
Simple Security Definitions for
and Constructions of 0-RTT Key Exchange

Britta Hale1(B), Tibor Jager2, Sebastian Lauer3, and Jörg Schwenk3

1 NTNU, Norwegian University of Science and Technology, Trondheim, Norway
britta.hale@ntnu.no

2 Paderborn University, Paderborn, Germany
tibor.jager@upb.de

3 Horst Görtz Institute, Ruhr-University Bochum, Bochum, Germany
{sebastian.lauer,joerg.schwenk}@rub.de

Abstract. Zero Round-Trip Time (0-RTT) key exchange protocols
allow for the transmission of cryptographically protected payload data
without requiring the prior exchange of messages of a cryptographic key
exchange protocol. The 0-RTT KE concept was first realized by Google
in the QUIC Crypto protocol, and a 0-RTT mode has been intensively
discussed for inclusion in TLS 1.3.

In 0-RTT KE two keys are generated, typically using a Diffie-Hellman
key exchange. The first key is a combination of an ephemeral client share
and a long-lived server share. The second key is computed using an
ephemeral server share and the same ephemeral client share.

In this paper, we propose simple security models, which catch the
intuition behind known 0-RTT KE protocols; namely that the first (resp.
second) key should remain indistinguishable from a random value, even
if the second (resp. first) key is revealed. We call this property strong key
independence. We also give the first constructions of 0-RTT KE which
are provably secure in these models, based on the generic assumption
that secure non-interactive key exchange (NIKE) exists (This work was
partially supported by a STSM Grant from COST Action IC1306).

Keywords: Foundations · Low-latency key exchange · 0-RTT proto-
cols · Authenticated key exchange · Non-interactive key exchange ·
QUIC · TLS 1.3.

1 Introduction

Efficiency, in terms of messages to be exchanged before a key is established, is a
growing consideration for internet protocols today. Basically, the first generation
of internet key exchange protocols did not care too much about efficiency, since
secure connections were considered to be the exception rather than the rule: SSL
(versions 2.0 and 3.0) and TLS (versions 1.0, 1.1, and 1.2) require 2 round-trip
times (RTT) for key establishment before the first cryptographically-protected
payload data can be sent. With the increased use of encryption,1 efficiency is
1 For example, initiatives like Let’s Encrypt (https://letsencrypt.org/).

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 20–38, 2017.
DOI: 10.1007/978-3-319-61204-1 2

https://letsencrypt.org/


Simple Security Definitions for and Constructions of 0-RTT Key Exchange 21

of escalating importance for protocols like TLS. Similarly, the older IPSec IKE
version v1 needs between 3 RTT (aggressive mode + quick mode) and 4.5 RTT
(main mode + quick mode). This was soon realized to be problematic, and in
IKEv2 the number of RTTs was reduced to 2.

The QUIC Protocol. Fundamentally, the discussion on low-latency key exchange
(aka. LLKE, zero-RTT or 0-RTT key exchange) was opened when Google pro-
posed the QUIC protocol.2 QUIC (cf. Fig. 1) achieves low-latency by caching a
signed server configuration file on the client side, which contains a medium-lived
Diffie-Hellman (DH) share Y0 = gy0 .3

When a client wishes to establish a connection with a server and possesses
a valid configuration file of that server, it chooses a fresh ephemeral DH share
X = gx and computes a temporal key k1 from gy0x. Using this key k1, the client
can encrypt and authenticate data to be sent to the server, together with X. In
response, the server sends a fresh DH share Y = gy and computes a session key
k2 from gxy, which is used for all subsequent data exchanges.

Fig. 1. Google’s QUIC protocol (simplified) with cached server key configuration file
(Y0, σS). AE denotes a symmetric authenticated encryption algorithm (e.g., AES-
GCM), (sksig

S , pksig
S ) denotes the server’s long-term signing keys, and πt

S (resp. πs
C)

denotes the oracle at server S executing the single t-th instance of the protocol (resp.
for client).

2 See https://www.chromium.org/quic.
3 If the client does not have a valid file, it has to be requested from the server, which

increases the number of RTTs by 1, but may then be re-used for future sessions.

https://www.chromium.org/quic


22 B. Hale et al.

TLS 1.3. Early TLS 1.3 drafts, e.g. draft-ietf-tls-tls13-08 [25], contained a
0-RTT key exchange mode where a QUIC-like ServerConfiguration message is
cached by the client. The current version draft-ietf-tls-tls13-18 [26] follows
a different approach, where the initial key establishment between a client and a
server is never 0-RTT. Instead, it defines a method to establish a new session
based on the secret key of a previous session. Even though this is also called
“0-RTT” in the current TLS 1.3 specification, it is rather a “0-RTT session
resumption” protocol, but does not allow for 0-RTT key establishment. Most
importantly, the major difference between the approach of the current TLS 1.3
draft in comparison to a “real” 0-RTT key exchange protocol is that the former
requires storing of secret key information on the client between sessions. In
contrast, a 0-RTT key establishment protocol does not require secret information
to be stored between sessions.

Facebook’s Zero Protocol. Very recently, the social network Facebook announced
that it is currently experimenting with a 0-RTT KE protocol called Zero.4 Zero
is very similar to QUIC, except that it uses another nonce and encryption of
the ServerHello message. It is noteworthy that the main difference between Zero
and QUIC was introduced in order to prevent an attack discovered by Facebook,
which has been reported to Google and meanwhile been fixed in QUIC, too. We
believe that this is a good example that shows the demand of simple security
definitions and provably-secure constructions for such protocols.

Security Goals. 0-RTT KE protocols like QUIC have ad-hoc designs that aim at
achieving three goals: (1) 0-RTT encryption, where ciphertext data can already
be sent together with the first handshake message; (2) perfect forward secrecy
(PFS), where all ciphertexts exchanged after the second handshake message will
remain secure even after the (static or semi-static) private keys of the server have
been leaked, and (3) key independence, where “knowledge” about one of the two
symmetric keys generated should not endanger the security of the other key.

Strong Key Independence. Intuitively, a 0-RTT KE protocol should achieve
strong key independence between k1 and k2; if any one of the two keys is leaked
at any time, the other key should still be indistinguishable from a random value.
In all known security models, this intuition would be formalized as follows: if the
adversary A asks a Reveal query for k1, he is still allowed to ask a Test query for
k2, and vice versa. If the two keys are computationally independent from each
other (which also includes computations on the different protocol messages),
then the adversary should have only a negligible advantage in answering the
Test query correctly.

Ultimately this leads to the following research questions: Do existing exam-
ples of 0-RTT KE protocols have strong key independence? Can we describe a
generic way to construct 0-RTT KE protocols that provably achieve strong key
independence?
4 See https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-

fast-secure-mobile-connections/.

https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/


Simple Security Definitions for and Constructions of 0-RTT Key Exchange 23

QUIC Does Not Provide Strong Key Independence. If an attacker A is allowed to
learn k1 by a Reveal-query, then he is able to decrypt AE(k1;Y ) and re-encrypt
its own value Y ∗ := gy∗

as AE(k1;Y ∗). Furthermore, he can then compute the
same k2 = Xy∗

as the client oracle, and can thus distinguish between the “real”
key and a “random” key chosen by the Test query. See [11] for more details on
key dependency in QUIC.

Note that this theoretical attack does not imply that QUIC is insecure. It only
shows that the authenticity of the server’s Diffie-Hellman share, which is sent
in QUIC to establish k2, depends strongly on the security of key k1. Therefore
QUIC does not provide strong key independence in the sense sketched above.

Previous Work on 0-RTT Key Exchange. The concept of 0-RTT key exchange
was not developed in academia, but in industry – motivated by concrete practical
demands of distributed applications. All previous works on 0-RTT KE [11,23]
conducted a-posteriori security analyses of the QUIC protocol, with tailored
models. There are no foundational constructions as yet, and the relation to
other cryptographic protocols and primitives is not yet well-understood.

At ACM CCS 2014, Fischlin and Günther [11] provided a formal definition
of multi-stage key exchange protocols and used it to analyze the security of
QUIC. Lychev et al. [23] gave an alternate analysis of QUIC, which considers
both efficiency and security. They describe a security model which is bespoke to
QUIC, adopting the complex, monolithic security model of [17] to the protocol’s
requirements. Zhao [31] considers identity-concealed 0-RTT protocols, where
user privacy is protected by hiding identities of users in a setting with mutual
cryptographic authentication of both communicating parties. Günther et al. [14]
extended the “puncturable encryption”-approach of Green and Miers [13] to
show that even 0-RTT KE with full forward secrecy is possible, by evolving the
secret key after each decryption. However, their construction is currently mainly
of conceptual interest, as it is not yet efficient enough to be deployed at large
scale in practice.

Security Model. In this paper, we use a variant of the Canetti-Krawczyk [7]
security model. This family of security models is especially suited to protocols
with only two message exchanges, with one-round key exchange protocols con-
stituting the most important subclass. Popular examples of such protocols are
MQV [22], HMQV [18], SMQV [27], KEA [21,24], and NAXOS [20]. A compar-
ison of different variants of the Canetti-Krawczyk model can be found in [9,29].

The Importance of Simplicity of Security Models. Security models for key
exchange protocols have to consider active adversaries that may modify, replay,
inject, drop, etc., any message transmitted between communicating parties. They
also need to capture parallel executions of multiple protocol sessions, potential
reveals of earlier session keys, and adaptive corruptions of long-term secrets of
parties. This makes even standard security models for key exchange extremely
complex (in comparison to most other standard cryptographic primitives, like
digital signatures or public-key encryption, for example).



24 B. Hale et al.

Naturally, the novel primitive of 0-RTT KE requires formal security defi-
nitions. There are different ways to create such a model. One approach is to
focus on generality of the model. Fischlin and Günther [11] followed this path,
by defining multi-stage key exchange protocols, a generalization of 0-RTT KE.
This approach has the advantage that it lays the foundation for the study of
a very general class of interesting and novel primitives. However, its drawback
is that this generality inherently also brings a huge complexity to the model.
Clearly, the more complex the security model, the more difficult it becomes to
devise new, simple, efficient, and provably-secure constructions. Moreover, proofs
in complex models tend to be error-prone and less intuitive, because central tech-
nical ideas may be concealed in formal details that are required to handle the
generality of the model.

Another approach is to devise a model which is tailored to the analysis
of one specific protocol. For example, the complex, monolithic ACCE security
model was developed in [17] to provide an a posteriori security analysis of TLS.5

A similar approach was followed by Lychev et al. [23], who adopted this model
for an a posteriori analysis of QUIC, by defining the so-called Q-ACCE model.
The notable drawback of this approach is that such tailor-made models tend to
capture only the properties achieved by existing protocols, but not necessarily
all properties that we would expect from a “good” 0-RTT KE protocol. In gen-
eral, such tailor-made models do not, therefore, form a useful foundation for the
creation of new protocols.

In this paper, we follow a different approach. We propose novel “bare-bone”
security models for 0-RTT KE, which aim at capturing all (strong key inde-
pendence and forward secrecy), but also only the properties intuitively expected
from “good” 0-RTT KE protocols. We propose two different models. One consid-
ers the practically-relevant case of server-only authentication (where the client
may or may not authenticate later over the established communication channel,
similar in spirit to the server-only-authenticated ACCE model of [19]). The other
considers traditional mutual cryptographic authentication of a client and server.

The reduced generality of our definitions – in comparison to the very general
multi-stage security model of [11] – is intended. A model which captures only,
but also all the properties expected from a “good” 0-RTT KE protocol allows
us to devise relatively simple, foundational, and generic constructions of 0-RTT
KE protocols with as-clean-as-possible security analyses.

Importance of Foundational Generic Constructions. Following [3], we use non-
interactive key exchange (NIKE) [8,12] in combination with digital signatures
as a main building block.6 This yields the first examples of 0-RTT KE protocols
with strong key independence, as well as the first constructions of 0-RTT KE
from generic complexity assumptions. There are many advantages of such generic
constructions:
5 A more modular approach was later proposed in [4].
6 Recall that digital signatures are implied by one-way functions, which in turn are

implied by NIKE. Thus, essentially we only assume the existence of NIKE as a
building block.



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 25

1. Generic constructions provide a better understanding of the structure of pro-
tocols. Since the primitives we use have abstract security properties, we can
see precisely which abstract security requirements are needed to implement
0-RTT KE protocols.

2. They clarify the relations and implications between different types of crypto-
graphic primitives.

3. They can be generically instantiated with building blocks based on different
complexity assumptions. For example, if “post-quantum” security is needed,
one can directly obtain a concrete protocol by using only post-quantum secure
building blocks in the generic construction.

Usually generic constructions tend to involve more computational overhead than
ad-hoc constructions. However, we note that our 0-RTT KE protocols can be
instantiated relatively efficiently, given the efficient NIKE schemes of [12], for
example.

Contributions. Contributions in this paper can be summarized as follows:

– Simple security models. We provide simple security models, which capture
all properties that we expect from a “good” 0-RTT KE protocol, but only
these properties. We consider both the “practical” setting with server-only
authentication and the classical setting with mutual authentication.

– First generic constructions. We give intuitive, relatively simple, and efficient
constructions of 0-RTT KE protocols in both settings.

– First Non-DH instantiation. Both QUIC and TLS 1.3 are based on DH key
exchange. Our generic construction yields the first 0-RTT KE protocol which
is not based on Diffie-Hellman (e.g., by instantiating the generic construction
with the factoring-based NIKE scheme of Freire et al. [12]).

– First 0-RTT KE with strong key independence. Our 0-RTT KE protocols are
the first to achieve strong key independence in the sense described above.

– Well-established, general assumptions. The construction is based on gen-
eral assumptions, namely the existence of secure NIKE and digital signature
schemes. For all building blocks we require only standard security properties.

– Security in the Standard Model. The security analysis is completely in the
standard model, i.e. it is performed without resorting to the Random Oracle
heuristic [1] and without relying on non-standard complexity assumptions.

– Efficient instantiability. Despite the fact that our constructions are generic,
the resulting protocols can be instantiated relatively efficiently.

Full Version of this Paper. Due to space limitations, we have to defer sev-
eral results to the full version of this paper [15]. This includes the full proof of
Theorem 1, the Definition and Security Model for a 0-RTT protocol under mutual
authentication (0-RTT-M), a construction of a 0-RTT-M protocol along with its
security model and its security proof.



26 B. Hale et al.

2 Preliminaries

For our construction in Sect. 4, we need signature schemes and non-interactive
key exchange (NIKE) protocols. Here we summarize the definitions of these two
primitives and their security from the literature.

2.1 Digital Signatures

A digital signature scheme consists of three polynomial-time algorithm
SIG = (SIG.Gen,SIG.Sign,SIG.Vfy). The key generation algorithm (sk, pk) $←
SIG.Gen(1λ) generates a public verification key pk and a secret signing key sk on
input of security parameter λ. Signing algorithm σ

$← SIG.Sign(sk,m) generates
a signature for message m. Verification algorithm SIG.Vfy(pk, σ,m) returns 1 if
σ is a valid signature for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C
and an adversary A.

1. The challenger generates a public/secret key pair (sk, pk) $← SIG.Gen(1λ), the
adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies to each query with a signature σi = SIG.Sign(sk,mi). Here i is
an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We define the advantage on an adversary A in this game as

AdvsEUF-CMA
SIG,A (λ) := Pr

[
(m,σ) $← AC(λ)(pk) :

SIG.Vfy(pk, σ,m) = 1,
(m,σ) �= (mi, σi) ∀i

]
.

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvsEUF-CMA

SIG,A (λ) is a negligible function in λ
for all probabilistic polynomial-time adversaries A.

Remark 1. Signatures with sEUF-CMA security can be constructed generi-
cally from any EUF-CMA-secure signature scheme and chameleon hash func-
tions [6,28].

2.2 Secure Non-interactive Key Exchange

Definition 2. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKE.Gen,NIKE.Key).

NIKE.Gen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ. It
outputs a key pair (pk , sk). We write (pk , sk) $← NIKE.Gen(1λ) to denote that
NIKE.Gen(1λ, r) is executed with uniformly random r

$← {0, 1}λ.



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 27

NIKE.Key(sk i, pk j) is a deterministic algorithm which takes as input a secret
key sk i and a public key pk j, and outputs a key ki,j.

We say that a NIKE scheme is correct, if for all (pk i, sk i)
$← NIKE.Gen(1λ) and

(pk j , sk j)
$← NIKE.Gen(1λ) holds that NIKE.Key(sk i, pk j) = NIKE.Key(sk j , pk i).

A NIKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i) ← NIKE.Gen(1λ) and publishes pk i. In order to com-
pute the key shared by Pi and Pj , party Pi computes ki,j = NIKE.Key(sk i, pk j).
Similarly, party Pj computes kj,i = NIKE.Key(sk j , pk i). Correctness of the NIKE
scheme guarantees that ki,j = kj,i.

CKS-Light Security. The CKS-light security model for NIKE protocols is rel-
atively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS , CKS-heavy, and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [12] for more details.

Security of a NIKE protocol NIKE is defined by a game NIKE played between
an adversary A and a challenger. The challenger takes a security parameter λ
and a random bit b as input and answers all queries of A until she outputs a bit
b′. The challenger answers the following queries for A:

– RegisterHonest(i). A supplies an index i. The challenger runs NIKE.Gen(1λ)
to generate a key pair (pki, ski) and records the tuple (honest, pki, ski) for
later and returns pki to A. This query may be asked at most twice by A.

– RegisterCorrupt(pki). With this query A supplies a public key pki. The chal-
lenger records the tuple (Corrupt, pki) for later.

– GetCorruptKey(i, j). A supplies two indices i and j where pki was registered
as corrupt and pkj as honest. The challenger runs k ← NIKE.Key(skj , pki)
and returns k to A.

– Test(i, j). The adversary supplies two indices i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
ki,j ← NIKE.Key(pki, skj) and returns the key ki,j . If b = 1, then the chal-
lenger samples a random element from the key space, records it for later, and
returns the key to A.

The game NIKE outputs 1, denoted by NIKEA
NIKE(λ) = 1, if b = b′ and 0

otherwise. We say A wins the game if NIKEA
NIKE(λ) = 1.

Definition 3. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

AdvCKS-light
NIKE,A (λ) =

∣∣∣2 · Pr
[
NIKEA

NIKE(λ) = 1
]

− 1
∣∣∣ .

Let λ be a security parameter, NIKE be a NIKE protocol and A an adversary. We
say NIKE is a CKS-light-secure NIKE protocol, if for all probabilistic polynomial-
time adversaries A, the function AdvCKS-light

NIKE,A (λ) is a negligible function in λ.



28 B. Hale et al.

3 0-RTT Key Exchange Protocols: Syntax and Security
with Server-Only Authentication

In the model presented in this section, we give formal definitions for 0-RTT KE
with strong key independence and main-key forward secrecy. We start with the
case of server-only authentication, as it is the more important case in practice
(in particular, server-only authentication will be the main operating mode of
both QUIC and TLS 1.3).

3.1 Syntax and Correctness

Definition 4. A 0-RTT key exchange scheme with server-only authentication
consists of deterministic algorithms (Genserver,KEclient

init ,KEclient
refresh,KE

server
refresh).

– Genserver(1λ, r) → (pk , sk): A key generation algorithm that takes as input
a security parameter λ and randomness r ∈ {0, 1}λ and outputs a key pair
(pk , sk). We write (pk , sk) $← Genserver(1λ) to denote that a pair (pk , sk) is
the output of Genserver when executed with uniformly random r

$← {0, 1}λ.
– KEclient

init (pk j , ri) → (ki,j
tmp,mi): An algorithm that takes as input a public key

pk j and randomness ri ∈ {0, 1}λ, and outputs a temporary key ki,j
tmp and a

message mi.
– KEserver

refresh(sk j , rj ,mi) → (kj,i
main, k

j,i
tmp,mj): An algorithm that takes as input a

secret key sk j, randomness rj and a message mi, and outputs a key kj,i
main, a

temporary key kj,i
tmp and a message mj.

– KEclient
refresh(pk j , ri,mj) → ki,j

main: An algorithm that takes as input a public key
pk j, randomness ri, and message mj, and outputs a key ki,j

main.

We say that a 0-RTT key exchange scheme is correct, if for all (pk j , sk j),
$←

Genserver(1λ) and for all ri, rj
$← {0, 1}λ holds that

Pr[ki,j
tmp �= kj,i

tmp or ki,j
main �= kj,i

main] ≤ negl(λ) ,

where (kj,i
tmp,mi) ← KEclient

init (pk j , ri), (ki,j
main, k

i,j
tmp,mj) ← KEserver

refresh(sk j , rj ,mi), and
kj,i
main ← KEclient

refresh(pk j , ri,mj).

A 0-RTT KE scheme is used by a set parties which are either clients C

or servers S (cf. Fig. 2). Each server Sp has a generated key pair (skp, pkp)
$←

Genserver(1λ, j) with published pkp. The protocol is executed as follows:

1. The client oracle Ci chooses ri ∈ {0, 1}λ and selects the public key of the
intended partner Sj (which must be a server, otherwise this value is unde-
fined). Then it computes (ki,j

tmp,mi) ← KEclient
init (pk j , ri), and sends mi to Sj .

Additionally, Ci can use ki,j
tmp to encrypt some data Mi.



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 29

Ci Sj

(skj , pkj)
$← Genserver(1λ, j)

ri
$← {0, 1}λ

(ki,j
tmp,mi) ← KEclient

init (pk j , ri)

Di ← Encrypt(ki,j
tmp,Mi)

mi, Di

rj
$← {0, 1}λ

(kj,i
main, k

j,i
tmp,mj) ← KEserver

refresh(sk j , rj ,mi)
Dj ← Encrypt(ki,j

main,Mj)
mj , Dj

ki,j
main ← KEclient

refresh(pk j , ri,mj)

Fig. 2. Execution of a 0-RTT KE Protocol with Server-Only Authentication in Parallel
to Encrypted Application Data. Note that the messages Di and Dj correspond to the
symmetric encryption protocol used to encrypt payload data, and are therefore not
part of the 0-RTT KE protocol, but a separate protocol. These messages are only
displayed here only to illustrate the basic, parallel application message flow to that of
a 0-RTT KE protocol. While it would in principle be possible to define the symmetric
encryption directly as part of the protocol, this would require a significantly more
complex “ACCE-style” [17] security model, which we avoid for sake of simplicity.

2. Upon reception of message mi, Sj initializes a new oracle Sj,t. This oracle
chooses rj ∈ {0, 1}λ and computes (kj,i

main, k
j,i
tmp,mj) ← KEserver

refresh(sk j , rj ,mi).
The server may use the ephemeral key kj,i

tmp to decrypt Di. Then, the server
sends mj and optionally some data Mj encrypted with the key kj,i

main to the
client.

3. Ci computes ki,j
main ← KEclient

refresh(pk j , ri,mj) and can optionally decrypt Dj .
Correctness of the 0-RTT KE scheme guarantees that ki,j

main = kj,i
main.

3.2 Execution Environment

We provide an adversary A against a 0-RTT KE protocol with the following exe-
cution environment. Clients, which are not in possession of a long-term secret are
represented by oracles C1, . . . ,Cd (without any particular “identity”). We con-
sider � servers, each server has a long-term key pair (sk j , pk j)7, j ∈ {1, . . . , �},
and each client has access to all public keys pk1, . . . , pk �. Each server is repre-
sented by a collection of k oracles Sj,1, . . . ,Sj,k, where each oracle represents a
process that executes one single instance of the protocol.

We use the following variables to maintain the internal state of oracles.

Clients. Each client oracle Ci, i ∈ [d], maintains
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session,

7 We do not distinguish between static (i.e. long-lived) and semi-static (i.e. medium
lived) key pairs. Thus the long-lived keys in this model correspond to the server
configuration file keys of QUIC and TLS 1.3.



30 B. Hale et al.

– a variable Partneri, which contains the identity of the intended communi-
cation partner, and

– variables Min
i and Mout

i containing messages sent and received by the
oracle.

The internal state of a client oracle is initialized to (ktmp
i , kmain

i ,Partneri,
Min

i ,Mout
i ) := (∅, ∅, ∅, ∅, ∅).

Servers. Each server oracle Sj,t, (j, t) ∈ [�] × [k], maintains:
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session, and
– variables Min

j,t and Mout
j,t containing messages sent and received by the

server.
The internal state of a server oracle is initialized to (ktmp

j,t , kmain
j,t ,Min

j,t,

Mout
j,t ) := (∅, ∅, ∅, ∅).

We say that an oracle has accepted the temporal key if ktmp �= ∅, and accepted
the main key if kmain �= ∅.

In the security experiment, the adversary is able to interact with the oracles
by issuing the following queries.

Send(Ci/Sj,t,m). The adversary sends a message m to the requested oracle.
The oracle processes m according to the protocol specification. Any response
generated by the oracle according to the protocol specification is returned to
the adversary.
If a client oracle Ci receives m as the first message, then the oracle checks if
m consists of a special initialization message (m = (init, j)). If true, then
the oracle responds with the first protocol message generated for intended
partner Sj,, else it outputs ⊥.

Reveal(Ci/Sj,t, tmp/main). This query returns the key of the given stage if it
already has been computed, or ⊥ otherwise.

Corrupt(j). On input of a server identity j, this query returns the long-term
private key of the server. If Corrupt(j) is the τ -th query issued by A, we say
a party is τ -corrupted. For parties that are not corrupted we define τ := ∞.

Test(Ci/Sj,t, tmp/main). This query is used to test a key and is only asked once.
It is answered as follows: If the variable of the requested key is not empty, a
random b

$← {0, 1} is selected, and
– if b = 0 then the requested key is returned, else
– if b = 1 then a random key, according to the probability distribution of

keys generated by the protocol, is returned.
Otherwise ⊥ is returned.

Security Model Security Game G0RT T −sa
A . After receiving a security para-

meter λ the challenger C simulates the protocol and keeps track of all variables
of the execution environment: he generates the long-lived key pairs of all server
parties and answers faithfully to all queries by the adversary.

The adversary receives all public keys pk1, . . . , pk � and can interact with the
challenger by issuing any combination of the queries Send(), Corrupt(), and



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 31

Reveal(). At some point the adversary queries Test() to an oracle and receives
a key, which is either the requested key or a random value. The adversary may
continue asking Send(), Corrupt(), and Reveal()-queries after receiving the key
and finally outputs some bit b′.

Definition 5 (0-RTT KE-Security with Server-Only Authentication).
Let an adversary A interact with the challenger in game G0RT T −sa

A as it is
described above. We say the challenger outputs 1, denoted by G0RT T −sa

A (λ) = 1,
if b = b′ and the following conditions hold:

– if A issues Test(Ci, tmp) all of the following hold:
• Reveal(Ci, tmp) was never queried by A
• Reveal(Sj,t, tmp) was never queried by A for any oracle Sj,t such that

Partneri = j and Min
j,t = Mout

i

• the communication partner Partneri = j, if it exists, is not τ -corrupted
with τ < ∞

– if A issues Test(Ci, main) all of the following hold:
• Reveal(Ci, main) was never queried by A
• Reveal(Sj,t, main) was never queried by A, where Partneri = j, Min

j,t =
Mout

i , and Min
i = Mout

j,t

• the communication Partneri = j is not τ -corrupted with τ < τ0, where
Test(Ci, main) is the τ0-th query issued by A

– if A issues Test(Sj,t, tmp) all of the following hold:
• Reveal(Sj,t, tmp) was never queried by A
• there exists an oracle Ci with Mout

i = Min
j,t

• Reveal(Ci, tmp) was never queried by A to any oracle Ci with Mout
i =

Min
j,t

• Reveal(Sj,t′ , tmp) was never queried by A for any oracle Sj,t′ with Min
j,t =

Min
j,t′

• j is not τ -corrupted with τ < ∞
– if A issues Test(Sj,t, main) all of the following hold:

• Reveal(Sj,t, main) was never queried by A
• there exists an oracle Ci with Mout

i = Min
j,t

• Reveal(Ci, main) was never queried by A, if Min
i = Mout

j,t

else the game outputs a random bit. We define the advantage of A in the game
G0RT T −sa

A (λ) by

Adv0RT T −sa
A (λ) :=

∣∣2 · Pr[G0RT T −sa
A (λ) = 1] − 1

∣∣ .

Definition 6. We say that a 0-RTT key exchange protocol is test-secure, if
there exists a negligible function negl(λ) such that for all PPT adversaries A
interacting according to the security game G0RT T −sa

A (λ) it holds that

Adv0RT T −sa
A (λ) ≤ negl(λ).



32 B. Hale et al.

Remark 2. Our security model captures forward secrecy for the main-key,
because key indistinguishability is required to hold even if the adversary is able
to corrupt the communication partner of the test-oracle (but only after the
test-oracle has accepted, of course, in order to avoid trivial attacks).

Moreover, strong key independence is modeled by the fact that an adver-
sary which attempts to distinguish a tmp-key from random (i.e., an adversary
which asks Test(X, tmp) for X ∈ {Ci,Sj,t for some i, j, t}) is allowed to learn
the main-key of X. Similarly, an adversary which tries to distinguish a main-key
from random by asking Test(X, main) is allowed to learn the tmp-key of X as
well. Security in this sense guarantees that the tmp-key and the main-key look
independent to a computationally-bounded adversary.

Remark 3. Note that the requirements of Mout
i = Min

j,t etc. in the above secu-
rity model essentially adopt the notion of matching conversations, defined by
Bellare and Rogaway [2] for general, multi-message key exchange protocols, to
the special case of 0-RTT KE.

3.3 Composing a 0-RTT KE Protocol with Symmetric Encryption

The security model described above considers only the 0-RTT KE protocol,
without symmetric encryption of payload data (that is, without the messages Di

and Dj displayed in Fig. 2). A protocol secure in this sense guarantees the indis-
tinguishability of keys in a hypothetical setting, where the key is not used for
symmetric encryption of payload messages potentially known to the adversary.
One may think that this is not sufficient for 0-RTT KE, because the key will
be used to encrypt payload data, and this will enable an adversary to trivially
distinguish a “real” key from a “random” key (this holds for both the “tempo-
ral” key ki,j

tmp and the actual “main” session key ki,j
main). Note that this argument

applies not only to the above 0-RTT KE security model, but actually to any
security model for (authenticated) key exchange which is based on the indis-
tinguishability of keys, such as the classical model of Bellare and Rogaway and
many similar models [2,5,7,10,20,27]. In practice, this key will usually be used in
a cryptographic protocol, e.g. to encrypt messages, and therefore trivially allow
for distinguishing “real” from “random” keys. The security of the composition of
a protocol secure in the sense of [2,5,7,10,20,27] with a symmetric encryption
protocol follows from a standard two-step hybrid argument, which essentially
proceeds as follows:

1. In the original security experiment, the adversary interacts with a composed
protocol, where the KE protocol is first used to derive a key k, which is then
used to encrypt payload data with the symmetric encryption protocol.

2. In the next hybrid experiment, the adversary interacts with a composed pro-
tocol, where the symmetric encryption does not use the key k computed by
the KE protocol, but an independent random key. Note that an adversary
that distinguishes this hybrid from the original game can be used to distin-
guish a “real” key of the KE protocol from a “random” one.



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 33

Now the adversary interacts with an encryption protocol that uses a key
which is independent of the KE protocol. This allows for a reduction of the
security of the composed protocol to the security of the symmetric protocol.

A similarly straightforward hybrid argument applies to the composition of
0-RTT KE with symmetric encryption, which works as follows:

1. In the original security experiment, the adversary interacts with a composed
protocol, where the 0-RTT KE protocol is first used to derive a key ki,j

tmp, which
is then used to encrypt the payload data sent along with the first protocol
message. Then the 0-RTT KE protocol is used to derive the main key ki,j

main,
which in turn is used to encrypt all further payload data.

2. In the first hybrid experiment, the adversary interacts with a composed pro-
tocol, where only ki,j

tmp is replaced with an independent random value. An
adversary that distinguishes this hybrid from the original game can be used
to distinguish a “real” ki,j

tmp from a “random” one.
Now the adversary interacts with an encryption protocol that encrypts the
first payload message with a key which is independent of the 0-RTT KE pro-
tocol. This allows for a reduction of the security of the first payload message
to the security of the symmetric protocol.

3. In the second hybrid experiment, the adversary interacts with a composed
protocol, where ki,j

main is now also replaced with an independent random value.
An adversary that distinguishes this hybrid from the previous one can be used
to distinguish a “real” ki,j

main from a “random” one. This allows for a reduction
of the security of all further payload messages to the security of the symmetric
protocol.

Following the long tradition of previous works on indistinguishability-
based key exchange security models [2,5,7,10,20,27], we can thus consider an
indistinguishability-based security model for 0-RTT KE even though in prac-
tice key exchange messages will be interleaved with messages of the symmetric
encryption protocol. This allows for simple security models, and enables a mod-
ular analysis of the building blocks of a composed protocol.

4 Generic Construction of 0-RTT KE from NIKE

Now we are ready to describe our generic NIKE-based 0-RTT KE protocol and
its security analysis.

4.1 Generic Construction

Let NIKE = (NIKE.Gen,NIKE.Key) be a NIKE scheme according to Definition 2
and let SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) be a signature scheme. Then we con-
struct a 0-RTT KE scheme 0-RTT = (Genserver,KEclient

init ,KEclient
refresh,KE

server
refresh), per

Definition 4, in the following way (cf. Fig. 3).



34 B. Hale et al.

Fig. 3. 0-RTT KE from NIKE. Again, it is possible to include the parallel execution
of a symmetric encryption protocol which would behave as in Fig. 2 for encrypted
application data. As such a protocol is not part of the 0-RTT KE protocol, we omit it
here for simplicity.

– Genserver(1λ, r) computes key pairs using the NIKE key generation algorithm
(pknike−static, sknike−static) $← NIKE.Gen(1λ) and signature keys using the SIG

algorithm (pk sg, sk sg) $← SIG.Gen, and outputs

(pk , sk) := ((pknike−static, pk sg), (sknike−static, sk sg)).

– KEclient
init (pk j , ri) samples ri

$← {0, 1}λ, parses pk j = (pknike−static
j , pk sg

j ), runs
(pknike

i , sknike
i ) ← NIKE.Gen(1λ, ri) and knike

i,j ← NIKE.Key(sknike
i , pknike−static

j ),
and outputs

(ki,j
tmp,mi) := (knike

i,j , pknike
i ).

– KEserver
refresh(sk j , rj ,mi) takes in mi = pknike

i , parses sk j = (sknike−static
j , sk sg

j ), and

samples rj
$← {0, 1}λ. It then computes knike

i,j ← NIKE.Key(sknike−static
j , pknike

i ),
(pknike

j , sknike
j ) ← NIKE.Gen(1λ, rj), and σj ← SIG.Sign(sk sg

j , pknike
j ). If mi =

pknike−static
j then it samples knike

main uniformly random, else it computes knike
main ←

NIKE.Key(sknike
j , pknike

i ), outputting

(kj,i
main, k

j,i
tmp,mj) := (knike

main, k
nike
i,j , (pknike

j , σj)).

– KEclient
refresh(pk j , ri,mj) parses pk j = (pknike−static

j , pk sg
j ) and mj = (pknike

j , σj).
It then checks true ← SIG.Vfy(pk sg

j , σj , pknike
j ) and computes

knike
main ← NIKE.Key(sknike

i , pknike
j ), outputting ki,j

main := knike
main.

Ultimately, the construction follows by applying the NIKE NIKE.Gen algo-
rithm and the signature SIG.Gen algorithm to generate a server configuration



Simple Security Definitions for and Constructions of 0-RTT Key Exchange 35

file which is comprised of the server public key and a server public signature key
which a client can then employ for generating the first protocol flow. In order
for the 0-RTT KE construction to abstract the security guarantees of the under-
lying NIKE, the appropriate client (pknike

i , sknike
i ) must be available for use in

the NIKE.Key algorithm. Consequently, the (pknike
i , sknike

i ) values are generated
locally by the client, with pknike

i passed to the server as a message. Note that this
construction naturally forgoes client-side authentication. Figure 3 demonstrates
the construction.

Remark 4. One may wonder why we define KEserver
refresh(sk j , rj ,mi) such that it

samples a random key when it takes as input a client message mi which is equal
to its own static NIKE key, that is, if mi = pknike−static

j . We note that this is
necessary for the security the constructed 0-RTT KE scheme to be reducible to
that of the NIKE scheme, because in some cases we will not be able to simulate
the key computed by a server oracle that receives as input a message which is
equal to the “static” NIKE public key contained in its 0-RTT KE public key.
Note that this incurs a negligible correctness error. However, it is straightforward
to verify the correctness of the protocol according to Definition 4.

Theorem 1. Let 0-RTT be executed with d clients, � servers with long-term
keys, and k server oracles modeling each server. From each attacker A, we
can construct attackers Bsig, according to Definition 1, and Bnike, according to
Definition 3, such that

Adv0RT T −sa
A (λ) ≤ 2kd� ·

(
AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)

+ d� ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)

+ d� ·
(
AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

)
+4 · AdvCKS-light

NIKE,Bnike
(λ) .

The running time of Bsig and Bnike is approximately equal to the time required
to execute the security experiment with A once.

Intuition for the Proof of Theorem 1. In order to prove Theorem1, we
distinguish between four types of attackers:

– adversary A1 asks Test() to a client oracle and the temporary key (CT-
attacker)

– adversary A2 asks Test() to a client oracle and the main key (CM-attacker)
– adversary A3 asks Test() to a server oracle and the temporary key (ST-

attacker)
– adversary A4 asks Test() to a server oracle and the main key (SM-attacker).

Let us give some intuition why this classification of attackers will be useful
for the security proof. In the 0-RTT KE scheme 0-RTT each party computes 2
different keys k,

tmp and k,
main, where k,

tmp depends on the ephemeral keys of the



36 B. Hale et al.

client and the static keys of the server, and k,
main depends on the ephemeral keys

of both parties. In our proof we want to be able to reduce the indistinguishability
of the 0-RTT-key to the indistinguishability of the NIKE-key.

In the NIKE security experiment the attacker receives two challenge public
keys {pknike

i , pknike
j }. In the reduction, we want to embed these keys in the 0-

RTT security experiment, according to Sect. 3.2, and still be able to answer all
Reveal()- and Corrupt()-queries correctly. In the case of adversaries that test
the temporary key of the client or the server we can embed the NIKE-keys as
pknike−static

j = pknike
j and mi = pknike

i . However, this does not work for adversaries
against the main key, because k,

main depends on the ephemeral keys of the parties.
In this case we have to embed the keys as mi = pknike

i and mj = pknike
j . The

Test()-query of the attacker in the 0-RTT experiment can then be answered
with the challenge the attacker in the NIKE experiment receives.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, 3–5 November 1993, Fairfax,
Virginia, USA, pp. 62–73. ACM Press (1993)

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

3. Bergsma, F., Jager, T., Schwenk, J.: One-round key exchange with strong security:
an efficient and generic construction in the standard model. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 477–494. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 21

4. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 235–255. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44381-1 14

5. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). doi:10.1007/BFb0024447

6. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-
tational Diffie-Hellman. In: Yung et al. [30], pp. 229–240

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

8. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 8

9. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and eCK. In: Cheung, B.S.N.,
Hui, L.C.K., Sandhu, R.S., Wong, D.S. (eds.) ASIACCS 2011, 22–24 March 2011,
Hong Kong, China, pp. 80–91. ACM Press (2011)

10. Cremers, C.J.F.: Session-state reveal is stronger than ephemeral key reveal: attacking
the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval,
D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01957-9 2

http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/978-3-662-46447-2_21
http://dx.doi.org/10.1007/978-3-662-46447-2_21
http://dx.doi.org/10.1007/978-3-662-44381-1_14
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/978-3-540-78967-3_8
http://dx.doi.org/10.1007/978-3-642-01957-9_2


Simple Security Definitions for and Constructions of 0-RTT Key Exchange 37

11. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC
protocol. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, 3–7 November
2014, Scottsdale, AZ, USA, pp. 1193–1204. ACM Press (2014)

12. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 17

13. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: IEEE S&P 2015 [16], pp. 305–320

14. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 519–548. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 18

15. Hale, B., Jager, T., Lauer, S., Schwenk, J.: Simple security definitions for and con-
structions of 0-RTT key exchange. Cryptology ePrint Archive, Report 2015/1214
(2015). http://eprint.iacr.org/2015/1214

16. IEEE Symposium on Security and Privacy, 17–21 May 2015, San Jose, CA, USA.
IEEE Computer Society Press (2015)

17. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 273–293. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 17

18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). doi:10.1007/11535218 33

19. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 429–448. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 24

20. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

21. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung et al. [30], pp. 378–394

22. Law, L., Menezes, A., Minghua, Q., Solinas, J., Vanstone, S.: An efficient protocol
for authenticated key agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

23. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is
QUIC? Provable security and performance analyses. In: IEEE S&P 2015 [16], pp.
214–231

24. NIST: SKIPJACK and KEA algorithm specifications (1998). http://csrc.nist.gov/
groups/STM/cavp/documents/skipjack/skipjack.pdf

25. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-08. Technical report, August 2015. Expires 29 Feb 2016

26. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-18. Technical report, October 2016. Expires 29 April 2017

27. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenti-
cated key agreement. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 219–234. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 15

28. Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforge-
able signature into a strongly unforgeable signature. In: Abe, M. (ed.) CT-RSA
2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006). doi:10.1007/
11967668 23

http://dx.doi.org/10.1007/978-3-642-36362-7_17
http://dx.doi.org/10.1007/978-3-319-56617-7_18
http://eprint.iacr.org/2015/1214
http://dx.doi.org/10.1007/978-3-642-32009-5_17
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1007/978-3-642-40041-4_24
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://dx.doi.org/10.1007/978-3-642-15317-4_15
http://dx.doi.org/10.1007/11967668_23
http://dx.doi.org/10.1007/11967668_23


38 B. Hale et al.

29. Yoneyama, K., Zhao, Y.: Taxonomical security consideration of authenticated key
exchange resilient to intermediate computation leakage. In: Boyen, X., Chen, X.
(eds.) ProvSec 2011. LNCS, vol. 6980, pp. 348–365. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24316-5 25

30. Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.): PKC 2006. LNCS, vol. 3958.
Springer, Heidelberg (2006)

31. Zhao, Y.: Identity-concealed authenticated encryption and key exchange. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, 24–28 October 2016, Vienna, Austria, pp. 1464–1479. ACM Press (2016)

http://dx.doi.org/10.1007/978-3-642-24316-5_25

	Simple Security Definitions for and Constructions of 0-RTT Key Exchange
	1 Introduction
	2 Preliminaries
	2.1 Digital Signatures
	2.2 Secure Non-interactive Key Exchange

	3 0-RTT Key Exchange Protocols: Syntax and Security with Server-Only Authentication
	3.1 Syntax and Correctness
	3.2 Execution Environment
	3.3 Composing a 0-RTT KE Protocol with Symmetric Encryption

	4 Generic Construction of 0-RTT KE from NIKE
	4.1 Generic Construction

	References


