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Abstract. We present TOPPSS, the most efficient Password-Protected
Secret Sharing (PPSS) scheme to date. A (t, n)-threshold PPSS, intro-
duced by Bagherzandi et al. [4], allows a user to share a secret among n
servers so that the secret can later be reconstructed by the user from any
subset of t+ 1 servers with the sole knowledge of a password. It is guar-
anteed that any coalition of up to t corrupt servers learns nothing about
the secret (or the password). In addition to providing strong protection
to secrets stored online, PPSS schemes give rise to efficient Threshold
PAKE (T-PAKE) protocols that armor single-server password authenti-
cation against the inherent vulnerability to offline dictionary attacks in
case of server compromise.

TOPPSS is password-only, i.e. it does not rely on public keys in
reconstruction, and enjoys remarkable efficiency: A single communication
round, a single exponentiation per server and just two exponentiations per
client regardless of the number of servers. TOPPSS satisfies threshold secu-
rity under the (Gap)One-More Diffie-Hellman (OMDH) assumption in the
random-oracle model as in prior efficient realizations of PPSS/T-PAKE
[18,19].Moreover, we show thatTOPPSS realizes theUniversallyCompos-
able PPSS notion of [19] under a generalization of OMDH, the Threshold
One-More Diffie-Hellman (T-OMDH) assumption. We show that the T-
OMDH and OMDH assumptions are both hard in the generic group model.

The key technical tool we introduce is a universally compos-
able Threshold Oblivious PRF which is of independent interest and
applicability.

1 Introduction

Passwords have well-known weaknesses as authentication tokens, foremost
because of their vulnerability to offline dictionary attacks in case of the
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all-too-common leakage of the database of password hashes stored by the authen-
tication server (see e.g., [1]). Worse still, most people re-use their passwords
across multiple services, hence a break-in into one service effectively breaks the
security of others. Yet, because of their convenience, passwords are a dominant
form of authentication, and the amount and value of information protected using
passwords keeps growing. Defenses such as the use of secondary authentication
factors (e.g., a PIN generated by a personal device or a USB dongle) increase pro-
tection against on-line attacks but not against offline attacks upon server com-
promise. Techniques such as Password Authenticated Key Exchange (PAKE)
[6,8] improve on today’s de-facto standard of “password over TLS” authentica-
tion by eliminating the reliance on a Public Key Infrastructure (PKI), but they
do not help against offline attacks after server compromise.

T-PAKE and PPSS. To address the threat of offline dictionary attacks on
the server, Mackenzie et al. [26] introduced (t, n)-Threshold PAKE (T-PAKE),
which replaces a single authentication server with a group of n servers and leaks
no information on passwords even if up to t servers are corrupted. Bagherzandi et
al. [4] proposed a related notion of Password-Protected Secret Sharing (PPSS)
which simplifies the notion of T-PAKE by reducing the goal of key exchange
between user and servers to that of the user retrieving a single secret previ-
ously shared with the servers. Specifically, a (t, n)-PPSS scheme, as formulated
in the PKI-free setting by [18], allows a user to share a random secret s among n
servers under the protection of her password pw s.t. (1) a reconstruction protocol
involving at least t + 1 honest servers recovers s if the user inputs the (correct)
password pw; (2) the compromise of up to t servers leaks no information about
either s or pw; (3) an adversary who corrupts t′ ≤ t servers and has qU interac-
tions with the user and qS interactions with the uncorrupted servers can test at
most qS

t−t′+1 + qU passwords. (In the PKI setting one can set qU = 0.)
The PPSS notion is useful in the design of efficient T-PAKE’s because of the

low-overhead generic PPSS-to-TPAKE compiler [4,18]. It is also an important
primitive in its own right, allowing for online storage of sensitive information like
keys, credentials, or personal records, with availability and privacy protection.
The only token needed for retrieving stored information is a single password,
and both information and password remain private if no more than t servers are
compromised (and if the adversary does not guess or learn the password).

In this paper we present TOPPSS, the most efficient PPSS scheme to date –
and using the PPSS-to-TPAKE compiler of [18] also the most efficient T-PAKE
– with a hard-to-beat complexity as detailed below. Our work builds on the
works of Jarecki et al. [18,19] who constructed PPSS protocols based on Oblivi-
ous Pseudorandom Functions (OPRF), formulated as a universally composable
(UC) functionality. The works of [18,19] define UC OPRF differently, but each
instantiates its OPRF notion using the blinded Diffie-Hellman technique, follow-
ing Ford and Kaliski [15], under the so-called (Gap) One-More Diffie-Hellman
(OMDH) assumption [5,22] in the Random Oracle Model (ROM). Using one
OPRF construction, [18] showed a PPSS whose reconstruction phase takes a
single round between a user and t+1 servers, with 2 (multi)exponentiations per
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server and 2t + 3 for the user. The PPSS of [19] uses a simplified OPRF scheme
secure under the same assumptions, with 1 exponentiation per server and t + 2
for the user. In addition to improving on [18] in efficiency, the latter scheme sat-
isfies a stronger PPSS notion formulated as a UC functionality, which we adopt
here.

Our Contributions. We present TOPPSS, a simple PPSS protocol with
remarkable and hard to beat performance. The reconstruction procedure requires
just one exponentiation per server and a total of two exponentiations for the user
(independent of the number of servers), plus O(t) modular multiplications by
each party. Communication is also optimal: The user sends a single group ele-
ment to a subset of t + 1 servers and gets one group element from each server.
Furthermore, we show that this “minimal cost” (and PKI-free) PPSS satisfies
the strong UC notion of PPSS from [19]. This contribution is based on the obser-
vation that a more efficient PPSS can result from replacing the OPRF used in
the protocols of [18,19] with its threshold (or multi-party) counterpart which
we define as Threshold OPRF (T-OPRF). We provide a UC definition of T-
OPRF as a functionality that allows a group of servers to secret-share a key k
for PRF f with a shared PRF evaluation protocol which lets the user compute
fk(x) on her input x, s.t. both x and k are secret if no more than t of n servers
are corrupted. T-OPRF is an input-oblivious strengthening of Distributed PRF
(DPRF) of Naor et al. [27], hence in particular T-OPRF can replace DPRF
in all its applications, e.g. for corruption-resilient Key Distribution Center, and
long-term information protection (see [27]).

Using this strong notion of T-OPRF security we show a compiler which
transforms UC T-OPRF into UC PPSS at negligible additional cost (in ROM).
In particular, TOPPSS is obtained by designing a T-OPRF protocol, denoted
2HashTDH, with the efficiency parameters stated above. This T-OPRF protocol
is essentially a “threshold exponentiation” protocol, where each server computes
mki on input m where ki is the server’s secret-share of the PRF key k. We prove
that TOPPSS realizes UC T-OPRF under the following assumptions in ROM.
Let t′ ≤ t denote the number of parties actually controlled by an attacker. First,
our results imply that in the so-called full corruption case, i.e. if t′ = t, the same
(Gap) OMDH assumption used in [18,19] implies that the attacker must query
one uncorrupted party per each input on which the attacker wants to obtain
the function value. Since this is the case when the attacker controls the full
threshold t of servers it is also the case for any t′ < t. In the application to PPSS
this means that the attacker can test up to qS + qU passwords, which matches
the qS

t−t′+1 + qU bound for t′ = t. Since many existing works on T-PAKE, e.g.
[2,9,14,23,26,31], implicitly assume the t′ = t case by defining security using
the simplified qS +qU bound on the number of passwords the adversary can test,
we call this level of security a standard threshold security for T-PAKE/PPSS.

Secondly, for the general case of t′ ≤ t, we show that TOPPSS achieves the
stronger qS

t−t′+1 +qU bound assuming a generalization of the OMDH assumption
which we call (Gap) Threshold One-More Diffie-Hellman (T-OMDH). As a san-
ity check for the T-OMDH assumption we show that the T-OMDH problem is
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hard in the generic group model. Since OMDH is a special case of T-OMDH, to
the best of our knowledge this is also the first generic group analysis of OMDH.
The stricter bound implies that an adversary controlling t′ ≤ t servers must con-
tact t − t′ + 1 uncorrupted servers for each input on which it wants to compute
the function, which coincides with the standard threshold security notion when
t′ = t, but it is stronger for t′ < t. For example, it means that the default network
adversary who does corrupt any party but runs q sessions with each server, can
test up to qn/(t + 1) passwords, whereas the standard threshold security would
in this case upper-bound the number of tested passwords only by qn.

As a point of comparison in the full version of this paper [20] we consider
a generic compiler from any OPRF to T-OPRF. This compiler performs multi-
party computation of the server code in the underlying OPRF protocol, but in
the case of the OPRF of [19] such MPC protocol has the same low computational
cost as the customized T-OPRF protocol 2HashTDH discussed above, i.e. 1
exponentiation per server and 2 for the user, with the only drawback of adding
an additional communication round to enforce an agreement between the servers
on the client’s input to the MPC protocol. On the other hand, since the security
depends only on the base OPRF, the resultant two-round T-OPRF protocol
achieves the qS

t−t′+1 + qU bound based solely on OMDH for all t′ ≤ t.

Other Applications. Oblivious PRFs have found multiple applications which
can also enjoy the benefits of a threshold version, particularly given the remark-
able efficiency of our schemes. Examples of such applications include search
on encrypted data [13,17], set intersection [22], and multiple-server DE-PAKE
(device enhanced PAKE) [21].

Related Work. The first (t, n)-Threshold PAKE (T-PAKE) by Mackenzie et
al. [26] required ROM in the security analysis and relied on PKI, namely, it
assumed that the client can validate the public keys of the servers during the
reconstruction phase.1 Gennaro and Raimondo [14] dispensed with ROM and
PKI (in authentication) but increased protocol costs. Abdalla et al. [2] showed
a PKI-free T-PAKE in ROM with fewer communication rounds than T-PAKE
of [26] but the client establishes a key with only one designated gateway server.
Yi et al. [31] showed a similar round-reduction without ROM. The case of n= 2
servers, known as 2-PAKE, received special attention starting with Brainard et
al. [9,29] on 2-PAKE in ROM and PKI, and several works [7,23–25] addressed
the non-PKI and no-ROM case. Still, each of these T-PAKE schemes requires
server-to-server communication. If communication is mediated by the client then
the lowest round complexity is 3 for n > 2 [2] and 2 for n = 2 [7,25].

Bagherzandi et al. [4] introduced the notion of Password-Protected Secret
Sharing (PPSS) with the goal of simplifying T-PAKE protocols. Specifically,

1 When we say that PPSS/T-PAKE assumes PKI we mean that it relies on it for the
security of the reconstruction/authentication phase. By contrast, the initialization
phase of any PPSS/T-PAKE solution must assume some trust infrastructure, e.g.
PKI, or otherwise each party could be initializing the scheme with an impostor.
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they showed a PPSS protocol in ROM assuming PKI, with 2 rounds, constant-
sized messages, and 8(t + 1) (multi) exponentiations per client, and a low-cost
PKI-model compiler from PPSS to T-PAKE. Camenisch et al. [10] constructed
another PPSS scheme, called T-PASS, for Threshold Password-Authenticated
Secret Sharing, without assuming PKI but with 14n exponentiations for the
client, 7 exponentiations per server, and 5 rounds of communication.

Jarecki et al. [18,19] showed significantly faster PPSS protocols, also without
assuming PKI (in reconstruction): The PPSS of [18] takes a single round (two
messages) between a user and each server, and uses 2 (multi) exponentiations
per server and 2t + 3 (multi) exponentiations for the client, secure under (Gap)
OMDH in ROM. (They also show a 4-message non-ROM PPSS with O(n · |pw|)
exponentiations using Paillier encryption.) The PPSS of [19] improves upon this
with a single-round PPSS with 1 exponentiation per server and t + 2 exponenti-
ations for the client, also under OMDH in ROM. In related works, [11] showed
a single-round proactive PPSS in the PKI setting for the case of t = n, and [3]
showed general methods for ensuring robustness in PPSS reconstruction, and a
non-ROM PPSS using O(|pw|) exponentiations in a prime-order group.

Another important aspect of these PPSS solutions is the type of security
notion they achieve. Both the PKI-model PPSS notion of [4] and the PKI-free
PPSS notion of [18] were indistinguishability-based, while [10,19] provided Uni-
versally Composable (UC) definitions of the PPSS functionality. The essence of
the UC PPSS definition of [19], which we adopt here, is that the only attack
the adversary can stage is the inevitable one, namely, an online dictionary
attack where validating a single password guess requires interaction with either
t + 1 instances of the servers or with the user. The UC definitions have further
advantages for a password-based notion like PPSS, e.g. they imply security in
the presence of non-uniformly distributed passwords, correlated passwords used
for different services, and password mistyping.

Organization. In Sect. 2 we define the fundamental tool TOPPSS relies on,
namely T-OPRF, as a UC functionality. In Sect. 3 we show a single-round,
1exp/server + 2exp/client realization of T-OPRF, protocol 2HashTDH, secure
in ROM under the Threshold OMDH assumption we introduce in that section. In
Sect. 4 we show a low-cost compiler from T-OPRF to PPSS, which we exemplify
in Sect. 5 with a concrete instantiation using 2HashTDH.

2 Universally Composable Threshold OPRF

Notation. We use “:=” for deterministic assignment, “←” for randomized
assignment, and “←R” for uniform sampling from some set.

The T-OPRF Functionality. In the introduction we gave an informal
overview of the notion of Threshold Oblivious PRF (T-OPRF) and its applica-
bility, e.g. to PPSS schemes. Here we provide a formal definition of this notion
as a secure realization of the UC functionality FTOPRF shown in Fig. 1 which
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generalizes the single-server (non-verifiable) OPRF functionality of [19] to the
multi-party setting. In the FTOPRF setting, the PRF key is effectively controlled
by a collection of n servers and it remains secret as long as no more than a
threshold t of these servers are corrupted. Such (t, n)-threshold “collective con-
trol” over a functionality can be realized as we show in our 2HashTDH real-
ization in Sect. 3. We chose to base the T-OPRF notion on the non-verifiable
OPRF notion of [19] rather than the verifiable OPRF notion of [18] because the
former was shown to have a more efficient realization under the same assump-
tions, and because this form of OPRF suffices in the key application of interest
to us, namely, Password-Protected Secret-Sharing.

Fig. 1. Functionality FTOPRF with parameters t, n.

The T-OPRF functionality of Fig. 1 has two stages, Initialization and Eval-
uation. The functionality enforces that the outputs of any such function are
uniformly disributed, similarly to the single-server OPRF notion of [19], even in
the case that the adversary controls the private key and/or its sharing among the
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n servers. In more detail, in the initialization stage, a set of n servers, denoted
SI, are activated at the discretion of the adversary. The stage is complete when
all servers become active. Note that the set may include adversarial servers, yet
the functionality guarantees that all servers identified in SI become active by
the end of the initialization stage. The initialization also specifies a parameter
p used to identify a table T (p, ·) of random values that defines the proper PRF
values computed by the user when interacting with any subset of t + 1 honest
servers from the set SI. Additional parameters p∗, and corresponding tables
T (p∗, ·), can be specified by the adversary to represent rogue tables with val-
ues computed by the user in interaction with corrupted servers (see more on
this below). The parameter p is also used to identify a counter tx(p, S) for each
S ∈ SI as specified below.

In the evaluation stage, users connect to an arbitrary set of servers SE chosen
by the adversary and which may arbitrarily overlap with SI (representing the
fact that the user has no memory of who the servers in SI are). When, at
the discretion of the adversary, a server S ∈ SI completes its interaction, the
functionality increases the counter tx(p, S). Eventually, the adversary can trigger
a response to the user which will be drawn from one of the tables maintained by
the functionality. Recall that in addition to the proper table T (p, ·) the adversary
can register additional function tables T (p∗, ·) and may connect an evaluation
request from a user to any such table of its choice.

The security guarantees provided by the T-OPRF functionality are the fol-
lowing: (1) it enforces the use of the proper function table p whenever the set of
servers SE selected for an evaluation are all honest; (2) it “charges” t + 1 server
tickets for accessing the proper table p by decrementing (non-zero) ticket coun-
ters tx(p, S) for an arbitrary set of t + 1 servers in SI; and (3) all tables T (the
proper table p as well as any additional ones set by the adversary with p∗ �= p)
are filled with random entries that are chosen on demand as the functionality
responds back to the user. These guarantees ensure that at least t+1− t′ honest
servers from SI need to be contacted for the proper function to be evaluated
once. To see why this is the case observe that t + 1 tickets are “spent” (decre-
mented) during evaluation which correspond to at least t + 1 − t′ tickets from
honest ticketing counters. This implies that t+1 servers from SI have registered
a SndrComplete message as this is the only event that triggers a counter incre-
ment. In the real world this corresponds to the event that a server has completed
its interaction with a user that attempts to perform an evaluation.

It is important to highlight that the functionality does not necessarily decre-
ment the ticketing counters of the servers identified in the chosen evaluation set
SE ; rather, it decrements an arbitrary set of t+1 non-zero counters for servers in
SI. This reflects the fact that the functionality does not provide any guarantee
about the identities of the responding servers. For instance, this means that we
allow for an implementation of T-OPRF where an honest user U attempts to
connect to a set of servers SE1 that are corrupted and its message is rerouted by
the adversary so that, unbeknownst to U , an honest set of servers servers SE2

becomes the responder set.
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Another important point regarding the T-OPRF functionality is that while it
guarantees correct OPRF evaluation in case the user completes an undisturbed
interaction with t + 1 honest servers in SI, the ideal world adversary may also
maintain an arbitrary collection of random tables and connect a user to them, if
desired, as long as the responder set is not composed of honest servers only. For
instance, the adversary can assign to a subset of corrupted servers SE1 a certain
function table, while it can assign a different function table to a different subset
of corrupted servers SE2. While the two function tables will be independent, they
are not under the control of the ideal world adversary completely: their contents
will be populated by the ideal functionality with random values independently
of each other. In practice this means that we allow for an implementation where
two successive evaluation requests for the same x value result in a different
(but still random) value to be produced, depending on which set of servers the
user connects to. We stress that the secrecy of the input x is always preserved
irrespectively of the subset of servers the user communicates with. At the same
time, observe that the randomness requirement imposed for adversarial tables
restricts our ability to implement the functionality to the random oracle setting.

3 Threshold OPRF Protocol from OMDH and T-OMDH

Here we present our Threshold Oblivious PRF protocol, called 2HashTDH, that
instantiates the FTOPRF functionality defined in Sect. 2. Thus, 2HashTDH pro-
vides a secure T-OPRF for use in general applications and, in particular, as
the basis for our PPSS scheme, TOPPSS, presented in Sect. 4. The 2HashTDH
scheme is formally defined as a realization of FTOPRF in Fig. 3. In a nutshell, it
is a threshold version of the 2HashDH OPRF from [19], recalled in Fig. 2. The
underlying PRF, fk(x) = H2(x, (H1(x))k), remains unchanged, but the key k is
shared using Shamir secret-sharing across n servers, where server Si stores the
key share ki. The initialization of such secret-sharing can be done via a Dis-
tributed Key Generation (DKG) for discrete-log-based systems, e.g. [16], and
in Fig. 2 we assume it is done with a UC functionality FDKG which we discuss
further below. For evaluation, given any subset SE of t + 1 servers, the user U
sends to each of them the same message a = (H ′(x))r for random r, exactly as

Fig. 2. The 2HashDH OPRF [19]
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in the single-server OPRF protocol 2HashDH. If each server Si in SE returned
bi = aki then U could reconstruct the value ak using standard Lagrange inter-
polation in the exponent, i.e. ak =

∏
i∈SE bλi

i with the Lagrange coefficients λi

computed using the indexes of servers in SE . After computing ak, the value
of fk(x) is computed by U by deblinding ak exactly as in the case of protocol
2HashDH. Note that this takes a single exponentiation for each server and two
exponentiations for the user (to compute a and to deblind ak) plus one multi-
exponentiation by U to compute the Lagrange interpolation on the bi values. We
optimize this function evaluation by having each server Si compute bi = aλi·ki ,
which costs one exponentiation and O(t) multiplications and divisions in Zm to
compute λi. (Note that Si must know set SE to compute λi.) This way U can
compute ak using only t multiplications instead of a multi-exponentiation, and
the total costs are 1 exps for each Si and 2 exps for U .

Protocol 2HashTDH can be also be seen as a simplification of a protocol
which results from a generic transformation of any OPRF to T-TOPRF using
multi-party secure computation of the server code, and then applying this trans-
formation to the 2HashDH OPRF of [19]. The server in 2HashDH computes ak

on input a, and the MPC protocol for it is exactly the threshold exponentiation
protocol described above, except that this generic OPRF to T-OPRF transfor-
mation must assure that the servers perform the MPC subprotocol on the same
input a, and this involves an additional round of server-to-server interaction,
which the 2HashTDH protocol avoids. We refer to the full version of this paper
[20] for the specification of this general OPRF to T-OPRF compiler.

Roadmap. In Sect. 3.1 we show protocol 2HashTDH and explain the assump-
tions taken in its specification. In Sect. 3.2 we introduce the T-OMDH assump-
tion, a generalization of OMDH, and we show that it is equivalent to OMDH
in several cases, including the full corruption case t′ = t discussed in the intro-
duction. In Sect. 3.3 we show that protocol 2HashTDH realizes the Threshold
OPRF functionality FTOPRF under the T-OMDH assumption in ROM for any
threshold parameters (t, n) and any number t′ < t of corrupted servers. It fol-
lows that protocol 2HashTDH achieves the standard threshold security property,
which corresponds to the full corruption case, under just OMDH in ROM. Note
that the non-threshold OPRF 2HashDH of [19] also relies on OMDH.

3.1 T-OPRF Protocol Based on T-OMDH Assumption

The 2HashTDH T-OPRF protocol is shown in Fig. 3, relying on realizations of
functionalities FDKG,FAUTH and FSEC, which model, respectively, the distrib-
uted key generation, authenticated channel, and secure channel. Assuming these
functionalities, the 2HashTDH protocol realizes the UC T-OPRF functionality
defined in Sect. 2, under the T-OMDH assumption in ROM. As we argue in
Sect. 3.2, this implies security under OMDH in ROM in several cases, including
the full corruption case, where the adversary corrupts t′ = t servers, and the addi-
tive sharing case, where t = n − 1. Functionalities FDKG,FAUTH,FSEC all have
well-known efficient realizations in ROM under the Diffie-Hellman assumption
which is implied by OMDH, and hence also by T-OMDH.
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Fig. 3. Protocol 2HashTDH realizing FTOPRF assuming FDKG,FSEC,FAUTH.

Note on Authentic and Secret Channels. In Fig. 3 protocol 2HashTDH is
presented in the (FAUTH,FSEC,FDKG)-hybrid world, i.e., assuming that there
are both authenticated and secure (i.e. authenticated and secret) channels
between protocol participants. We refer to [12] for the UC models of authen-
ticated and secret channels, but simply speaking, what the authenticated and
secure channel functionalities model is that if party P1 sends message m to party
P2 using FAUTH command (Send, sid , P2,m), then P2 will be able to authen-
ticate m as originated from P1, i.e. if P2 receives command (Sent, sid , P1,m

′),
it is guaranteed that m′ = m, and if P1 sends m to P2 using FSEC command
(Send, sid , P2,m), then P2 can verify authenticity of P1’s message as above, but
in addition m will be hidden to the adversary unless P2 is corrupted.

We note that using ideal functionalities such FAUTH,FSEC in the hybrid
world, does not determine their implementation when the UC protocol is
deployed in the real world. This is because they only describe how the adversarial
model against the protocol is envisioned. For instance, FAUTH may be realized
using a PKI involving all connected participants, or it may be simply substituted
by unauthenticated TCP/IP communication in case it is deemed that modifying
message contents is not a relevant threat in the protocol deployment. Indeed,
this will also be the case in our setting since we allow the (adversarial) envi-
ronment to choose the servers that a user connects in the evaluation stage of
the protocol in a way that is independent from the initialization servers; in this
way, any man-in-the-middle scenario can be simulated by the adversary without
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violating the FAUTH constraints. Similarly, FSEC may be implemented by TLS,
but may also be achieved in other ways, e.g., physically transferring private state
between the parties engaged in the protocol.

A second important point is that if a user U initializes a T-OPRF instance
with a server set SI = {S1, ..., Sn} such that some subset B of SI is made of
corrupt entities (which models both the fact that some SI members are corrupt
and the fact that U can execute T-OPRF initialization on an incorrect set of
servers), then in this case command (Send, sid , Si,m) for Si ∈ B will leak m to
the adversary, and if U receives (Sent, sid , Si,m) from FAUTH for Si ∈ B, we can
assume that the adversary supplies message m. In other words, the FAUTH and
FSEC channels implement authenticated and/or secret point-to-point message
delivery only if they are executed for a proper and non-corrupt server. We note
that we assume a secret channel FSEC in addition to an authenticated channel
FAUTH solely to simplify the description of T-OPRF initialization. Indeed, the
former can be built from the latter [12], e.g. by having each server Si first send
its encryption public key to U using the authenticated channel.

Note on Distributed Key Generation. Protocol 2HashTDH assumes that
servers in SI establish a secret-sharing (k1, ..., kn) of a random key k over authen-
ticated channels via a Distributed Key Generation (DKG) functionality FDKG,
shown in Fig. 4. The DKG sub-protocol for discrete-log based cryptosystems
can be efficiently realized without user’s involvement [16,30], but if the call to
initialize a TOPRF instance is executed by an honest user U then the DKG
subprotocol can be even simpler, because U can generate sharing (k1, ..., kn) of
k and then distribute the shares among the servers in SI. Note that since our
realizations of FTOPRF pertains only to the static adversarial model, where the
identity of corrupt parties is determined at the outset, we would not explicitly
require that the parties erase the information used in the initialization, but any
implementation should erase such information. In our specification of protocol
2HashTDH we rely on the FDKG functionality to abstract from any specific
DKG implementation, e.g. whether it is done by the server or by an honest
user.

3.2 Threshold OMDH Assumption

Notation. If n is an integer, then [n] = {1, ..., n}. If D is a set, then |D| is
its cardinality. We use bold font to denote vectors, e.g. a = [a1, ..., an]. If a
and b are two vectors of the same dimension, then a � b is their Hadamard
(component-wise) product. If |a | = n and J is a sequence in [n] then aJ denotes
the components of a with indices in J , i.e. [ai1 , ..., aik ]T if J = (i1, ..., ik).

Let Iw be the set of w-element subsets of [n], i.e. Iw = {I ⊆ [n] s.t. |I| = w}.
Let W (a) be the hamming weight of a . Let Vw be the set of n-bit binary vectors q
s.t. W (q) = w, i.e. Vw = {v ∈ {0, 1}n s.t. vi = 1 iff i ∈ Iw}. For q = [q1, . . . , qn]
define Cw(q) as the maximum integer m for which there exist v1, ..., vm ∈ Vw

(not necessarily distinct) s.t. v1 + ... + vm ≤ q . In other words, Cw(q) is the
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Fig. 4. Distributed key generation functionality FDKG [30].

maximum number of times one can subtract elements in Vw from q s.t. the
result remains ≥ 0 . For example if and q = [3, 3, 4] then C2(q) = 4 because
q = 2 × [1, 0, 1] + [1, 1, 0] + 2 × [0, 1, 1].

T-OMDH Intuition. Let 〈g〉 be a cyclic group of prime order m > n. The
T-OMDH assumption considers the setting where a random exponent k ∈ Zm is
secret-shared using a random t-degree polynomial p(·), and the n trustees holding
shares k1=p(1), . . . , kn=p(n) implement a “threshold exponentiation” protocol
which computes ak for any given a ∈ 〈g〉 and k = p(0). Let TOMDHp(·, ·) be
an oracle which on input (i, a) ∈ [n] × 〈g〉 outputs ap(i). The standard way
to implement threshold exponentiation is to choose a set I ∈ It+1, compute
bi = TOMDHp(i, a) = aki for each i in I and derive ak as

∏
i∈I bλi

i using
Lagrange interpolation coefficients λi s.t. k =

∑
i∈I λi·ki. The T-OMDH assump-

tion states that querying oracle TOMDHp(·, ·) on at least t + 1 different points
i ∈ [n] is necessary to compute ap(0) for a given random challenge a. More
generally, T-OMDH considers an experiment where the attacker A receives a
challenge set R = {g1, ..., gN} of random elements in 〈g〉 and is given access to
the TOMDHp(·, ·) oracle for random t-degree polynomial p(·). T-OMDH assump-
tion states that A can compute gk

j for k = p(0) for no more than Ct+1(q1, . . . , qn)
elements gj ∈ R, where qi is the number of A’s queries to TOMDHp(i, ·).

The above intuition and Definition 1 below correspond to the setting where
the attacker does not control any of the trustees holding shares of p, hence it
needs t + 1 queries to TOMDHp(·, ·) to compute ap(0) for each random chal-
lenge a. Later we extend this definition to the case where A controls a subset
of trustees.
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Definition 1. The (t, n,N,Q)-Threshold One-More Diffie Hellman (T-OMDH)
assumption holds in group 〈g〉 of prime order m if the probability of any
polynomial-time adversary A winning the following game is negligible. A receives
challenge set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N ], and is given access
to an oracle TOMDHp(·, ·) for a random t-degree polynomial p(·) over Zm. A
wins if it outputs gk

j where k = p(0) for Q + 1 different elements gj in R, and if
Ct+1(q1, . . . , qn) ≤ Q where qi is the number of A’s queries to TOMDHp(i, ·).

Note that the (N,Q)-OMDH assumption [5,22] is the (t, n,N,Q)-T-OMDH
assumption for t = 0 and any n ≥ 1, because then p(·) is a constant polynomial
and C1(q) = W (q), i.e. the total number of A’s TOMDHp(·, ·) queries.

T-OMDH: The General Case. In its general form, the T-OMDH assumption
corresponds to computing gk

j if some subset of t′ ≤ t trustees holding shares
ki = p(i) is corrupt, and hence the adversary can not only learn these shares but
can also set them at will.

Definition 2. The (t′, t, n,N,Q)-T-OMDH assumption holds in group 〈g〉 of
prime order m if for any B ⊆ [n] s.t. |B| = t′ ≤ t, the probability of any
polynomial-time adversary A winning the following game is negligible. On input
a challenge set R = {g1, . . . , gN} where gi ←R 〈g〉 for i ∈ [N ], adversary A
specifies a set of t′ values {αj}j∈B in Zm. A random t-degree polynomial p(·)
over Zm is then chosen subject to the constraint that p(j) = αj for j ∈ B, and
the adversary A is given access to oracle TOMDHp(·, ·). We say that A wins
if it outputs gk

j where k = p(0) for Q + 1 different elements gj in R, and if
Ct−t′+1(q1, . . . , qn) ≤ Q where qi for i /∈ B is the number of A’s queries to
TOMDHp(i, ·), and qi = 0 for i ∈ B.

Note that (t′, t, n,N,Q)-T-OMDH is identical to (t, n,N,Q)-T-OMDH for t′ = 0.

Gap T-OMDH. In order to prove the security of T-OPRF, we need to extend
the T-OMDH assumption stated in Definition 2 to its “gap” form, i.e. suppose
〈g〉 is a gap group where A is in addition given access to the DDH oracle in 〈g〉.
Definition 3. The Gap (t′, t, n,N,Q)-T-OMDH assumption is the T-OMDH
assumption of Definition 2 except that A is also given access to the DDH oracle in
group 〈g〉, which on input (a, b, c, d) outputs 1 if loga b = logc d and 0 otherwise.

In the full version of this paper [20] we show that the (Gap) (t, t′, n,N,Q)-T-
OMDH assumption holds in the generic group model for any (t′, t, n). Specifically,
the advantage of a T-OMDH adversary restricted to r generic group operations
is upper-bounded by O(Qr2/m), assuming r ≥ Q ≥ N . This is larger by factor
Q from the O(r2/m) upper-bounds on generic group attacks against many static
problems related to discrete logarithm [28], and this weakening is caused by the
presence of up to Q-degree polynomials of the “target” secret k = p(0) in the
representation of the group elements which the adversary can compute given
access to TOMDHp(·, ·) using the query pattern q = [q1, ..., qn] s.t. Ct−t′+1(q) ≤
Q. Since (Q,N)-OMDH is identical to (t′, t, n,N,Q)-T-OMDH for (t′, t) = (0, 0)
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and any n, the same upper-bound applies applies to OMDH, and to the best of
our knowledge this is the first generic model security hardness argument for the
OMDH (or Gap OMDH) assumption.

T-OMDH = OMDH in Full Corruption and Additive Sharing Cases.
The T-OMDH and OMDH assumptions are equivalent in two important cases,
namely the full corruption case of t′ = t, for any (t, n), and in the additive
sharing case of t = n − 1, for any t′. We refer to the full version of this paper
[20] for (easy) proofs of above equivalences. Note also that whereas the question
whether the T-OMDH and OMDH assumptions are equivalent for any t′ < t and
t + 1 < n remains open, in the full version [20] we also show the same generic
group hardness bound for both problems.

3.3 Security Analysis of 2HashTDH

Protocol 2HashTDH protocol of Fig. 3 is secure under the T-OMDH assumption.
As a corollary of the fact that in the full corruption case of t′ = t faults the T-
OMDH and OMDH assumptions are equivalent, Theorem1 implies that protocol
2HashTDH is secure under OMDH in ROM in the full corruption case of t′ = t.
The proof of Theorem1 appears in the full version of this paper [20].

Theorem 1. Protocol 2HashTDH realizes functionality FTOPRF with parame-
ters t, n in the (FAUTH,FSEC,FDKG)-hybrid model, assuming static corruptions,
hash functions H1(·) and H2(·, ·) modelled as Random Oracles, and the Gap
(t′, t, n,N,Q)-T-OMDH on group 〈g〉, where Q is the number of Eval messages
sent by any user, N = Q + q1 where q1 is the number of H1(·) queries the
adversary makes, and t′ < t is the number of corrupted servers in SI.

Specifically, for any efficient adversary A against protocol 2HashTDH, there
is a simulator SIM s.t. no efficient environment Z can distinguish the view of A
interacting with the real 2HashTDH protocol and the the view of SIM interacting
with the ideal functionality FTOPRF, with advantage better than qT · ε(N,Q) +
N2/m, where qT is the number of TOPRF instances, ε(N,Q) is the bound on the
probability that any algorithm of the same cost violates the Gap (t′, t, n,N,Q)-
T-OMDH assumption, and m = |〈g〉|.

4 TOPPSS: A PPSS Scheme Based on T-OPRF

In Fig. 5 we show a compiler which converts a T-OPRF scheme which realizes
the UC T-OPRF notion of Sect. 2 into a PPSS scheme, called TOPPSS, which
realizes UC PPSS functionality of [19]. The terminology of the UC setting might
obscure the amazing practicality of this construction, so in Sect. 5 we show a con-
crete implementation of this scheme with the FTOPRF functionality implemented
using the T-OPRF instantiation 2HashTDH from Sect. 3.

TOPPSS Overview. To explain the mechanics of TOPPSS based on the
T-OPRF functionality, it is instructive to compare it to the OPRF-based PPSS
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Fig. 5. The TOPPSS protocol

scheme of [19]. In that scheme each server holds its own independently random
key ki for an OPRF f . At initialization, the secret to be protected is processed
with a (t, n) secret sharing scheme and each share is stored at one of n servers,
where server Si stores the i-th share encrypted under fki

(pw). At reconstruction,
the user receives the encrypted shares from t + 1 servers which it decrypts using
the values fki

(pw) that it learns by running the OPRF on pw with each of these
servers. By contrast, in our TOPPSS scheme, which is T-OPRF-based, the (ran-
dom) secret to be protected is defined as a single PRF value v = fk(pw) where k
is a key secret-shared as part of a T-OPRF scheme. This provides a significant
performance gain by reducing the number of exponentiations performed by the
user from t + 2 to just 2. In the scheme of [19] implemented with 2HashDH, the
user computes the OPRF sub-protocol with each server independently, which
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involves one blinding operation re-used across all servers, but requires one de-
blinding operation per server for a total of t + 2 exponentiations. By contrast,
in the T-OPRF protocol 2HashTDH of Sect. 3 the user performs a single blind-
ing and de-blinding, hence just 2 exponentiations, regardless of the number of
servers and threshold t.

Note that the T-OPRF functionality allows the user to evaluate function
fk(·) on the user’s password pw, without leaking any information about pw, but
it does not let the user verify whether the function is computed correctly. Indeed,
following the rules of functionality FTOPRF, either corrupt servers or a man-in-
the-middle adversary could make the user compute fk(pw) on key k of their
choice. If the dictionary D from which the user draws her password is small, the
adversary can potentially pick k s.t. function fk(·) behaves on domain D in some
ways the adversary can exploit (e.g., reducing the number of possible outputs).
However, since FTOPRF assures that fk(·) behaves like a random function for all
k’s, even for k’s chosen by the adversary, it suffices to include a commitment to
the master secret v = fk(pw) in the information that the servers send to the user,
so that the user can verify its correctness. The adversary can still pick k but if
fk(·) is pseudorandom for all k then the adversary cannot change either k or v
without guessing pw. Note that the randomness for verifying this commitment
must be derived from the committed plaintext fk(pw) itself as this is the only
value the user can retrieve using its only input pw. Although this mechanism
requires the commitment scheme to be deterministic, the hiding property of the
commitment is still satisfied thanks to the pseudorandomness of the committed
plaintext v = fk(pw) (and assuming no more than t corruptions).

Since our realizations of FTOPRF, protocol 2HashTDH, requires the Random
Oracle Model (ROM) for hash functions in the security analysis, we implement
this commitment simply with another hash function modeled as a random oracle.
Finally, since the user needs to verify the master-secret v as well as to derive a
key K from it, we implement both operation using a single hash function call,
i.e. we set [C|K] to H(v) where H hashes onto strings of length 2�.

The proof of the following theorem is in the full version of this paper [20].

Theorem 2. The TOPPSS scheme of Fig. 5 UC-realizes the PPSS functionality
FPPSS assuming access to the T-OPRF functionality FTOPRF and to the authen-
ticated message delivery functionality FAUTH, and assuming that hash function
H is a random oracle.

5 Concrete Instantiation of TOPPSS Using 2HashTDH

For concreteness we show an instantiation of TOPPSS with the T-OPRF func-
tionality realized by protocol 2HashTDH from Fig. 3 in Sect. 3. In this figure we
realize the FDKG subprotocol assuming an honest user U , because in the context
of a PPSS protocol, we only care about security for PPSS instances which were
initialized with an honest user. Hence we simply have U create the sharing of the
T-OPRF key and distributing it among the servers in SI (see a note on DKG in
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Fig. 6. Concrete instantiation of TOPPSS based on 2HashTDH T-OPRF.

Sect. 3.1). Note that if we implement FDKG in this user-centric way then we do
not have to execute T-OPRF evaluation for U to compute v = fk(pw) as part of
the initialization: User U can just compute v = fk(pw) locally because U picked
the TOPRF key k (Fig. 6).

On the Role of Secure Channels. The communication in such instantiation
of TOPPSS must go over secure channels in the initialization phase, which in
practice could be implemented using e.g. TLS.2 In the reconstruction phase, the
communication does not have to go over secure channels, because TOPPSS is
2 Note that if the FDKG was instantiated with the distributed key generation then

authenticated channels would suffice for the communication between the user and
the servers because the TOPRF evaluation protocol does not need secure chan-
nels. However, the standard realization of FDKG [30] would require secure channels
between the servers.
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secure in the password-only, i.e. PKI-free, model. However using TLS would
offer a security benefit against the network adversary as a hedge against any
server-spoofing attacks due to which the user might be tricked to run the PPSS
reconstruction with the wrong set of servers. To see the benefit of running a
PPSS protocol over TLS channels, denote the set of server identities which U
inputs in the reconstruction as SR. In the case of running PPSS reconstruction
over TLS these can be equated with the public keys the user would use in the
TLS sessions with the t+1 servers in the reconstruction. Consider the following
two cases, and refer to the specification of the UC PPSS functionality FPPSS of
[19], which we include in the full version of this paper [20].

Case I: Every server S′ in set SR is either incorrect (i.e. S′ �∈ SI) and w.l.o.g.
represents a malicious entity, or it is correct (i.e. S′ ∈ SI) but it is corrupted.
In this case, according to FPPSS specifications (see line 3b of the reconstruction
phase), the adversary can perform one on-line password guess on such session.
In other words, if the user runs reconstruction with incorrect/corrupt servers,
the security is as in a (password-only) PAKE, i.e. the adversary can attempt to
authenticate to such user using a password guess pw∗, and test if pw∗ = pw.

Case II: There are some servers S′ in set SR which are both correct (i.e. S′ ∈ SI)
and uncorrupted. In this case, according to FPPSS specifications (lines 3a and
3b of FPPSS), the adversary cannot learn anything from such instance, and can
only either let it execute (line 3a) in which case U reconstructs the (correct!)
secret K, or interfere with the protocol (line 3c) and make U output Fail.
In short, if PPSS reconstruction is executed over insecure channels then the
man-in-the-middle adversary could make every reconstruction instance fall into
Case I. By contrast, executing it over TLS forces the reconstruction instances
to fall into Case II, unless the adversary tricks U to execute the reconstruction
for the set of servers SR which includes only corrupt entities, in which case such
reconstruction instance (and only such instance) falls back into Case I.

Note on sid/ssid Monikers. As we explain above, it is not essential for security
of reconstruction that the user remembers the servers in the initialization set SI.
It might also be helpful to clarify the potential security implications of sid/ssid
monikers which we assume are inputs in the initialization and the reconstruction
phase. String sid (which stands for “session ID” in the AKE and UC terminology)
in the context of a PPSS scheme can be equated with a “user ID”, because it
is a string which servers in SI will use to disambiguate between multiple PPSS
instances which they can potentially service. It is therefore sensible to require
that U remembers this user ID string sid in addition to her password pw. On
the other hand, string ssid could be a nonce, or some application-determined
identifier of a unique PPSS reconstruction session.
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