ��1: Pf g; ð11Þ

where

KðxÞ½ � ¼ R½ �T : FS½ �: R½ �; ð12Þ
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is the impedance function of the foundation. It is customary to introduce the dimen-
sionless frequency ao ¼ xBx=Cs at the soil-foundation interface, to scale K (x) with
static-stiffness coefficient Kstð¼ Kðx ¼ 0ÞÞ and to apply the following decomposition

KðaoÞ½ � ¼ Kst: kðaoÞþ iao:cðaoÞð Þ½ �:ð1þ i2bÞ; ð13Þ

where,
k aoð Þ denoting the dimensionless spring coefficient; c denoting the dimensionless
damping coefficient and b denoting the constant hysteretic damping coefficient.

2 Results

The response of square rigid foundation resting on a semi-infinite viscoelastic soil over
rigid bedrock is considered. The geometry and discretization are shown in Figs. 1 and
2. Due to the space limitations only the vertical, horizontal, rocking and torsion
impedances functions of the massless surface foundation are considered according
dynamic equivalent-linear soil behavior described through strain-compatible shear
moduli and damping coefficients for a the effect of excitation amplitude of ground
motion and the dimensionless frequency. For this, three seismic records
(Boumerdes-Azzazga-0.1 g, El-centro-0.2 g, Boumerdes-Kedara-0.3 g) are used in this
study. Such an application represents a general study that enables the analysis of the
influence of different parameters, which we will present in another article later.

In this application, the considered foundation of dimension B¼Bx=By ¼ 1 is
subjected to unit forces Px ¼ Pz ¼ 1 and unit moments Mx ¼Mz ¼ 1 for different
dimensionless frequencies a0(= xb/Cs). It is noted that x is the circular frequency and
Cs is the shear (S)-wave velocities. The soil is discretized into 36 quadrilateral constant
elements on the soil-foundation interfaces for lower-frequency case, and it is dis-
cretized into 64 quadrilateral constant elements on the soil-foundation interfaces for the
higher-frequency case.

The soil is characterised by q = 1, G = 1, m = 0.333, and b = 0.05 for linear case.
In the non-linear case, the dependence of shear modulus and hysteretic damping ratio
on the level of strain for the soil is described according to the established curves by
(Sbartai and Filali, 2012) Fig. 3. For this, the dimensionless equivalent linear impe-
dances functions (vertical, horizontal, rocking and torsion) of surface foundation placed
on a homogeneous semi-infinite soil have been studied for different relative frequency
ao. All the results are compared with the linear case to appreciate the difference
between the both cases.

Figures 3(a) and (b) show the dimensionless real part Kv=Kvlinear�static and
dimensionless imaginary part Cv=Kvlinear�static of the vertical impedance as functions of
the dimensionless frequency ao and three Earthquake records. Figure 3(a) show that the
vertical dynamic stiffness coefficient naturally decreases with increasing excitation
level. We remarked also of the negative values for the higher excitation level from the
cutoff frequency ao = 3 and 2 for the second (0.2 g) and third earthquake (0.3 g) record
respectively. However in Fig. 3(b), the vertical damping coefficient increases with
increasing excitation level. In the equivalent-linear case, the magnitude of the
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imaginary part of the impedance increases from the linear case with increasing exci-
tation amplitude. The higher the excitation amplitude, the larger the shift of the curve to
higher values.

Figures 4(a) and (b) show the dimensionless real part Kh=Khlinear�static and
dimensionless imaginary part Ch=Khlinear�static of the horizontall impedance as func-
tions of the dimensionless frequency ao and three Earthquake records. Figure 4(a)
show that the horizontal dynamic stiffness coefficient naturally decreases with
increasing excitation level. We remarked also of the negative values for the higher
excitation level from the cutoff frequency ao = 5 and 4 for the second and third
earthquake record respectively. In Fig. 4(b), the horizontal damping coefficient
increases with increasing excitation level. In the equivalent-linear case, the magnitude
of the imaginary part of the impedance increases from the linear case with increasing
excitation amplitude. The higher the excitation amplitude, the larger the shift of the
curve to higher values.
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Fig. 3. Equivalent-linear vertical dynamic impedance: (a) real part (b) imaginary part
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Figures 5(a) and (b) show the dimensionless real part Kr=Krlinear�static and
dimensionless imaginary part Cr=Khlinear�static of the rocking impedance as functions
of the dimensionless frequency ao and three Earthquake records. Figure 5(a) show that
the real part of the rocking impedance function decreases with increasing excitation
level. We remarked also of low negative values from the cutoff frequency ao ¼ 5 for
the third earthquake record (0.3 g). In Fig. 5(b), the rocking damping coefficient
increases with increasing excitation level. In the equivalent-linear case, the magnitude
of the imaginary part of the impedance increases from the linear case with increasing
excitation amplitude. The higher the excitation amplitude, the larger the shift of the
curve to higher values.
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Fig. 5. Equivalent-linear rocking dynamic Impedance: (a) real part (b) imaginary part
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Figures 6(a) and (b) show the dimensionless real part Kt=Ktlinear�static and dimen-
sionless imaginary part Ct=Ktlinear�static of the torsion impedance as functions of the
dimensionless frequency ao and three Earthquake records. Figure 6(a) show that the
real part of the torsion impedance function decreases with increasing excitation level.
We remarked also of low negative values from the cutoff frequency ao ¼ 5:5 for the
third earthquake record (0.3 g). In Fig. 6(b), the torsionl damping coefficient increases
with increasing excitation level. In the equivalent-linear case, the magnitude of the
imaginary part of the impedance increases from the linear case with increasing exci-
tation amplitude. The higher the excitation amplitude, the larger the shift of the curve to
higher values.

3 Conclusions

In this paper, the role of the intensity of an earthquake on the estimation of dynamic
impedance functions of surface rigid foundation were study. For various seismic
shaking we will have different nonlinear behavior of the soil, which may have sig-
nificant effects on the amplitude and shape of the dynamic stiffness and damping
coefficient. The dynamic impedance functions are estimated using an equivalent linear
process and compared relative to the linear elastic case. The solution has been for-
mulated by employing the frequency-domain boundary-element method (BEM) in
conjunction with the Kausel-Peek Green’s function for a layered stratum, along with a
quadrilateral constant element determined using the thin-layer method (TLM). The
study shows well the great importance of the loss of soil stiffness under strong shaking
which proves to be more complicated than the linear elastic behavior of the soil. On the
basis of the results presented in this paper, the following conclusions can be stated:

1. The nonlinear dynamic response of the foundation depends on more parameters
than in the linear case:

– shear modulus reduction and damping increase curves; and
– excitation amplitude and frequency content.

2. The dynamic stiffness coefficients decrease with increasing excitation amplitude.
3. The dynamic stiffness coefficients become negative for translational modes from

specific frequency ao(= 2–5). The same case was observed for rotational modes but
with a very low values and a shift of the cutoff frequency towards high frequencies
ao(= 5.5–6). It may create a detachment of the soil foundation.

4. The damping coefficients are fairly dependent on acceleration maximal of the
earthquake. It increases from the linear case with increasing level of shear strain, as
expected due to the increase in hysteretic soil material damping.
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