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Abstract. This paper presents explicit expressions for the principal effective
stresses generated around a cylindrical cavity expanded in plane strain and
undrained conditions in Modified Cam Clay. The assumption made in the
present analysis is that Poisson’s ratio v′ remains constant throughout the
shearing process. Theoretical expressions are applied to the simulation of a
cylindrical cavity expansion test in Ko normally consolidated remoulded Boston
Blue Clay modelled as Modified Cam Clay. The results, which are compared to
those obtained by assuming that the shear modulus G0 remains constant, show
that the two approaches are quite similar.

1 Introduction

Chen and Abousleiman (2012) and Silvestri and Abou-Samra (2012) recently obtained
semi-analytical solutions for the plane strain undrained expansion of cylindrical cavi-
ties in Modified Cam Clay. Chen and Abousleiman (2012) employed small strains, but
Silvestri and Abou-Samra (2012) used finite natural strains in both the elastic and
plastic phases of the expansion. The latter authors also considered Almansi strains for
obtaining the limiting radial expansion pressure. In addition, Silvestri and Abou-Samra
(2012) adopted the restrictive assumption that the hardening parameter p0c, which
controls the size of the yield loci, remained constant during shearing. Such simplifying
assumption permitted the determination of explicit expressions for the principal
effective stresses generated in the soil around the cavity, but it led to approximate
responses.

Silvestri and Abou-Samra (2012) also assumed the shear modulus G0 to remain
constant throughout the expansion process, following the approach of Randolph et al.
(1979). From a theoretical point of view, it is preferable to assume a constant shear
modulus G0, as Zytynski et al. (1978) showed that the use of a constant Poisson’s ratio
m0 would lead to a non-conservative model in the sense that it may not conserve energy
during closed-stress cycles (Yu 2006). However, this effect was not important in the
case treated by Silvestri and Abou-Samra (2012) since there were no unloading-
reloading cycles. As for Chen and Abousleiman (2012), these authors assumed Pois-
son’s ratio m0 to remain constant and obtained semi analytical expressions for the
principal effective stresses.
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Cao et al. (2001) also obtained an approximate closed-form solution of the
undrained cavity expansion in Modified Cam Clay by combining a large strain theory
in the plastic zone and a small strain theory in the elastic zone. In the present paper, as
the soil is modelled as a non-linear elastic plastic material, elastic and plastic zones are
not treated separately. Thus, the analysis cannot be compared directly with Cao et al.’s
approach.

In the present paper, both the shear modulus G0 and the hardening parameter p0c
vary during undrained shearing, but that Poisson’s ratio m0 remains constant. Indeed,
Gens and Potts (1988) pointed out that a constant shear modulus did not agree well
with experimental measurements and might imply negative values of Poisson’s ratio at
low stresses, which is physical unreasonable (Yu 2006).

As Poisson’s ratio m0 remains constant, such approach allows obtaining explicit
expressions for the principal effective stresses generated in the soil around the
expanding cylindrical cavity. However, both the total radial pressure and the natural
shear strain in the horizontal plane must still be determined numerically. The results
obtained in the present paper are applied first to a well-known benchmark case and are
thereafter compared with those found by assuming that the shear modulus G0 remains
constant during the expansion, but that the hardening parameter varies during shearing.

The results also show that the vertical effective stress, which represents the major
principal stress at the beginning of the expansion, becomes the intermediate principal
stress during the latter stages of the expansion. Similarly, while one of the horizontal
effective stresses (i.e., the radial stress) becomes the major principal stress, the other
horizontal effective stress (i.e., the tangential stress) becomes the minor principal stress
during the expansion. Thus, failure occurs on vertical planes. Such response is different
from the one analysed by Monnet (2007). Indeed, this author found that failure in a
cylindrical cavity expansion could also occur on inclined planes with the vertical and
tangential stresses being the major and minor principal stresses, respectively. Such
situation typically arises in expansion tests carried out at shallow depth.

2 Approach

2.1 Modified Cam Clay Model

The general effective stress invariants used in the Modified Cam Clay model are the
mean effective stress p0 and the deviator stress q, which are defined as:

p0 ¼ r0r þ r0h þ r0z
3

ð1aÞ

and

q ¼ r0r � r0h
� �2 þ r0h � r0z

� �2 þ r0z � r0r
� �2

2

" #1=2

ð1bÞ
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where r0r; r
0
h; r

0
z ¼ principal radial, tangential, and axial effective stresses. Figure 1a

presents various yield curves of the Modified Cam Clay model. Each curve is described
by the following expression:

Fig. 1. Undrained compression test on normally consolidated clay: (a) p0 : q plane; (b) t : p0

plane (adapted from Wood (2007))
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q ¼ p0M p0c=p
0� �� 1

� �1=2 ð2Þ

where M ¼ q=p0 at critical state ¼ 6sin/0= 3� sin/0ð Þ, with /0 ¼ friction angle and
p0c ¼ hardening parameter. The latter parameter controls the size of the yield locus. An
effective stress path (ESP) followed by a Ko normally consolidated specimen in an
undrained compression test is also reported in Fig. 1a. The ESP is described by the
expression

q ¼ p0 M2 þ g2i
� �

p0i=p
0� �1=K�M2

h i1=2
ð3aÞ

where

gi ¼ qi=p0i ¼ 3 1� Koð Þ= 1þ 2Koð Þ;
qi ¼ r0zi � r0ri ¼ r0zi � r0hi ¼ 1� Koð Þr0zi;
p0i ¼ r0ri þ r0hi þ r0zi

� �
=3 ¼ 1þ 2Koð Þr0zi=3;

r0ri ¼ r0hi; r
0
zi ¼ initial horizontal and vertical effective stresses, respectively,

Ko ¼ r0ri=r
0
zi ¼ r0hi=r

0
zi ¼ in situ coefficient of lateral earth pressure at rest,

K ¼ k� jð Þ=k;
k ¼ slope of t : ln p0 line in loading (Fig. 1b),
j ¼ slope of t : ln p0 line in unloading (Fig. 1b),
t ¼ 1þ e ¼ specific volume, and
e ¼ void ratio:

The ESP may also be described by the following equation:

q ¼ p0M p0o=p
0� �1=K�1

h i1=2
ð3bÞ

where p0o ¼ value of p0 for q ¼ 0, as shown in Fig. 1a. The ESP of the Ko normally

consolidated specimen begins at point C p0i; qi
� �

and ends at point F p0f ; qf
� �

on the

critical state line, whose coordinates are p0f ¼ 2�Kp0o and qf ¼ Mp0f ¼ 2�KMp0o (Wood

2007). The undrained shear strength Su is equal to qf /
ffiffiffi
3

p
. As the expansion occurs

under undrained conditions, the specific volume t remains constant along the ESP, as
shown in Fig. 1b, and each point on the stress path lies on a new yield locus. The test
thus moves across progressive higher yield loci, which are associated with expansion of
the yield locus and with decrease of the mean effective stress p0 for the normally
consolidated specimen.

2.2 Modified Cam Clay Stress-Strain Relationships

Silvestri and Abou-Samra (2012) showed that the incremental elastic-plastic relation-
ships of the Modified Cam Clay model in undrained shearing are given by:

300 V. Silvestri and C. Tabib



dr0r ¼ 2G0der þ dp0 1þ 6G0j r0r � p0
� �

tM2p0 2p0 � p0c
� �

" #
ð4aÞ

dr0h ¼ 2G0deh þ dp0 1þ 6G0j r0h � p0
� �

tM2p0 2p0 � p0c
� �

" #
ð4bÞ

dr0z ¼ 2G0dez þ dp0 1þ 6G0j r0z � p0
� �

tM2p0 2p0 � p0c
� �

" #
ð4cÞ

where der; deh; dez = incremental radial, tangential, and axial natural strains. However,
as dez ¼ 0 in plane strain and der þ deh ¼ 0 in undrained shearing, then Eqs. 4a–4c
become:

dr0r ¼ �2G0deh þ dp0 1þ 6G0j r0r � p0
� �

tM2p0 2p0 � p0
c

� �
" #

ð5aÞ

dr0h ¼ 2G0deh þ dp0 1þ 6G0j r0h � p0
� �

tM2p0 2p0 � p0c
� �

" #
ð5bÞ

dr0z ¼ dp0 1þ 6G0j r0z � p0
� �

tM2p0 2p0 � p0
c

� �
" #

ð5cÞ

The shear modulus G0 and the hardening parameter p0c are given by (See, for example,
Wood 2007):

G0 ¼ 3
2

1� 2v0ð Þ
1þ v0ð Þ K ¼ 3

2
1� 2v0ð Þ
1þ v0ð Þ

tp0

j
ð6Þ

and

p0c ¼ p0 p0o=p
0� �1=K ð7Þ

where v0 ¼ Poisson’s ratio and K ¼ tp0=j ¼ bulk modulus. According to Eq. 6, the
shear modulus G0 increases as the mean effective stress p0 increases. Substitution of G0

and p0c in Eqs. 5a–5c yields:
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dr0r ¼ �3
1� 2v0ð Þ
1þ v0ð Þ

tp0

j
deh þ dp0 1þ 9

M2

1� 2v0ð Þ
1þ v0ð Þ

r0r � p0
� �

2� p0o=p0
� �1=K� �

p0

2
4

3
5 ð8aÞ

dr0h ¼ 3
1� 2v0ð Þ
1þ v0ð Þ

tp0

j
deh þ dp0 1þ 9

M2

1� 2v0ð Þ
1þ v0ð Þ

r0h � p0
� �

2� p0o=p0
� �1=K� �

p0

2
4

3
5 ð8bÞ

dr0z ¼ dp0 1þ 9
M2

1� 2v0ð Þ
1þ v0ð Þ

r0z � p0
� �

2� p0o=p0
� �1=K� �

p0

2
4

3
5 ð8cÞ

Equation 8c may be rearranged to give:

dr0z � dp0 ¼ d r0z � p0
� � ¼ 9

M2

1� 2m0ð Þ
1þ m0ð Þ

r0z � p0
� �

2� p0o=p0
� �1=K� � dp0

p0
ð9aÞ

or

d r0z � p0
� �
r0z � p0
� � ¼ 9

M2

1� 2m0ð Þ
1þ m0ð Þ

dp0

p0 2� p0o=p0
� �1=K� � ð9bÞ

and, finally,

dln r0z � p0
� � ¼ P

dp0

p0 2� p0o=p0
� �1=K� � ð9cÞ

where P ¼ 9
M2

1�2m0ð Þ
1þ m0ð Þ :

Integration of Eq. 9c gives (See appendix):

r0z ¼ p0 þ r0zi � p0i
� � 2� p0o=p

0� �1=K
2� p0o=p

0
i

� �1=K p0i
p0

	 
1=K
" #PK=2

ð10Þ

The remaining principal effective stresses r0z and r0h are found by introducing Eq. 10
into the expressions of the mean effective stress p0 and the deviator stress q, as given by
Eqs. 1a and 1b, resulting into:

r0r ¼ p0 � r0zi � p0i
� �

2
2� p0o=p

0� �1=K
2� p0o=p

0
i

� �1=K p0i
p0

	 
1=K
" #PK=2

þ s ð11aÞ
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and

r0h ¼ p0 � r0zi � p0i
� �

2
2� p0o=p

0� �1=K
2� p0o=p

0
i

� �1=K p0i
p0

	 
1=K
" #PK=2

�s ð11bÞ

where the shear stress s in the horizontal plane (r : h) is equal to r
0
r � r

0
h

� �
=2 and is

given by:

s ¼ 1
2

4
3
q2 � 3 r0zi � p0i

� �2 2� p0o=p
0� �1=K

2� p0
o=p

0
i

� �1=K p0i
p0

	 
1=K
" #PK

8<
:

9=
;

1=2

ð12Þ

The natural shear strain c is found by integration of the incremental shear strain
dc ¼ der � dehj j ¼ 2deh, which is determined from Eqs. 5a and 5b, that is, from

dc ¼ ds
G0 �

6jsdp
0

tM2p0 2p0 � p0
c

� � ð13aÞ

or

dc ¼ 2
3

1þ v0ð Þ
1� 2v0ð Þ

jds
tp0

� 6jsdp0

tM2p0 2p0 � p0c
� � ð13bÞ

where G0 is given by Eq. 6. Integration of Eq. 13b gives:

c ¼ 2
3
j 1þ v0ð Þ
t 1� 2v0ð Þ

Zs

0

ds
p0

� 6j
tM2

Zp0

p0i

sdp0

p0 2p0 � p0c
� � ð14Þ

where the hardening parameter p0c ¼ p0 p0o=p
0
i

� �1=K
from Eq. 7. It is apparent that the

shear strain c in Eq. 14 must be evaluated numerically due to the complex nature of the
expression of the shear stress s from Eq. 12.

Computations of total radial stress and pore pressure were carried out following the
same approach of Silvestri and Abou-Samra (2012). For completeness, their expres-
sions are briefly repeated herein.

The total radial stress rr acting in the clay around the expanding cylindrical cavity
is given by (Yu 2000; Silvestri and Abou-Samra 2012):

rr ¼ Zc

0

sdc
ec � 1

þ rri ð15aÞ
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which becomes

rra ¼ Zca
0

sdc
ec � 1

þ rri ð15bÞ

at the wall of the cavity, where rri is the initial total radial or horizontal stress, and the
natural shear strains c and ca are given by:

c ¼ ln½ r0

r

	 
2

� ð16aÞ

and

ca ¼ ln½ a0

a

	 
2

� ð16bÞ

at the wall of the cavity. The pore pressure is determined by subtracting the radial
effective stress r0r given by Eq. 11a from the radial total stress rr given by Eq. 15a. In
Eqs. 16a and 16b, r; r0ð Þ and a; a0ð Þ represent respectively, generic radial distances and
cavity radii, before and after the distortion has occurred. In order to obtain the limiting
radial expansion pressure at the wall of the cavity, it is convenient to use the Almansi
tangential strain which is defined as (Baguelin et al. 1978):

a ¼ 1
2

r02 � r2

r02

	 

ð17aÞ

which becomes equal to

aa ¼ 1
2

a02 � a2

a02

	 

ð17bÞ

at the wall of the cavity. Substitution of Eqs. 17a and 17b into Eqs. 16a and 16b gives:

c ¼ �ln 1� 2að Þ ð18aÞ

and

ca ¼ �ln 1� 2aað Þ ð18bÞ

which, when introduced into Eqs. 15a and 15b yield:

rr ¼ Za

0

sda
a

þ rri ð19aÞ
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and

rra ¼ Zaa
0

sda
a

þ rri ð19bÞ

at the wall of the cavity, as also obtained by Baguelin et al. (1978). As mentioned
above, the Almansi tangential strain was introduced for facilitating the determination of
the limiting radial expansion pressure. Indeed, consideration of the upper limit of the
integral in Eq. 15b indicates that ca must be equal to infinity for the radial pressure to
reach the limiting expansion condition. Such a calculation may involve considerable
computational problems. However, because Eq. 18b shows that ca ¼ 1 is reached for
aa ¼ 0:5, then it becomes relatively easy to carry on the integration process in Eq. 19b
up to aa ¼ 0:5 without experiencing any computational difficulties. This shows the
superiority of the Almansi tangential strain over the natural strain in extending the
integration process to infinity. There is also an additional advantage. In effect, in
several software programs involving either finite elements or finite differences, it is
often assumed that critical state is reached when the cavity radius has doubled in size,
that is, when a0 ¼ 2a in order to avoid numerical difficulties. As this condition cor-
responds to aa ¼ 0:375 from Eq. 17b or to ca ¼ 1:386 from Eq. 18b, it is apparent that
the limiting state of aa ¼ 0:5 is still far away and that by setting aa ¼ 0:375 can only
result in approximate limiting values.

3 Application

Before discussing in detail the application of the various theoretical expressions derived
previously to the benchmark case presented below, it should be mentioned that the
Modified Cam Clay model is known to give reasonable results only for isotropically
normally consolidated clays (See, for example, Wood 2007). If either the initial stress
state or the clay fabric, or both, are anisotropic, or if the soil is overconsolidated, better
models should be resorted to, for example, such as the anisotropic Modified Cam Clay
model (Dafalias 1987; Dafalias et al. 2002, 2006) or the Banerjee model (Banerjee and
Yousif 1986; Banerjee et al. 1988). These two models have the advantage over more
sophisticated and complex models that they can account for both inherent and induced
anisotropy with relatively few model parameters. It is the authors’ intention to apply
one of these models to the problem at hand in the near future.

However, as the principal aim of the present study was to obtain the exact solution
of the principal effective stresses generated around a cylindrical cavity in Modified
Cam Clay under plane strain and undrained conditions, computations were carried out
assuming that the Modified Cam Clay model could also be applied to a Ko normally
consolidated clay.

The theoretical relationships derived previously will be applied to the simulation of
a plane strain undrained expansion of a cylindrical cavity in Ko normally consolidated
remoulded Boston Blue Clay modelled as Modified Cam Clay. The properties of
the clay are the following (Randolph et al. 1979): OCR = 1, Ko ¼ 0:55, t ¼ 2:16;
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k ¼ 0:15; j ¼ 0:03;K ¼ 0:8; and M ¼ 1:2 for /0 ¼ 30�. The OCR is based on the
vertical effective stress.

The initial stress conditions are represented for illustration purposes by:
r0zi ¼ 300 kPa½ �, r0ri ¼ r0hi ¼ 165 kPa½ �, ui ¼ 0, p0i ¼ 210 kPa½ �, qi ¼ 135 kPa½ �,
p0o ¼ 256 kPa½ �, p0c ¼ 270 kPa½ �, and Poisson’s ratio m0 ¼ 0:2855. The choice of m0 ¼
0:2855 was made so that the value of the initial shear modulus G0

i, calculated from
Eq. 6, was equal to that obtained from the data of Randolph et al. (1979), that is,
G0

i ¼ 7570 kPa½ �. These authors assumed G0 ¼ G0
i ¼ constant in the entire expansion

process. The stress parameters at critical state are p0f ¼ 147:6 kPa½ �, qf ¼ 177:1 kPa½ �.
Figure 2 compares the shear stress-shear strain curve obtained in this study with

that derived by assuming G0 to remain constant. Examination of two curves shows that
they are similar.

Fig. 2. Shear stress-shear strain curves
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Figure 3 compares the total radial stress rra and the excess of pore pressure u
generated at the wall of the cavity as a function of the Almansi tangential strain aa.
Again, comparison between the two sets of curves indicates that the results are prac-
tically equivalent.

Finally, Fig. 4 shows the distributions of the principal effective stresses and of the
excess pore pressures around the cylindrical cavity at critical state. Once again, the two
series of curves are quite similar.

Although the two sets of results presented in Figs. 2, 3 and 4 are practically
equivalent, the approach followed in the present paper, by assuming Poisson’s ratio m0

to remain constant during shearing, is superior to that in which the initial shearing
modulus G0 remains constant, because the present solution allows finding exact explicit
expressions for the principal effective stresses.

Fig. 3. Comparison of total radial stress and excess pore water pressure generated at wall of
cavity as function of Almansi tangential strain aa
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4 Conclusions

On the basis of the results reported in this paper, the following main conclusions are
drawn:

1. The assumption of constant Poisson’s ratio allows obtaining explicit expressions for
the principal effective stresses generated around an expanding cylindrical cavity in
Modified Cam Clay.

2. The theoretical relationships are applied to the simulation of an expanding cylin-
drical cavity in Ko normally consolidated remoulded Boston Blue Clay. The results,
which are compared with those obtained by assuming that the shear modulus G0

remains constant during the expansion, show that the two approaches are quite
similar.

Acknowledgements. The author expresses his gratitude to the Natural Sciences and Engi-
neering Research Council of Canada for the financial support received in this study.

Fig. 4. Distributions of principal effective stresses and excess pore water pressures around
cylindrical cavity at critical state

308 V. Silvestri and C. Tabib



Appendix: Derivation of Eq. 10

The integral in Eq. 9c reads

ln
r0z � p0

r0zi � p0i

	 

¼ P

Zp0

p0i

dp0

p0 2� p0o=p0
� �1=K� � ðA1Þ

where P ¼ 9
M2

1�2m0ð Þ
1þ m0ð Þ :

By letting y ¼ p0o=p
0� �1=K

, then p0 ¼ p0oy
�K and dp0 ¼ p0o �Kð Þy�K�1dy, and the

integral in Eq. A1 becomes

I ¼ �PK
Z p0o=p

0ð Þ1=K

p0o=p
0
ið Þ1=K

dy
y 2� yð Þ ¼ PK

Z p0o=p
0ð Þ1=K

p0o=p
0
ið Þ1=K

dy
y2 � 2yð Þ ðA2Þ

Integration of Eq. A2 yields:

I ¼ � PK
2

ln
y

y� 2

	 
����
y

yi

ðA3Þ

or

I ¼ � PK
2

ln
y
yi

	 

yi � 2
y� 2

	 
� 
¼ PK

2
ln

yi
y

	 

y� 2
yi � 2

	 
� 
ðA4Þ

where y ¼ p0o=p
0� �1=K

and yi ¼ p0o=p
0
i

� �1=K
. As a result, Eq. A4 becomes:

I ¼ PK
2

ln
p0o=p

0� �1=K�2

p0o=p
0
i

� �1=K�2

" #
p0i
p

	 
1=K
( )

ðA5Þ

Combining Eq. A5 with Eq. A1 yields:

r0z � p0 ¼ r0zi � p0i
� � p0o=p

0� �1=K�2

p0o=p
0
i

� �1=K�2

" #
p0i
p0

	 
1=K
( )PK

2

ðA6Þ

which, when rearranged, gives:

r0z ¼ p0 þ r0zi � p0i
� � 2� p0o=p

0� �1=K
2� p0o=p

0
i

� �1=K
" #

p0i
p0

	 
1=K
( )PK

2

ðA7Þ

Eq. A7 is Eq. 10 in the main text of the paper.
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