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Abstract. Side-channel attacks are powerful tools for breaking systems
that implement cryptographic algorithms. The Advanced Encryption
Standard (AES) is widely used to secure data, including the commu-
nication within various network protocols. Major cryptographic libraries
such as OpenSSL or ARM mbed TLS include at least one implementa-
tion of the AES. In this paper, we show that most implementations of the
AES present in popular open-source cryptographic libraries are vulnera-
ble to side-channel attacks, even in a network protocol scenario when the
attacker has limited control of the input. We present an algorithm for
symbolic processing of the AES state for any input configuration where
several input bytes are variable and known, while the rest are fixed and
unknown as is the case in most secure network protocols. Then, we clas-
sify all possible inputs into 25 independent evaluation cases depending
on the number of bytes controlled by attacker and the number of rounds
that must be attacked to recover the master key. Finally, we describe an
optimal algorithm that can be used to recover the master key using Cor-
relation Power Analysis (CPA) attacks. Our experimental results raise
awareness of the insecurity of unprotected implementations of the AES
used in network protocol stacks.
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1 Introduction

Side-channel attacks use observations made during the execution of an imple-
mentation of a cryptographic algorithm to recover secret information. From the
multitude of side-channel attacks, Correlation Power Analysis (CPA) [5] stands
out as a very efficient and reliable technique. Its success is augmented by the
minimally invasive methods employed for the acquisition of the side-channel
information. Some of the most frequently used sources of side-channel leakage
are the power consumption or the electromagnetic (EM) emissions of a device
under attack.

Nowadays, the AES [23] is the most popular symmetric cryptographic algo-
rithm in use. It is widely deployed to secure data in transit or at rest. Various
network protocols rely on the AES in different modes of operation to provide
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security services such as confidentiality and authenticity. The usage spectrum
of the AES stretches from powerful servers and personal computers to resource
constrained devices such as wireless sensor nodes. While the security of the algo-
rithm and its implementations have been placed under scrutiny since it became
the symmetric cryptographic standard, with a few notable exceptions, most of
the previous work focused on the AES itself and less on the usage of the AES in
complex systems.

By far, most of the experimental results reported in the side-channel liter-
ature are for implementations of the AES. They usually assume the attacker
has full control of the AES input. This is not the case in a real world commu-
nication protocol, when often a major part of the input is fixed and only few
bytes are variable. Moreover, sometimes the attacker cannot control these vari-
able bytes and she has to passively observe executions of the targeted algorithm
without being able to trigger encryptions of her own free will. With the notable
exceptions of [16,24], the security of communication scenarios based on the AES
against side-channel attacks has not been thoroughly analyzed so far. Thus, in
this paper we analyze for the first time how much control of the AES input
does an attacker need to recover the secret key of the cipher by performing a
side-channel attack against a communication protocol.

Numerous standards for communication in the Internet of Things (IoT) such
as IEEE 802.15.4 [15] and LoRaWAN [21] use the AES to encrypt and authen-
ticate the Medium Access Control (MAC) layer frames. The 802.15.4 standard
uses a variant of the AES-CCM [9,34], while LoRaWAN uses AES-CMAC [31].
The same CCM mode is used with the AES to encrypt the IPsec Encapsulating
Security Payload (ESP) [14]. According to [29] the security architecture of IEEE
802.15.4 relies on four categories of security suites: none, AES-CTR, AES-CBC-
MAC, and AES-CCM. A typical input for the AES-CTR and AES-CCM modes
used in the IEEE 802.15.4 protocol is shown in Fig. 1. In this particular example,
an attacker can manipulate up to 12 bytes of the input (Source Address and
Frame Counter), while the other input bytes (Flags, Key Counter and Block
Counter) are fixed. The attack on IEEE 802.15.4 wireless sensor nodes described
in [24] assumes the control of only four input bytes (Frame Counter), while the
remaining input bytes are constant. Thus the following question arises: How
many input bytes should an attacker change in the injected messages in order
to fully recover the master key without triggering any network protection mech-
anism?

Flags Source Address Frame Ctr
Key
Ctr

Block Ctr

1 byte 8 bytes 4 bytes 1 byte 2 bytes

Fig. 1. The first input block for the AES-CTR and AES-CCM modes used in IEEE
802.15.4.
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While numerous network protocols use the AES to secure the communication
between end nodes, major cryptographic libraries such as OpenSSL [25] and
ARM mbed TLS [2] do not have a side-channel protected implementation of the
AES for devices that do not support the AES-NI [13] instruction set as is the
case with most IoT devices. Therefore, an elaborate analysis of the security of
the unprotected implementations of the AES used in communication protocols
is necessary. Only such a careful analysis can assess the impact of side-channel
attacks on the security of real world systems using unprotected implementations
of the AES.

In this work, we chose to focus on CPA attacks thanks to their efficiency and
reliability. We opted for a non-invasive measurement setup and hence we selected
the EM emissions of the target processor as source of side-channel leakage. The
target is an ARM Cortex-M3 processor mounted on a STM32 Nucleo [32] board
from STMicroelectronics. These processors are widely used for low-power appli-
cations and meet the requirements for use in the IoT.

The IoT will be a security nightmare if the whole ecosystem is not designed
with security in mind. While many communication protocols for the IoT are in
formative stages, the threat model of the IoT is less understood despite it is
widely accepted that its attack surface is large. Although we focus on a par-
ticular side-channel attack (i.e. power/EM), other side-channel attacks such as
timing, fault, cache or data remanence attacks might pose a similar or even a
higher threat for the security of the IoT ecosystem. Attacks that do not exploit
side-channel information, such as those used to compromise Internet-connected
computers, should not be neglected since they have certain advantages over side-
channel attacks. Thus, our work adds another piece to the security puzzle of the
IoT by showing the need for side-channel countermeasures to prevent a somehow
overlooked threat.

Research Contributions. This paper performs for the first time a thorough
analysis of all possible attack scenarios against software implementations of the
AES used to secure various communication protocols. Firstly, we present an algo-
rithm for symbolic processing of a given input state of the AES. The algorithm
outputs the number of rounds and the bytes that must be attacked to recover the
secret key. Then, using this algorithm we perform a classification of all possible
inputs depending on the number of rounds that must be attacked in order to
recover the master key. The result is a set of 25 independent evaluation cases.
Secondly, we describe an optimal algorithm that uses the above-mentioned sym-
bolic representation to recover the master key of the AES using CPA attacks. The
algorithm explores all possible combinations of input key bytes and discards the
invalid key candidates, thus yielding only the correct master key if enough power
traces with a good signal-to-noise ratio are provided. Afterwards, we evaluate
the results of the attack algorithm in each of the 25 evaluation cases identified
in the classification step using traces from an ARM Cortex-M3 processor.

Our results show that popular implementations of the AES found in well-
known and widely used cryptographic libraries can be broken using CPA attacks.
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The only requirement is that a part of the AES input is known and variable, while
the rest is constant, which is a common scenario in communication protocols.
Knowledge of the AES implementation strategy improves the attack results, but
it is not crucial. All software tools presented in this paper are in the public
domain1 to support reproducibility of results and to maximize reusability.

2 Preliminaries

2.1 Description of the AES

We give a brief description of the AES [23] to recall relevant aspects of the
algorithm and to introduce the notation used in this paper. For more details on
the AES algorithm, we refer the reader to the official specifications.

The AES standard uses the 128-bit block length version of the Rijndael
cipher [8] with three different key lengths: 128, 192, and 256 bits. The round
function is applied to the 4 × 4 byte state matrix 10, 12, or 14 times depending
on the key length. It comprises four transformations: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. The final round function does not include the
MixColumns transformation.

Let si,j be the state byte located at row i and column j (0 ≤ i, j ≤ 3), kl the
corresponding round key byte (l = 16 ·r+i+4 ·j) and r the round number. After
application of the AddRoundKey transformation, each byte of the state becomes
s′
i,j = si,j ⊕ kl, where the “⊕” symbol denotes bitwise exclusive or of two 8-bit

values. The non-linear SubBytes operation transforms each byte of the state
using an 8-bit S-box S as follows: s′

i,j = S[si,j ]. The ShiftRows transformation
performs a rotation of row i by i bytes to the left. In the MixColumns transfor-
mation, a polynomial multiplication over GF (28) is applied to each column of
the state matrix. The symbol “•” is used for multiplication of two numbers in
GF (28), while {01}, {02}, and {03} are 8-bit vectors representing elements from
GF (28).

The key schedule expands the master key into the 16-byte round keys. The
round constant array Rcon contains the powers of {02} in GF (28) as described
in the specifications.

2.2 Correlation Power Analysis

Correlation Power Analysis (CPA) [5] is a side-channel attack in which the
attacker correlates the power model of a sensitive intermediate value of the
target cryptographic algorithm with the measured power consumption or elec-
tromagnetic emission (EM) of the device running the target algorithm. Then, she
chooses the key hypothesis that gives the maximum correlation coefficient as the
most likely key. Compared to classical Differential Power Analysis (DPA) [17]
attacks, CPA attacks have several advantages in terms of efficiency, robustness
and number of experiments, but are more resource demanding. Agrawal et al. [1]
1 https://github.com/cryptolu/aes-cpa.

https://github.com/cryptolu/aes-cpa
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introduced the electromagnetic emissions of a target device as a source of leakage
for side-channel attacks.

A CPA attack can be split into two phases: acquisition and attack. In the
acquisition phase, the attacker observes and records the leakage of the target
device (power consumption or electromagnetic emission) for different inputs.
While the acquisition of power consumption traces requires insertion of a resis-
tor into the circuitry of the target device to measure the voltage across it, the
observation of electromagnetic emission is non-invasive; it only requires an elec-
tromagnetic probe placed in the vicinity of the leaking spot. In the attack phase,
the attacker correlates these observations with the modeled power consumption
of the selection function to recover the secret key. A selection function combines
a known input with the secret material to be recovered.

In this work we focus on the electromagnetic emissions of an ARM Cortex-M3
processor clocked at 8 MHz running various software implementations of the AES.
The acquisition was performed from a spot above the chip using a Langer RF-K 7-
4 H-field probe. The signal was amplified by 30dB and fed into a Teledine LeCroy
WaveRunner 8254M-MS oscilloscope sampling at 500 MS/s. For more details on
the measurement setup we refer the reader to the full version of this paper.

2.3 Attacking Temporary Key Bytes

To attack the AES in counter mode, Jaffe introduced a technique that propagates
a DPA attack to later rounds. It can be used when just few key bytes of the
AES input are known and variable, while the others are fixed (constant) and
unknown [16]. Next we briefly describe how the unknown fixed bytes can be
incorporated into a round key byte to recover a temporary key byte. Then,
using these temporary key bytes the attack can be carried into later rounds
until enough round key bytes are recovered to reverse the key schedule.

Using a CPA attack an adversary can recover only those key bytes that are
XORed with variable and known state bytes in the AddRoundKey transformation.
The gist of Jaffe’s technique is that an attacker can still recover a temporary
key byte when an input byte of the AddRoundKey transformation is the result
of the MixColumns transformation applied to at least one known and variable
input byte while the other input bytes are unknown and constant.

To better illustrate how this technique works, let us consider the first state
byte s′

0,0 after performing the first round function:

s′
0,0 = ({02} • s0,0) ⊕ ({03} • s1,1) ⊕ ({01} • s2,2) ⊕ ({01} • s3,3) ⊕ k16

Suppose now that the input bytes s0,0 and s1,1 are known and variable (key
bytes k0 and k5 were successfully recovered using a side-channel attack on the
SubBytes transformation of the first round), while the other input bytes (s2,2
and s3,3) are unknown, but fixed. Thus s′

0,0 can be written as ({02} • s0,0) ⊕
({03} • s1,1)⊕ k′

16, where the constant part is included in the temporary key k′
16

that will be recovered by attacking the SubBytes transformation of the second
round; k′

16 = ({01}•s2,2)⊕({01}•s3,3)⊕k16. The temporary key k′
16 enables the
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computation of four state bytes in the following round. In this way, the attack
is carried into the next rounds until all state bytes are known; consequently, the
real key bytes can be recovered.

The technique works similarly when three input bytes are known and variable.
Though, when only one input byte is known and variable, the attacker will
recover the same two equally likely key candidates for two bytes of the same
column of the cipher state. For example, when only s3,3 is known and variable
while the other input bytes are unknown and fixed, then s′

0,0 = ({01}•s3,3)⊕k′
16

and s′
1,0 = ({01} • s3,3) ⊕ k′

17. Thus attacking either of the two, an attacker will
get two equally likely key bytes (k′

16 and k′
17). If the state bytes are not processed

in order by the SubBytes transformation, the attacker will not know which key
byte corresponds to s′

0,0 and which key byte corresponds to s′
1,0.

2.4 Software Implementations of the AES

There are various ways to implement the AES in software depending on the
execution time, code size and RAM consumption requirements. Other factors
that influence the implementation strategy are the cipher mode of operation
and the number of plaintext blocks to be encrypted. Schwabe and Stoffelen [30]
identified four different strategies to implement the AES in software: traditional,
T-tables, vector permute, and bit slicing. In this paper, we consider the follow-
ing two implementation approaches for the AES that are relevant for a secure
communication protocol:

– The straightforward implementation (S-box strategy) performs the four
round transformations as described above. The substitution layer is imple-
mented using a 256-byte lookup table based on S-box S. This implementation
approach is suitable for 8-bit architectures.

– The table based implementation (T-table strategy) uses four lookup tables
(T0, T1, T2, and T3) of 1024 bytes each to perform the SubBytes, ShiftRows,
and MixColumns operations at the cost of 16 table lookups, 16 masks and
16 XORs per round, except for the final round. A low memory alternative
uses just one T-table, but performs 12 additional rotations per round. This
strategy was initially described by the designers of Rijndael [8]. It leads to
very fast implementations on 32-bit platforms.

We did not analyze bit-sliced or vector permute implementations because
such implementations are uncommon in cryptographic libraries due to the fol-
lowing limitations. The bit-sliced implementations process at least two blocks
in parallel and thus they can be applied only to non-feedback modes of opera-
tion. The vector permute implementations require support for vector permute
instructions, but most of the resource constrained microcontrollers for the IoT
do not support such instructions.

An analysis of the existing AES implementations used by different open
source cryptographic libraries is given in Table 1. The default implementations of
the AES for platforms that do not support the AES-NI [13] instructions in popu-
lar cryptographic libraries such as OpenSSL [12,25] or mbed TLS [2,11] use the
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Table 1. A summary of the existing AES implementations used by open source cryp-
tographic libraries written in C/C++. All the T-table implementations are vulnerable
to the attack described in this paper.

Library Language Version Last update AES-NI T-table

Botan [27] C++ 2.1.0 Apr 2017 ✓ ✓

cryptlib [6] C 3.4.3 Feb 2017 ✓ ✓

Crypto++ [7] C++ 5.6.5 Oct 2016 ✓ ✓

Libgcrypt [18] C 1.7.6 Jan 2017 ✓ ✓

libtomcrypt [10] C 1.17 Apr 2017 ✗ ✓

libsodium [19] C 1.0.12 Mar 2017 ✓ ✗

mbed TLS [2] C 2.4.2 Mar 2017 ✓ ✓

Nettle [22] C 3.3 Oct 2016 ✓ ✓

OpenSSL [25] C 1.1.0e Feb 2017 ✓ ✓

wolfCrypt [35] C 3.10.2 Feb 2017 ✓ ✓

T-table approach. Except for libsodium [19], all other cryptographic libraries
analyzed have an implementation of the AES based on the T-table strategy.
Moreover, these implementations are not protected against side-channel attacks
such as DPA or cache attacks. It is well know that unprotected implementa-
tions of cryptographic algorithms are an easy target for DPA attacks. Recently,
researchers from Rambus Cryptography Research Division have shown that even
an unprotected software implementation based on AES-NI instructions can be
attacked with DPA [28]. The T-table implementations of the AES are vulner-
able to various cache attacks as shown in [20,26]. Although the unprotected
T-table implementations are vulnerable to side channel attacks, nine out of the
ten libraries considered in Table 1 have such an implementation of the AES.

3 Quantifying the Leakage

Biryukov et al. [4] introduced the correlation coefficient difference metric to
analyze the leakage of different selection functions in the context of CPA. The
correlation coefficient difference δ gives the difference between the correlation
coefficient of the correct key and the correlation coefficient of the most likely key
guess, where the most likely key is different from the correct key.

We use the correlation coefficient difference to quantify the leakages of two
selection functions: ϕ1 based on the AES S-box and ϕ2 based on the AES T-
table. The two selection functions are defined below:

ϕ1 : F8
2 �→ F

8
2, ϕ1(x ⊕ k) = S(x ⊕ k)

ϕ2 : F8
2 �→ F

32
2 , ϕ2(x ⊕ k) = T (x ⊕ k)
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Table 2. Correlation coefficient difference δ between the correlation of the correct
key and the correlation of the most likely key [4], for different Hamming weights of
the correct key; δ̄ and SEδ̄ are the mean and the standard error for a 95% confidence
interval, respectively. The leakages are acquired from an ARM Cortex-M3 processor.

Correct key δ̄ SEδ̄

0x00 0x01 0x03 0x07 0x0F 0x1F 0x3F 0x7F 0xFF

ϕ1 0.146 0.126 0.108 0.156 0.126 0.960 0.153 0.140 0.084 0.126 0.020

ϕ2 0.104 0.072 0.143 0.074 0.070 0.126 0.078 0.044 0.028 0.082 0.028

(a) S-box (b) T-table

Fig. 2. Distribution of the Hamming weight of the output of the AES (a) S-box and
(b) T-table for all possible input combinations.

When using simulated leakages, the values of the correlation coefficient dif-
ference are 0.813 and 0.7 for ϕ1 and ϕ2, respectively. These values are the same
regardless of the correct key used. In the simulated environment, the leakages
of the two selection functions are very high and the difference between them is
about 14% of the first one. On the other hand, the mean correlation coefficient
difference δ̄ for different values of the correct key using leakages acquired from
an ARM Cortex-M3 processor is given in Table 2. The measurements were per-
formed at a sampling rate of 500 MS/s using assembly implementations of the
analyzed selection functions. Increasing the sampling rate to 1 GS/s does not
significantly improve the results. The mean correlation coefficient difference δ̄ is
positive for both selection functions, which means they leak enough information
about the secret key such that an attacker can recover the key byte using only
one key guess. In practice, the selection function based on the AES S-box leaks
about 50% more than the selection function based on the AES T-table. This
can be explained by the distribution of the Hamming weight of the two selection
functions for all possible input combinations (See Fig. 2).

The reader can easily observe in Fig. 2a that the distribution of values in
the case of the AES S-box follows a binomial distribution. On the other hand,
the distribution of values in the case of the AES T-table shown Fig. 2b does
not resemble a binomial distribution. Moreover, there are 14 out of 32 possible
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output values that never occur (i.e. 1, 2, 3, 4, 6, 7, 25, 26, 27, 28, 29, 30, 31, and
32). These differences between the distribution of the Hamming weights of the
output of the two selection functions ϕ1 and ϕ2 explain why the leakage of ϕ1

is greater than the leakage of ϕ2 as quantified using the correlation coefficient
difference. This means that a CPA attack against an implementation based on
the T-table strategy requires more effort (i.e. power traces) compared to a CPA
attack against an implementation based on the S-box strategy.

4 Generating the Evaluation Cases

In this section we describe the algorithm for symbolic processing of a given initial
state to determine the number of rounds required to recover the master key of
the AES. We used this algorithm to explore all possible attack cases and to
choose the relevant evaluation cases for our scenario. The algorithm relies on the
following symbolic representation of a byte situated at row i and column j of
the AES state at the start of round r:

sri,j =

⎧
⎪⎨

⎪⎩

0, the corresponding key byte can not be recovered
1, the corresponding key byte can be recovered
−n, n temporary key bytes can be recovered

Thus, the byte sri,j is variable if its symbolic representation is different
from 0 and fixed (constant) when its symbolic representation is 0. Due to the
MixColumns transformation, each column of the state at round r + 1 can be
expressed as a function of four bytes of the state at round r. At the start of
round r + 1 each byte of the state is updated using the following rules:

– if the number of variable input bytes is 0, then the symbolic representation
of the output byte is set to 0;

– if the number of variable input bytes is 1, then the symbolic representation
of the output byte is updated as follows:

• if the variable input byte is multiplied by {01} in the MixColumns trans-
formation, then the symbolic representation of the output byte is set to
−2p+1, where p is the number of independent input pairs. A new pair is
added to the output byte;

• else, the symbolic representation of the output byte is set to −2p;
– if the number of variable input bytes is 2 or 3, then the symbolic representa-

tion of the output byte is set to -1;
– if the number of variable input bytes is 4, then the symbolic representation

of the output byte is set to 1.

Besides updating the symbolic representation of the state, the algorithm
keeps a list of key pairs for each byte of the state and carries this list into
the next round. The algorithm stops when the symbolic representation of all
bytes in a round is 1. It outputs the symbolic representation of the state and
the associated key pairs. These can be used to compute the number of rounds
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State

Pairs

Round 1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

Round 2

−1

−2

−2

−1

0

0

0

0

0

0

0

0

0

0

0

0

∅
S1

S1

∅

∅
∅
∅
∅

∅
∅
∅
∅

∅
∅
∅
∅

Round 3

−1

−2

−2

−1

−2

−2

−1

−1

−4

−2

−2

−4

−2

−2

−4

−4

∅
S2

S2

∅

S3

S3

∅
∅

S4

S1

S1

S4

S1

S1

S5

S5

Round 4

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

S6

S6

S6

S6

S6

S6

S6

S6

S7

S7

S7

S7

S7

S7

S7

S7

S1 = {1}; S2 = {2}; S3 = {3}; S4 = S1 ∪ {4} = {1, 4};

S5 = S1 ∪ {5} = {1, 5}; S6 = S3 ∪ S5 = {1, 3, 5}; S7 = S2 ∪ S4 = {1, 2, 4}

Fig. 3. Symbolic processing of an initial state.

required to recover the master key and the number of possible master keys. The
pseudocode for the algorithm is given in the full version of this paper.

Figure 3 gives a graphical representation of how the algorithm works when
only the first byte of the initial state is variable and known, while the other bytes
are fixed and unknown. By attacking the result of the SubByte transformation
applied to the first byte of the state in the first round, the key byte k0 is recovered.
This recovered key byte allows a carry of the attack into the second round where
four key bytes (k′

16, k
′
17, k

′
18, k

′
19) can be recovered by attacking the result of

the SubBytes transformation. Because the attacker cannot distinguish between
k′
17 and k′

18, a new pair S1 = {1} is added to the corresponding state bytes.
Then, the attacker targets the third round, where she can recover temporary
key bytes for all state bytes. The pair S1 from previous round affects all bytes
of the third and fourth column of the state and thus the corresponding pairs are

Table 3. Possible attack outcomes for different number of bytes (Bytes) controlled by
attacker. Rnds is the number of rounds that have to be attacked in order to recover
the master key. Prop. (%) is the proportion of a given evaluation case with respect
to all possible input configurations for a fixed number of bytes controlled by attacker.

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds) 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1

Prop. (%) 100 100 100 14.1 35.2 55.9 72.7 84.7 92.3 96.7 98.9 99.8 100 100 100 100

max(Rnds) 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 1

Prop. (%) 100 100 100 85.9 64.8 44.1 27.3 15.3 7.7 3.3 1.1 0.2 100 100 100 100

Trade-off ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
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updated accordingly. In addition, new pairs are added when the attacker can
not distinguish between key candidates as shown in Fig. 3. In the fourth round,
the attacker is able to recover all round key bytes. Then, having all the round
key bytes of the fourth round, she can reverse the AES key schedule to get the
master key.

The attacker has to build 2p possible round keys, where p is the number of
independent pairs associated with the state bytes of the last attacked round.
For the example in Fig. 3, the number of possible keys is 25 because card(S) =
card(S6 ∪ S7) = card({1, 2, 3, 4, 5}) = 5. Thus, in addition to the number of
rounds to attack, the algorithm for symbolic processing of an initial state gives
the number of possible master keys to be recovered by an attacker. Though, the

Table 4. All evaluation cases with an example of a possible initial state for each
evaluation case. Bytes gives the number of bytes controlled by attacker; Rounds
gives the number of rounds that have to be attacked to recover the master key.

Case Bytes Rounds Possible initial state

0 1 4 [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

1 2 4 [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

2 3 4 [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

3 4 3 [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

4 4 4 [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

5 5 3 [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6 5 4 [1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

7 6 3 [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

8 6 4 [1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

9 7 3 [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

10 7 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

11 8 3 [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

12 8 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0]

13 9 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

14 9 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0]

15 10 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

16 10 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

17 11 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

18 11 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0]

19 12 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

20 12 4 [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1]

21 13 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]

22 14 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]

23 15 3 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0]

24 16 1 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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attacker does not have to check all 2p candidates to see which one is the correct one
since she can discard the wrong candidates based on the difference between the
correlation coefficients of the first two key candidates as we will show in Sect. 5.

Using the algorithm for symbolic processing of an initial state we evaluated
all possible input combinations. More precisely, we considered all configurations
of the initial state when the attacker controls i bytes of the input for i ∈ [1, 16].
When the attacker controls i bytes, there are

(
16
i

)
possible input configurations.

This results in 216 − 1 possible configurations of the initial state in total. Then,
we classified these inputs into equivalence classes (evaluation cases) depending
on the number of rounds that must be attacked in order to recover the master
key. The results are summarized in Table 3. When the attacker controls between
four and eleven bytes of the input, a trade-off between the input configuration
and the number of rounds to be attacked is possible. When this is the case, the
proportion of possible input configurations shows which evaluation case is more
likely to appear if the initial state is chosen at random. Thus, when the attacker
controls only four or five bytes of the input, it is crucial to carefully choose an
input configuration from the limited set of possible input configurations that
minimize the number of rounds to be attacked.

We give an example of a possible initial state for each of the 25 distinct
evaluation cases identified after processing all possible input combinations in
Table 4. Any possible input configuration for the AES encryption falls into one
of these evaluation cases depending on the number of bytes controlled by attacker
and the number of rounds that must be attacked in order to recover the master
key.

5 The Attack

The attack we present in this section uses the symbolic representation of the AES
state (described in Sect. 4) in conjunction with CPA attacks to recover individual
bytes of the AES round keys. After executing Algorithm1, the attacker has all
round key bytes of round R. Thus, she is able to recover the master key of the
cipher by reversing the key schedule.

The algorithm follows the symbolic representation of the state to infer which
key bytes must be attacked and how many key candidates it should yield for
each attacked key byte. By tracking the pairs associated with the recovered key
bytes, the algorithm is able to discard all impossible round keys, thus saving
computational resources. Indeed, the algorithm uses an optimal number of CPA
attacks to recover the master key.

Initially, the set of known pairs is empty and all possible keys are considered
valid. The algorithm keeps track of 2p possible keys, where p is the total number
of independent pairs in the symbolic representation of the state at round R.

The main loop of the algorithm runs through all rounds that must be
attacked. At each round, the key bytes corresponding to variable state bytes
are attacked to recover one or more temporary key bytes or a round key byte.
Depending on the pairs associated with the byte to be attacked, there are three
possible cases:
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Algorithm 1. The attack
Require: state � Initial state: 0 – fixed byte, 1 – variable byte
Require: λ = (plaintexts, traces) � Recorded in the acquisition phase
1: state, pairs = Process(state) � Symbolic processing (Sect. 4)
2: known pairs = ∅, mapped pairs = ∅
3: keys[2p] = ∅, valid keys[2p] = True � p is the number of independent pairs
4: for r = 1 to R do � R is the number of rounds to be attacked
5: for i = 0 to 15 do
6: if state[r][i] �= 0 then
7: if pairs[r][i] == ∅ then � No pair
8: keys[0, · · · , 2p − 1][r][i] = CPA(λ, keys[0], r, i)
9: else if pairs[r][i] ⊆ known pairs then � Known pair(s)

10: if i /∈ mapped pairs[pairs[r][i]] then
11: mask = 0, temp keys = ∅, αmax = −1
12: for pair ∈ pairs[r][i] do
13: mask = mask ∨ 2pair−1

14: end for
15: for j ∈ [0, 2p − 1] do
16: if valid keys[j] and temp keys[j ∧ mask] == ∅ then
17: temp keys[j ∧ mask], α = CPA(λ, keys[j], r, i)
18: if α > αmax then
19: αmax = α
20: end if
21: end if
22: valid keys[j][r][i] = temp keys[j ∧ mask]
23: end for
24: for j ∈ [0, 2p − 1] do
25: if abs(state[r][i]) == 1 and α + β < αmax then
26: valid keys[j] = False
27: end if
28: end for
29: end if
30: else � New pair
31: mask = 2pairs[r][i]−new pair, k1 = k2 = ∅
32: for j ∈ [0, 2p − 1] do
33: if k1[j ∧ mask] == ∅ then
34: k1[j ∧ mask], k2[j ∧ mask] = CPA(λ, keys[j], r, i)
35: end if
36: if j ∧ 2new pair−1 then
37: keys[j][r][i] = k1[j ∧ mask], keys[j][r][i′] = k2[j ∧ mask]
38: else
39: keys[j][r][i′] = k2[j ∧ mask], keys[j][r][i′] = k1[j ∧ mask]
40: end if
41: end for
42: known pairs = known pairs ∪ new pair
43: Add (i, i′) to mapped pairs[new pair]
44: end if
45: end if
46: end for
47: end for
48: return keys[i], where valid keys[i] == True for i ∈ [0, 2p − 1]
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– No pair: If the symbolic representation does not have a pair associated with
the byte of the state to be used for the attack, then the algorithm will recover
a single key byte which is distributed to all possible keys.

– New pair: If one of the pairs associated with the byte under attack is not
present in the set of known pairs, then the algorithm will recover 2u possible
values for the corresponding key byte, where u is the number of known inde-
pendent pairs associated with the byte under attack. The number of known
pairs determines the number of CPA attacks to be performed. Using a mask
based on the existing pairs and a mask for the new pair, the algorithm cor-
rectly distributes the recovered key byte values to all possible keys. The new
pair is added to the set of known pairs and the two indexes of the state
affected by the recovered temporary keys are mapped to this new pair. This
mapping prevents the computation of the same temporary keys twice.

– Known pairs(s): In the case where the t independent pairs associated with
the key byte to be attacked are known but not mapped to the current state
byte, the algorithm performs 2t CPA attacks. Then, it distributes the attack
results (the recovered key and the difference between the correlation coef-
ficients of the first two most likely key candidates α) to the corresponding
bytes of all possible keys. Afterwards, the possible keys for which the value
of α is less than the maximum observed value αmax minus a threshold β are
marked as invalid. In this way, only the combination of keys yielding the high-
est correlation peak is selected. At this moment, the input pairs are solved
in the sense that the algorithm can uniquely assign each of the two tempo-
rary keys of a pair to the corresponding state bytes. As a consequence, the
algorithm will not further process the possible keys marked as invalid. Thus,
this optimization improves the algorithm efficiency by reducing the number
of performed CPA attacks.

Finally, the algorithm returns all possible keys which are marked as valid. If
the threshold β tends to zero, the algorithm will return only one possible key.
When the quality of the side-channel acquisition is good (i.e. high signal-to-noise
ratio) and there are enough power traces, the algorithm yields the correct key.

5.1 Optimality

We prove that our algorithm uses the minimum number of CPA attacks possible
to recover the master key and thus is optimal. Hence, the lower bounds provided
in Table 5 are optimal.

Theorem 1. Algorithm1 performs an optimal number of CPA attacks to recover
the 16-byte master key of the AES.

Proof. The only way an attacker can recover the 16-byte master key of the AES
is to recover all key bytes of a round r and then to reverse the key schedule.
Since the function that derives the round keys of round i from the round keys
of round i − 1 is bijective, knowledge of all round key bytes of a round r leads
to the knowledge of the master key.
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Let us assume that Algorithm 1 uses n individual CPA attacks for a given ini-
tial state and it is not optimal. Thus, there exists at least an algorithm that is
able to recover the master key using only m CPA attacks, with m < n. We show
next that such an algorithm does not exist. If there exists an algorithm that uses
less CPA attacks than Algorithm 1, then this algorithm attacks at least one key
byte less. But if it does so, then the attack can not be carried into later rounds any
more because the state byte corresponding to the unrecovered key yields unknown
and variable state bytes after MixColumns transformation. These bytes can not be
recovered using a CPA attack and thus the attack fails. As a consequence, there
is no algorithm that uses less CPA attacks than Algorithm1. �	

5.2 Choosing the Best Attack Strategy

For up to seven bytes controlled by attacker, our attack algorithm (Algorithm1)
is more efficient than the classic attack algorithm where all possible key bytes
are attacked to recover the master key. The gain varies between 15% and 68% of
the number of CPA attacks required by the classic attack. When an attacker has
control of more than seven input bytes, our algorithm performs the same number
of CPA attacks as the classic attack. At the same time, our algorithm gives a
unique master key, provided that there are available enough traces with a high
signal-to-noise ratio. This is not the case for a classic attack unless an additional
mechanism to discard invalid keys, as the one in Algorithm 1, is employed.

An attacker willing to reduce the duration of the offline phase of the attack
(without increasing the number of rounds that must be attacked) can use the
results in Table 5 in corroboration with the data in Table 3 to adjust the attack
accordingly. More precisely, if an attacker is able to control up to n bytes of the
AES input, she can choose to control m (m ≤ n) bytes of the input because
m variable bytes minimize the number of CPA attacks required to recover the
master key. This decision has to be made before performing the side-channel
acquisition since it influences the chosen inputs. Another argument in favor of

Table 5. The number of individual CPA attacks required to recover the master key for
different number of bytes (Bytes) controlled by attacker; min(Rnds)/max(Rnds)
and Bytes precisely identify the evaluation case. Classic attack does not use the
optimizations introduced in Algorithm1 to discard the invalid keys. Gain gives the
number of CPA attacks saved by an attacker using Algorithm1 over an attacker using
Classic attack.

Bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

min(Rnds) Clasic attack 150 104 188 80 66 52 46 40 41 42 43 44 45 46 47 16

Algorithm1 48 42 48 38 38 38 39 40 41 42 43 44 45 46 47 16

Gain 102 62 140 42 28 14 7 0 0 0 0 0 0 0 0 0

max(Rnds) Classic attack 150 104 188 110 72 50 51 52 53 54 55 56 45 46 47 16

Algorithm1 48 42 48 48 49 50 51 52 53 54 55 56 45 46 47 16

Gain 102 62 140 62 23 0 0 0 0 0 0 0 0 0 0 0
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using less variable input bytes is that the attack is much more difficult to detect
if the injected packets have fewer variable bytes and mimic the appearance of a
normal network traffic. For example, when n = 12, an attacker can choose m =
4, 5, or 6 to reduce the complexity of the offline attack from 44 to 38 individual
CPA attacks, while still attacking just three rounds. The result is an overall
improvement of the attack efficiency by 14% over the classic attack.

An even better decision can be made with the help of experimental results
for different configurations of the input from a similar target to the one to be
attacked in addition to the results presented so far. For this reason, in the next
section we determine experimentally the number of traces required to recover the
master key for each evaluation case using EM leakages from an ARM Cortex-M3
processor.

6 Results

For the experimental evaluation, we considered two unprotected implementa-
tions of the AES written in ANSI C. The first implementation uses the S-box
implementation strategy, while the second one uses the T-table implementa-
tion strategy. For each of the 25 evaluation cases we measured up to 2000 EM
traces. The acquisition took about 90 min for an evaluation case. The samples
were split into files corresponding to the AES round number. Then, we mounted
the attack presented in Algorithm 1 using an increasing number of traces in the
interval [100, 2000] with a step of 100 traces until the guessing entropy converged
to zero.

For each implementation we considered two selection functions based on the
AES S-box and T-table, respectively. The minimum number of traces for which
the guessing entropy becomes zero and remains stable is pictorially shown in
Fig. 4 for each evaluation case. All attacks recovered the full 16-byte master key
with less than 1600 EM traces. In general, the master key was recovered with
fewer traces when the selection function perfectly matched the implementation
strategy. Though, our results show that full key recovery is possible even when
the selection function does not perfectly match the attacked implementation. The
attacks on the S-box implementation using the T-table selection function needed
204 more traces on average to recover the master key compared to the attacks
on the same implementation using the S-box selection function. Similarly, using
the S-box selection function instead of the T-table selection function to attack
the implementation based on the T-table strategy required 354 more traces on
average. For details on the exact number of traces required to recover the master
key for each evaluation case and attack scenario we refer the reader to the full
version of this paper.

Countermeasures. Our experimental results show that side-channel coun-
termeasures such as masking must be employed in order to protect the AES
implementations based on lookup tables (S-box and T-table implementation
strategies) even in a communication protocol scenario, when the adversary has
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Fig. 4. The number of EM traces required to fully recover the master key. Scenarios:
(a) S-box implementation, S-box selection function; (b) S-box implementation, T-table
selection function; (c) T-table implementation, T-table selection function; (d) T-table
implementation, S-box selection function.

a limited control of the input. Masking non-linear lookup tables is a challeng-
ing task since it adds a considerable penalty on execution time and memory
usage [33].

Although not present in many cryptographic libraries due to their limitations
(i.e. can not be used in a feedback mode of operation such as CCM), the bitsliced
implementations have a lower CPA leakage than implementations using lookup
tables [4], but they are still vulnerable to DPA attacks [3].

A lightweight primitive (block cipher or authenticated encryption), particu-
larly one designed for efficient masking, is a good replacement for the AES-CCM
when considering side-channel protection.

Other countermeasures, such as a key refreshing mechanism, can support a
defense in depth approach. However, any additional countermeasure affects the
overall efficiency of an IoT protocol and consequently the most effective ones
(i.e. masking) must have priority given the resource constraints.

7 Conclusions

In this paper, we presented an extensive security analysis of AES software imple-
mentations against CPA attacks in the context of network protocols. In this sce-
nario the attacker has control of several input bytes, while the remaining input
bytes are fixed. To asses the resilience of AES implementations to all possible
input combinations, we presented an algorithm for symbolic processing of the
cipher state. Then, we classified all possible inputs into 25 independent evalua-
tion cases depending on the number of input bytes controlled by attacker and
the number of rounds that must be attacked to recover the master key. Finally,
we described an optimal algorithm that recovers the master key by mounting
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the minimum number of CPA attacks possible. It makes clever decisions based
on the set of key pairs that affects the key byte under attack and the correlation
coefficient of possible key candidates to discard impossible keys.

We showed that unprotected implementations of the AES based on the S-box
and T-table strategies can be broken even when the attacker controls only one
input byte of the cipher with less than 1600 electromagnetic traces acquired
from a 32-bit ARM Cortex-M3 processor in about one hour. Knowledge of the
implementation strategy does not significantly improve the attack outcome, nor
does it reduce the attack complexity. Thus, unprotected implementations of the
AES should not be used to secure the communication between end devices in
network protocols. Care must be taken when using implementations of the AES
from popular open-source cryptographic libraries since most of them are not
protected against side-channel attacks.
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